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MAXIMAL OPERATORS OF SCHRODINGER
TYPE WITH A COMPLEX PARAMETER

PER SJOLIN

Abstract

Maximal operators of Schrodinger type but with a complex parameter are considered. For these
operators we obtain results which in a certain sense lie between the results for the corresponding
maximal operators for solutions to the Schrodinger equation and for solutions to the heat equation.

1. Introduction

Letting f belong to the Schwartz space ¥ (R) we set
S f(x) = /e“‘fe”ézf(s)dg, xeR.
R

Here t is a complex number with Im # > 0 and fdenotes the Fourier transform
of f, defined by

&) = f e f(x) dx.
R

We also set U(x,t) = 2m)~'S, f(x) for x € Rand ¢t € R. It then follows
that U(x,0) = f(x) and U satisfies the Schrodinger equation i dU /0t =
32U /dx>.

We also introduce the maximal function $*f defined by

S*f(x) = sup |S; f(x)], x €R,

O<t<l1

and define Sobolev spaces H; by setting
Hy={f € % Iflln, < oo}, s €R,
where

. 1/2
I flly, = (fRa +§2)S|f(é)|2d§> :
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It is well-known that the estimate

1S fll2 < CILf Il m,

holds for s > 1/2 and does not hold for s < 1/2 (see [2]). Here || S*f||»
denotes the norm of S*f in the space L?(R). We then set

Ho f () = S f(x) = / e E g dE, x eR,

R

foru > 0. If we set V(x,u) = 27)~'H, f(x) forx € Rand u > 0, then
V(x,0) = f(x) and V satisfies the heat equation 3 V/du = 3>V/dx>. We also
introduce the maximal function H*f defined by

H'f(x) = sup |H,f(x)], x €R.

O<u<l1

It is then well-known that the estimate | H*f || < C| f ||, holds if and only
if s > 0.

We shall then introduce a class of maximal operators for which one has
results lying between the above results for $* and H*. For 0 < y < oo we set

Puf(x) = Suriw f(x) = f eEME T E F(EYdE,  xeR, O<u <1,
R

and
P*f(x) = sup |P,f(x)l, x eR.

O<u<l

We shall here study the inequality
)] IP*fll2 < Cll flln,

for various values of y. We have the following results.
THEOREM 1.
(1) For0 <y < 1) holds if and only if s > 0.
(i1) Fory =2 (1) holds if and only if s > 1/4.
(i) If y = 4 and (1) holds thens > 1/2 — 1/y.
For y > 0 we let E,, denote the set of all s with the property that (1) holds.

Also set s(y) = inf E, for y > 0. Using the fact that lim,_.o P, f(x) =
2r f(x) it is easy to see that s(y) > 0. We shall use the following lemma.

LEMMA 1. Assume that g and h are continuous functions on the interval
0, 1) and that 0 < g(u) < h(u) for0 < u < 1. Set

Pg*f(x) = sup |[Sutiga f(*)]
1

O<u<
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and
P}:kf(x) = Ssup |Su+ih(u)f(x)|'

O<u<l

Then
1Py fll2 < CIP; £l

It follows from the lemma that s(y) is an increasing function of y on the
interval (0, 0o). Also the result mentioned above for the operator S* implies
that s(y) < 1/2 (take g(u) = 0 and h(u#) = u? in the lemma). The results in
Theorem 1 can then be stated in the following way.

THEOREM 2.
(i) For0 <y < 1onehass(y)=0.

(i) s(2) = 1/4.

(iii) Fory > 4onehas1/2—1/y <s(y) < 1/2and hencelim,_, o s(y) =
1/2.

In Section 2 we shall prove Lemma 1 and state and prove a second lemma.
In Section 3 we shall prove Theorem 1.

ACKNOWLEDGEMENT. A question by Hakan Hedenmalm drew my atten-
tion to the problem studied in this paper.

2. Lemmas

PrOOF OF LEMMA 1. We have
Susinon ) = [ €60 Fe) g
— /eiXEequze—g(u)éze—(h(u)—g(u))ézf(g) dg
=/eix§ei”§26g(”)gzeU‘szf(é‘)dé

where v = h(u) — g(u) > 0.
For v = 0 one has

Su+ih(tt)f(x) = Su+ig(u)f(x)~

We then assume v > 0. It is well-known that

e = Ry = f TEK, () dy,
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where
Ku(3) = 3 e 0 = LK (')
v w122 /1 v1/2

with K (y) = e™"/4/(2/7 ). It follows that

Susinin f () = / 176 it g @S ( / K () dy) 7©) d

_ /(/ ei(x—y)éeiusze—g(u)é‘zf(g) dé)Kv(y) dy

= / Su+ig(u)f(x - y)Kv(y) dy =K, * Su—i—ig(u)f(x)

and hence
|Su+inw f ()] < Ky * Py f(x) < CMP; f(x)

where M denotes the Hardy-Littlewood maximal operator.
We conclude that

Pyf(x) = Py f(x) + CMP; f(x)

and since M is a bounded operator on L?(R) we obtain || P} f]l» < C|| Py flla-

The following lemma was proved in [3].

