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MAXIMAL OPERATORS OF SCHRÖDINGER
TYPE WITH A COMPLEX PARAMETER

PER SJÖLIN

Abstract

Maximal operators of Schrödinger type but with a complex parameter are considered. For these
operators we obtain results which in a certain sense lie between the results for the corresponding
maximal operators for solutions to the Schrödinger equation and for solutions to the heat equation.

1. Introduction

Letting f belong to the Schwartz space S (R) we set

Stf (x) =
∫

R
eixξ eitξ

2
f̂ (ξ) dξ, x ∈ R.

Here t is a complex number with Im t ≥ 0 and f̂ denotes the Fourier transform
of f , defined by

f̂ (ξ) =
∫

R
e−iξxf (x) dx.

We also set U(x, t) = (2π)−1Stf (x) for x ∈ R and t ∈ R. It then follows
that U(x, 0) = f (x) and U satisfies the Schrödinger equation i ∂U/∂t =
∂2U/∂x2.

We also introduce the maximal function S∗f defined by

S∗f (x) = sup
0<t<1

|Stf (x)|, x ∈ R,

and define Sobolev spaces Hs by setting

Hs = {f ∈ S ′; ‖f ‖Hs < ∞}, s ∈ R,

where

‖f ‖Hs =
(∫

R
(1 + ξ 2)s |f̂ (ξ)|2dξ

)1/2

.
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It is well-known that the estimate

‖S∗f ‖2 ≤ C‖f ‖Hs
holds for s > 1/2 and does not hold for s < 1/2 (see [2]). Here ‖S∗f ‖2

denotes the norm of S∗f in the space L2(R). We then set

Huf (x) = Siuf (x) =
∫

R
eixξ e−uξ

2
f̂ (ξ) dξ, x ∈ R,

for u ≥ 0. If we set V (x, u) = (2π)−1Huf (x) for x ∈ R and u ≥ 0, then
V (x, 0) = f (x) and V satisfies the heat equation ∂V/∂u = ∂2V/∂x2. We also
introduce the maximal function H ∗f defined by

H ∗f (x) = sup
0<u<1

|Huf (x)|, x ∈ R.

It is then well-known that the estimate ‖H ∗f ‖2 ≤ C‖f ‖Hs holds if and only
if s ≥ 0.

We shall then introduce a class of maximal operators for which one has
results lying between the above results for S∗ andH ∗. For 0 < γ < ∞ we set

Puf (x) = Su+iuγ f (x) =
∫

R
eixξ eiuξ

2
e−u

γ ξ 2
f̂ (ξ) dξ, x ∈ R, 0 < u < 1,

and
P ∗f (x) = sup

0<u<1
|Puf (x)|, x ∈ R.

We shall here study the inequality

(1) ‖P ∗f ‖2 ≤ C‖f ‖Hs
for various values of γ . We have the following results.

Theorem 1.
(i) For 0 < γ ≤ 1 (1) holds if and only if s ≥ 0.

(ii) For γ = 2 (1) holds if and only if s ≥ 1/4.

(iii) If γ ≥ 4 and (1) holds then s ≥ 1/2 − 1/γ .

For γ > 0 we let Eγ denote the set of all s with the property that (1) holds.
Also set s(γ ) = inf Eγ for γ > 0. Using the fact that limu→0 Puf (x) =
2πf (x) it is easy to see that s(γ ) ≥ 0. We shall use the following lemma.

Lemma 1. Assume that g and h are continuous functions on the interval
(0, 1) and that 0 ≤ g(u) ≤ h(u) for 0 < u < 1. Set

P ∗
g f (x) = sup

0<u<1
|Su+ig(u)f (x)|
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and
P ∗
h f (x) = sup

0<u<1
|Su+ih(u)f (x)|.

Then
‖P ∗

h f ‖2 ≤ C‖P ∗
g f ‖2.

It follows from the lemma that s(γ ) is an increasing function of γ on the
interval (0,∞). Also the result mentioned above for the operator S∗ implies
that s(γ ) ≤ 1/2 (take g(u) ≡ 0 and h(u) = uγ in the lemma). The results in
Theorem 1 can then be stated in the following way.

Theorem 2.
(i) For 0 < γ ≤ 1 one has s(γ ) = 0.

(ii) s(2) = 1/4.

(iii) For γ > 4 one has 1/2−1/γ ≤ s(γ ) ≤ 1/2 and hence limγ→∞ s(γ ) =
1/2.

In Section 2 we shall prove Lemma 1 and state and prove a second lemma.
In Section 3 we shall prove Theorem 1.

Acknowledgement. A question by Håkan Hedenmalm drew my atten-
tion to the problem studied in this paper.

2. Lemmas

Proof of Lemma 1. We have

Su+ih(u)f (x) =
∫
eixξ eiuξ

2
e−h(u)ξ

2
f̂ (ξ) dξ

=
∫
eixξ eiuξ

2
e−g(u)ξ

2
e−(h(u)−g(u))ξ

2
f̂ (ξ) dξ

=
∫
eixξ eiuξ

2
e−g(u)ξ

2
e−vξ

2
f̂ (ξ) dξ

where v = h(u)− g(u) ≥ 0.
For v = 0 one has

Su+ih(u)f (x) = Su+ig(u)f (x).

We then assume v > 0. It is well-known that

e−vξ
2 = K̂v(ξ) =

∫
e−iξyKv(y) dy,
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where
Kv(y) = 1

v1/2

1

2
√
π
e−y

2/(4v) = 1

v1/2
K(y/v1/2)

with K(y) = e−y2/4/(2
√
π ). It follows that

Su+ih(u)f (x) =
∫
eixξ eiuξ

2
e−g(u)ξ

2

(∫
e−iξyKv(y) dy

)
f̂ (ξ) dξ

=
∫ (∫

ei(x−y)ξ eiuξ
2
e−g(u)ξ

2
f̂ (ξ) dξ

)
Kv(y) dy

=
∫
Su+ig(u)f (x − y)Kv(y) dy = Kv ∗ Su+ig(u)f (x)

and hence
|Su+ih(u)f (x)| ≤ Kv ∗ P ∗

g f (x) ≤ CMP ∗
g f (x)

where M denotes the Hardy-Littlewood maximal operator.
We conclude that

P ∗
h f (x) ≤ P ∗

g f (x)+ CMP ∗
g f (x)

and sinceM is a bounded operator on L2(R) we obtain ‖P ∗
h f ‖2 ≤ C‖P ∗

g f ‖2.

The following lemma was proved in [3].

Lemma 2. Assume that a > 1, 1/2 ≤ s < 1 and μ ∈ C∞
0 (R). Then∣∣∣∣

∫
R
eixξ+it |ξ |

a |ξ |−sμ(ξ/N) dξ
∣∣∣∣ ≤ C

1

|x|1−s

for x ∈ R, t ∈ R and N = 1, 2, 3, . . .. Here the constant C may depend on s
and a but not on x, t or N .

The next lemma will be used to prove that s(2) ≤ 1/4.

Lemma 3. Assume that 1/2 ≤ α < 1, 0 < d1 < 1, 0 < d2 < 1, and
μ ∈ C∞

0 (R) and μ even and real-valued. Then∣∣∣∣
∫

R

ei((d1−d2)ξ
2−xξ)

(1 + ξ 2)α/2
e−(d

2
1 +d2

2 )ξ
2
μ(ξ/N) dξ

∣∣∣∣ ≤ K(x)

for x ∈ R andN = 1, 2, 3, . . ., whereK ∈ L1(R). HereK is independent of d1,
d2 andN , and one may takeK(x) = Cx−2 for |x| ≥ C0 andK(x) = C|x|α−1

for |x| < C0. Here C0 denotes a large constant.
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Proof of Lemma 3. The structure in the proof of the lemma will be the
same as in the proof of Lemma 3 in [4]. Without loss of generality we may
assume d2 < d1. We set d = d1 − d2 and ε = d2

1 + d2
2 so that 0 < d < 1 and

0 < ε < 2. First assume |x| ≥ C0 where C0 denotes a large constant.
We choose an even function ϕ0 ∈ C∞

0 (R) such that ϕ0(ξ) = 1 for |ξ | ≤ 1/2
and ϕ0(ξ) = 0 for |ξ | ≥ 1.

Set
ψ(ξ) = (1 + ξ 2)−α/2e−εξ

2
μ(ξ/N)

and ψ0 = ψϕ0 so that suppψ0 ⊂ [−1, 1].
We also set ρ = |x|/(2d) and let K denote a large constant. Then choose

ϕ2 ∈ C∞
0 (R) so that suppϕ2 ⊂ [ρ/4, 2Kρ] and ϕ2(ξ) = 1 for ρ/2 ≤ ξ ≤ Kρ.