LEMMA 2. Assume thata > 1, 1/2 <s < 1 and nu € C;°(R). Then

/ IR £ 6 /N di | < ©

R |x|1=s

forx e Rt e Rand N = 1,2,3,.... Here the constant C may depend on s
and a but not on x, t or N.

The next lemma will be used to prove that s(2) < 1/4.

LEmMMA 3. Assume that 1/2 <o < 1,0 <d; < 1,0 < d, < 1, and
w € C(R) and v even and real-valued. Then

et —dy)E>—x§) P
‘/ e T e N e < K )

forx e Rand N =1,2,3,...,whereK € L'(R). Here K is independent of d,,
d, and N, and one may take K (x) = Cx~2 for |x| > Cyand K (x) = C|x|*~!
for |x| < Cy. Here Cy denotes a large constant.
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PrOOF oF LEMMA 3. The structure in the proof of the lemma will be the
same as in the proof of Lemma 3 in [4]. Without loss of generality we may
assume d, < d;j. Wesetd =d; —d, and ¢ :d%—l—d% sothat0 < d < 1 and
0 < ¢ < 2. First assume |x| > Cy where Cy denotes a large constant.

We choose an even function ¢y € C3°(R) such that ¢o(§) = 1for |§] < 1/2
and ¢o(§) = O for [§] > 1.

Set )
Y(E) = (1+8)" e uE/N)

and Yo = Y ¢ so that supp ¥ C [—1, 1].

We also set p = |x|/(2d) and let K denote a large constant. Then choose
@2 € Cg°(R) sothatsupp ¢z C [p/4, 2Kpland p»(§) = 1forp/2 <& < Kp.
We may also assume that |5 (£)| < C&~! and |@5(§)| < C&E2 for & > 0. We

then set g3 = (1 — ¢2) X[k p.c0) a0d @1 = (1 — @2 — P0) X[0.p/21-
Let ¢ be defined by ¢(§) = ¢(—£) and set ¢ = @1, ¢_» = ¢, and
@_3 = @3. Setting F(£) = d&*> — x£ we then have

3

oo 3
f ey de = Zfe“”wj dt +Z/e“”w<p,- dE.
- j=0 j=1

The integrals [ e'Fyr¢_; can be reduced to [ e'Fyrg; for j = 1,2, 3. Setting
¥ =Y, j =0,1, 2,3, itis therefore sufficient to estimate the integrals

J; =/efF¢jdg, j=0,1,2,3.

We claim that one has the following estimates for j = 1,2,3 and & > 1/2:

() I ()] < CW,

3) [V (&) = CW,
and

4 |'ﬁ;/(§)| = CW-

Weseth(§) = h.(§) = e~ for§ > 1/2and0 < ¢ < 2. The above estimates
for ¥, w]f and wjf/ will follow if we can prove that

1
&) Ih') < CE’ §=1/2,
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and
1
(6) |h"(&)] < C?’ §=>1/2,
with C independent of ¢.
We have 5
WE) = - 2ek
and

h'(€) = —e 2 e 4 e g g2 £2.

It follows that for £ > 1/2 one has

1 1 1
IWE) < e 2e8 =e 2682~ < 2(maxte )= = 2A—,
%’ >0 %‘ %’

where A = max,>ote”". Also

()] < e 2 + 4e~ 2%

_cg2 1 g2 1 1 1
=e % 28525—2 + 4e7% 82545—2 < 2A€—2 +4B$—2,

where B = max;>g t?e~". Hence (5) and (6) are proved and (2), (3) and (4)
follow.
‘We shall first estimate J,. We have

do= [ et yoe) e
where supp ¥y C [—1, 1] and two integrations by parts give the estimate

lJo] < Cx2.
We shall then estimate J,. One has

J2 Z/eiFW2d§

where

V2 (6) = (1 +E) 7 u(E/N) g (§)

and supp v C [p/4, 2Kp].
We have F” (&) = 2d and van der Corput’s Lemma with the second deriv-

ative (see Stein [5], p. 334) gives

(7) [Ja] < Cd‘/2<max|wz|+f|wé|ds>.
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It is clear that

® max || < Cp e "’
where ¢ denotes a positive constant.
We also set )2
V() = 1+ &) u@E/N)p2(8)
so that e
Ua(§) =v(é)e
and

d 2 2
l _ ek l —c&
%(S)—Mé)(d%_e )+V(%‘)e :

It follows that
d 2 5

[wtenas < fluer(spe )|+ [ e iae

4 es?