We may also assume that |ϕ′
2(ξ)| ≤ Cξ−1 and |ϕ′′

2 (ξ)| ≤ Cξ−2 for ξ > 0. We
then set ϕ3 = (1 − ϕ2)χ[Kρ,∞) and ϕ1 = (1 − ϕ2 − ϕ0)χ[0,ρ/2].

Let ϕ̌ be defined by ϕ̌(ξ) = ϕ(−ξ) and set ϕ−1 = ϕ̌1, ϕ−2 = ϕ̌2 and
ϕ−3 = ϕ̌3. Setting F(ξ) = dξ 2 − xξ we then have

∫ ∞

−∞
eiFψ dξ =

3∑
j=0

∫
eiFψϕj dξ +

3∑
j=1

∫
eiFψϕ−j dξ.

The integrals
∫
eiFψϕ−j can be reduced to

∫
eiFψϕj for j = 1, 2, 3. Setting

ψj = ψϕj , j = 0, 1, 2, 3, it is therefore sufficient to estimate the integrals

Jj =
∫
eiFψj dξ, j = 0, 1, 2, 3.

We claim that one has the following estimates for j = 1, 2, 3 and ξ ≥ 1/2:

(2) |ψj(ξ)| ≤ C
1

(1 + ξ 2)α/2
,

(3) |ψ ′
j (ξ)| ≤ C

1

(1 + ξ 2)α/2ξ
,

and

(4) |ψ ′′
j (ξ)| ≤ C

1

(1 + ξ 2)α/2ξ 2
.

We set h(ξ) = hε(ξ) = e−εξ 2
for ξ ≥ 1/2 and 0 < ε < 2. The above estimates

for ψj , ψ ′
j and ψ ′′

j will follow if we can prove that

(5) |h′(ξ)| ≤ C
1

ξ
, ξ ≥ 1/2,
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and

(6) |h′′(ξ)| ≤ C
1

ξ 2
, ξ ≥ 1/2,

with C independent of ε.
We have

h′(ξ) = −e−εξ 2
2 ε ξ

and
h′′(ξ) = −e−εξ 2

2 ε + e−εξ
2
4 ε2 ξ 2.

It follows that for ξ ≥ 1/2 one has

|h′(ξ)| ≤ e−εξ
2
2 ε ξ = e−εξ

2
2 ε ξ 2 1

ξ
≤ 2(max

t>0
te−t )

1

ξ
= 2A

1

ξ
,

where A = maxt≥0 te
−t . Also

|h′′(ξ)| ≤ e−εξ
2
2 ε + 4e−εξ

2
ε2ξ 2

= e−εξ
2
2 ε ξ 2 1

ξ 2
+ 4e−εξ

2
ε2ξ 4 1

ξ 2
≤ 2A

1

ξ 2
+ 4B

1

ξ 2
,

where B = maxt≥0 t
2e−t . Hence (5) and (6) are proved and (2), (3) and (4)

follow.
We shall first estimate J0. We have

J0 =
∫
e−ixξ eidξ

2
ψ0(ξ) dξ

where suppψ0 ⊂ [−1, 1] and two integrations by parts give the estimate
|J0| ≤ Cx−2.

We shall then estimate J2. One has

J2 =
∫
eiFψ2 dξ

where
ψ2(ξ) = (1 + ξ 2)−α/2e−εξ

2
μ(ξ/N)ϕ2(ξ)

and suppψ2 ⊂ [ρ/4, 2Kρ].
We have F ′′(ξ) = 2d and van der Corput’s Lemma with the second deriv-

ative (see Stein [5], p. 334) gives

(7) [J2| ≤ Cd−1/2

(
max |ψ2| +

∫
|ψ ′

2| dξ
)
.
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It is clear that

(8) max |ψ2| ≤ Cρ−αe−cερ
2

where c denotes a positive constant.
We also set

ν(ξ) = (1 + ξ 2)−α/2μ(ξ/N)ϕ2(ξ)

so that
ψ2(ξ) = ν(ξ)e−εξ

2

and
ψ ′

2(ξ) = ν(ξ)

(
d

dξ
e−εξ

2

)
+ ν ′(ξ)e−εξ

2
.