—a 2Ke d 2Ke —a—1 —cep?
<Cp 7 d§ + 0 dée
p/4 1§ p/4

<Cp™ /ZKP _(iessz> dE + Cp~e ¢
< it
P4

2Kp
p/4

— _Cp—a [6—852] 4 Cp—ae—cap2 < Cp—ae—cspz'

Combining this estimate with (7) and (8) we obtain

—o
[Jo] < Cd_l/z,o_we_”?"2 = Cd_1/2(|261—|> emcex’ I

— —a —cx? —
SCda l/2|x| o pmex < Ce

since « > 1/2 and d? < ¢. In fact

= —d) =d?+d>—2didy <d? + d% = .

127

2
cx”

This concludes the estimate of J, and we shall then estimate J;. One has

J = /e"% d

where supp Y1 C [1/2, p/2] and F' = 2d& — x.
On the interval [1/2, p/2] one has

x| _ I«

2dé <2dp/2=dp=d-— =-—— and |F| > |x|/2 > 2dE.

2d 2
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Also F”" = 2d and F® = 0. It follows that |F"|/|F'| < CE'for1/2 <& <
p/2. Integrating by parts twice we obtain

i :/e"% dé = /iF/efF.‘p—‘ d&
iF
1 F//
Z_/n (uw% <pvwﬂd5

L F//
Z(WFFQFV% mww}&

_ iF 1 " 1 2F// /
- [ (it - mim

+F”M+F®w—“Fy%)m
E T E T Ey
and hence

mi=c [ ZQ%%UWWm+mme@
N I & &

1 1
=C5 g“dg_C—
1/2

It remains to estimate J3 = [ e'f 3 d§. Here supp /3 C [Kp, 00). For

£ Kp=k
= 2d

we have Ix|
2d$>2dK—d_K| x|

and hence |F'| > c|x|and |F'| > cd €.

We can estimate J3 in the same way as we estimated J;. We can use the
inequality (9) with ¢, replaces by v3 and J; replaced by J3. One obtains
|31 < Clx| 7.

We have proved Lemma 3 in the case |x| > Cy. It remains to study the
case |x| < Cy. The estimate in this case follows from the proof in [3] of our
Lemma 2. The proof of Lemma 3 is complete.
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3. Proof of Theorem 1

PrOOF OF THEOREM 1. We shall first study the case 0 < y < 1. It is well-
known that e=%*" has Fourier transform /a~"/2¢~¢"/% fora > 0. ForRe 7 >
0 we then set 7!/? = |z|'/2¢!@29/2 where —7/2 < argz < m/2. By use of
elementary properties of analytic functions it is then easy to prove that e

has Fourier transform
AT o Ez /4z

7172
for Re z > 0. It also follows that e~ * is the Fourier transform of

1 2
—x*/4z
(10 2/’

forRez > 0.

Setting t = u 4 iv with u > 0, v > 0 we then have ¢/5’ = ¢/“+VE —
e~ =8 Taking z = v—iu in (10) it then follows that e~ =1’ is the Fourier
transform of |

27w —iu)2¢

K(x) = [ (4(v=iu))

It is clear that

1 4
Kl= (2 + 2)1/4|e—x2/(4(v—zu)) :
v u

Since
1 v .u

— = t1
v—iu  v24u? v2 4+ u?

we conclude that

2 2,2
K (x)] < L P U/ GH)

Letting 0 < u < 1 and v = u” with 0 < y < 1 we then obtain

1 x2 w
(O ——— xp< _>

= (u2y+u2)l/4e _quy_i_uz
1

- —cx?/u’ __ - y/2
S u}’/ze - MV/ZL(X/M )a

where ¢ > Oand L(x) = e=<*" . It follows that P* f(x) < CMf(x) and hence
the first part of Theorem 1 follows.
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We shall then study the case y = 2. We let u(x) denote a measurable
function on R with 0 < u(x) < 1 and set

Pf(x) = / o QIUWE U8 Fgy ge  x e R,
R

We have to prove that

. 1/2
(11) IPflla < Cllfllu = C(/ R +sz>xds)
R

for s > 1/4. We may also assume s < 1/2.
Setting g(&) = f(£) (1 + £2)*/? and defining T by

Tg(x) = / £/ IMOE" U (1 L 2720 () g
R

we have Pf(x) = Tg(x). It is therefore sufficient to prove that ||Tgl|, <
Cllgll,.For N =1,2,3,...set

Tivg(x) = xw(x) [ e e (1 )50 ()g06) d.
R

Here xy(x) = x(x/N)and py(§) = p(§/N) and x and p € C;°(R) and have
the property that x(x) = p(x) = 1 for [x] < 1 and x(x) = p(x) = O for
|x| > 2. We also assume that x and p are even and real-valued. It is sufficient
to prove that

ITngll2 = Cligll2s N=123,....