It follows that∫
|ψ ′

2(ξ)| dξ ≤
∫ ∣∣∣∣ν(ξ)

(
d

dξ
e−εξ

2

)∣∣∣∣ dξ +
∫

|ν ′(ξ)e−εξ
2 | dξ

≤ Cρ−α
∫ 2Kρ

ρ/4

∣∣∣∣ ddξ e−εξ 2

∣∣∣∣ dξ +
∫ 2Kρ

ρ/4
ρ−α−1 dξ e−cερ

2

≤ Cρ−α
∫ 2Kρ

ρ/4
−

(
d

dξ
e−εξ

2

)
dξ + Cρ−αe−cεξ

2

= −Cρ−α[e−εξ 2]2Kρ
ρ/4 + Cρ−αe−cερ

2 ≤ Cρ−αe−cερ
2
.

Combining this estimate with (7) and (8) we obtain

|J2| ≤ Cd−1/2ρ−αe−cερ
2 = Cd−1/2

( |x|
d

)−α
e−cεx

2/d2

≤ Cdα−1/2|x|−αe−cx2 ≤ Ce−cx
2
,

since α ≥ 1/2 and d2 ≤ ε. In fact

d2 = (d1 − d2)
2 = d2

1 + d2
2 − 2 d1d2 ≤ d2

1 + d2
2 = ε.

This concludes the estimate of J2 and we shall then estimate J1. One has

J1 =
∫
eiFψ1 dξ

where suppψ1 ⊂ [1/2, ρ/2] and F ′ = 2 dξ − x.
On the interval [1/2, ρ/2] one has

2 dξ ≤ 2 dρ/2 = d ρ = d
|x|
2d

= |x|
2

and |F ′| ≥ |x|/2 ≥ 2 dξ.
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Also F ′′ = 2d and F (3) = 0. It follows that |F ′′|/|F ′| ≤ Cξ−1 for 1/2 ≤ ξ ≤
ρ/2. Integrating by parts twice we obtain

J1 =
∫
eiFψ1 dξ =

∫
iF ′eiF

ψ1

iF ′ dξ

= −
∫
eiF

(
1

iF ′ψ
′
1 − 1

i

F ′′

(F ′)2
ψ1

)
dξ

= −
∫
iF ′eiF

(
1

(iF ′)2
ψ ′

1 + F ′′

(F ′)3
ψ1

)
dξ

=
∫
eiF

(
1

i2

1

(F ′)2
ψ ′′

1 − 1

i2

2F ′′

(F ′)3
ψ ′

1

+ F ′′

(F ′)3
ψ ′

1 + F (3)

(F ′)3
ψ1 − 3(F ′′)2

(F ′)4
ψ1

)
dξ

and hence

(9)

|J1| ≤ C

∫
1

|F ′|2
(

|ψ ′′
1 | + |F ′′|

|F ′| |ψ ′
1| + |F ′′|2

|F ′|2 |ψ1|
)
dξ

≤ C
1

x2

∫ ∞

1/2
ξ−α−2dξ = C

1

x2
.

It remains to estimate J3 = ∫
eiFψ3 dξ . Here suppψ3 ⊂ [Kρ,∞). For

ξ ≥ Kρ = K
|x|
2d

we have
2 dξ ≥ 2 dK

|x|
2d

= K|x|

and hence |F ′| ≥ c |x| and |F ′| ≥ c d ξ .
We can estimate J3 in the same way as we estimated J1. We can use the

inequality (9) with ψ1 replaces by ψ3 and J1 replaced by J3. One obtains
|J3| ≤ C|x|−2.

We have proved Lemma 3 in the case |x| ≥ C0. It remains to study the
case |x| < C0. The estimate in this case follows from the proof in [3] of our
Lemma 2. The proof of Lemma 3 is complete.
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3. Proof of Theorem 1

Proof of Theorem 1. We shall first study the case 0 < γ ≤ 1. It is well-
known that e−ax2

has Fourier transform
√
πa−1/2e−ξ 2/4a for a > 0. For Re z >

0 we then set z1/2 = |z|1/2ei(arg z)/2 where −π/2 < arg z < π/2. By use of
elementary properties of analytic functions it is then easy to prove that e−zx2

has Fourier transform √
π

z1/2
e−ξ

2/4z

for Re z > 0. It also follows that e−zξ 2
is the Fourier transform of

(10)
1

2
√
πz1/2

e−x
2/4z

for Re z > 0.
Setting t = u + iv with u > 0, v > 0 we then have eitξ

2 = ei(u+iv)ξ 2 =
e−(v−iu)ξ 2

. Taking z = v−iu in (10) it then follows that e−(v−iu)ξ 2
is the Fourier

transform of
K(x) = 1

2
√
π(v − iu)1/2

e−x
2/(4(v−iu)).