It is clear that

Tih(E) = py(€)(1+8)7 / ¢ e iy () (x) dx

R

and it is sufficient to prove that

12) ITyhll2 < CliAll2, N=123,...
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Invoking Lemma 3 we now have

IT5hl3

= [ T T ae
= [ o2 gy ([ et ey aoneo )

" ( / £IVE IHOIE P (s dy)

— // (/(1 + £2) 75 ¢l 0 0E G (W) —ulE? = (O +u()IE | (£ /) dg)

x xn () xn (Mh(xX)A(y) dxdy
< cf/ K (x — »h(o)| k()| dxdy < ClIh]E.

Here we have set 1 = p? and according to Lemma 3 we have K € L!(R) since
1/4 <s < 1/2. Hence (12) and (11) are proved.

We shall then prove thatif y =2 and s < 1/4 then (1) does not hold. First
choose g € C{°(R) such that suppg C (—1,1), g(§) > O and g(§) =1 for
|&] < 1/2.Then let v > 0 denote a small number and define a function f, by

ti —~
etting Fo®) = v g (v + 1/v).

It is well-known and easy to prove that || f, |z, = Oasv — Oif s < 1/4 (see
[1]). Setting u = u(x) = xv?/2 and assuming 0 < x < 1/100 we have

Pufo(x) = / v g(VE + 1/v)e 8l ¥VE 2= VE A g

In this integral we make a change of variable n = v +1/v, sothatdn = vd§
and & = n/v — 1/v%. One obtains

Py fo(x) = / HOZS

n 1 xv? [ 1)\?
Fp=x(t-=)+=—(~-—=
() x(v v2>+ 2 (v v2)

2.4 2
Gy = - (3—1).

4 \v 2

where

and
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Hence 2 /.2
xn x xv°(n 1 2n
Fy=——> —(— ———)

v v2 2 \v?2 vt 3
_xp X xn? X xn xn?
) v2 2 202 v 2 202

and it follows that

1
-
|Pufv(x)| = ‘/ g(n)etxﬂ /2eG(ﬂ)dn"
-1

We have 20t/ 0\2
IG(n)|§—<—2) —<i
v

4

for |n| < 1 and we conclude that

: 2 G(p) : 1 1
AW = [ smeostor ey = [ gagetdn= o
Hence P* f,(x) > 1/(2e) for0 < x < 1/100 and || P* f, |2 = ¢ > O for small
v. It follows that the estimate || P* f,||» < C|| fy ||z, does not hold for s < 1/4.
Hence the statement in Theorem 1 in the case ¥ = 2 has been proved.

It remains to study the case y > 4. Take g as above and choose f so
that f(&‘ ) = g(& + N) where N denotes a large positive number. Also set
u =u(x) =x/(2N) and assume 27' N2V < x < N'=2/7,

Setting n = £ + N we obtain

P f(x) = / EE T g (€ 4 N) dE

=/eiX(n—N)eiu(n—N)2e—uV(n—N)zg(n) dn

— / g(n)eiF(")eG(n)dn

where F(n) = x(n — N) +u(n — N)?> and G(7) = —u” (n — N)?. Hence
F(n) =xn—xN 4+un®>+uN*—u2y N

=xn—xN+in2+iN2—2niN
2N 2N 2N
=xn—xN+Ln2+ﬂ—xn
2N 2
x 5, xN
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and it follows that
1
|Puf ()] = ‘ / g 1N My .
-1
We have

¥
y 2 * 2 (=2/v)y N2-v —
GON| < u” @N)? = S 4N? < NU27 N7 —
for |[n| < 1 and we conclude that
1 1
2 Gan L - 1

[P f() = [ g(m)cos(xn”/(2N))e”Pdn = g(mze dn > %
—1 —1

Hence P* f(x) > 1/(2e) for 27! N'=2/¥ < x < N'=2/7 and it follows that

| P*fll, = ¢ N2/ = ¢ N12-1r,

On the other hand it is easy to see that || f||z, < CN*, and if (1) holds, one
obtains N'/2=1/¥ < CN*. We conclude that s > 1/2 — 1/y and the proof of

Theorem 1 is complete.
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