It is clear that
|K(x)| ≤ 1

(v2 + u2)1/4

∣∣e−x2/(4(v−iu))∣∣.
Since

1

v − iu
= v

v2 + u2
+ i

u

v2 + u2

we conclude that

|K(x)| ≤ 1

(v2 + u2)1/4
e−x

2v/(4(v2+u2)).

Letting 0 < u < 1 and v = uγ with 0 < γ ≤ 1 we then obtain

|K(x)| ≤ 1

(u2γ + u2)1/4
exp

(
−x

2

4

uγ

u2γ + u2

)

≤ 1

uγ/2
e−c x

2/uγ = 1

uγ/2
L(x/uγ/2),

where c > 0 and L(x) = e−c x2
. It follows that P ∗f (x) ≤ CMf (x) and hence

the first part of Theorem 1 follows.
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We shall then study the case γ = 2. We let u(x) denote a measurable
function on R with 0 < u(x) < 1 and set

Pf (x) =
∫

R
eixξ eiu(x)ξ

2
e−u(x)

2ξ 2
f̂ (ξ) dξ, x ∈ R.

We have to prove that

(11) ‖Pf ‖2 ≤ C‖f ‖Hs = C

(∫
R
|f̂ (ξ)|2(1 + ξ 2)sdξ

)1/2

for s ≥ 1/4. We may also assume s < 1/2.

Setting g(ξ) = f̂ (ξ) (1 + ξ 2)s/2 and defining T by

T g(x) =
∫

R
eixξ eiu(x)ξ

2
e−u(x)

2ξ 2
(1 + ξ 2)−s/2g(ξ) dξ,

we have Pf (x) = T g(x). It is therefore sufficient to prove that ‖T g‖2 ≤
C‖g‖2. For N = 1, 2, 3, . . . set

TNg(x) = χN(x)

∫
R
eixξ eiu(x)ξ

2
e−u(x)

2ξ 2
(1 + ξ 2)−s/2ρN(ξ)g(ξ) dξ.

Here χN(x) = χ(x/N) and ρN(ξ) = ρ(ξ/N) and χ and ρ ∈ C∞
0 (R) and have

the property that χ(x) = ρ(x) = 1 for |x| ≤ 1 and χ(x) = ρ(x) = 0 for
|x| ≥ 2. We also assume that χ and ρ are even and real-valued. It is sufficient
to prove that

‖TNg‖2 ≤ C‖g‖2, N = 1, 2, 3, . . . .

It is clear that

T ∗
Nh(ξ) = ρN(ξ)(1 + ξ 2)−s/2

∫
R
e−ixξ e−iu(x)ξ

2
e−u(x)

2ξ 2
χN(x)h(x) dx

and it is sufficient to prove that

(12) ‖T ∗
Nh‖2 ≤ C‖h‖2, N = 1, 2, 3, . . . .
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Invoking Lemma 3 we now have

‖T ∗
Nh‖2

2

=
∫
T ∗
Nh(ξ)T

∗
Nh(ξ) dξ

=
∫
ρN(ξ)

2(1 + ξ 2)−s
(∫

e−ixξ e−iu(x)ξ
2
e−u(x)

2ξ 2
χN(x)h(x) dx

)

×
(∫

eiyξ eiu(y)ξ
2
e−u(y)

2ξ 2
χN(y)h(y) dy

)

=
∫∫ (∫

(1 + ξ 2)−sei(y−x)ξ ei(u(y)−u(x))ξ
2
e−(u(x)

2+u(y)2)ξ 2
μ(ξ/N) dξ

)
× χN(x)χN(y)h(x)h(y) dxdy

≤ C

∫∫
K(x − y)|h(x)| |h(y)| dxdy ≤ C‖h‖2

2.

Here we have setμ = ρ2 and according to Lemma 3 we haveK ∈ L1(R) since
1/4 ≤ s < 1/2. Hence (12) and (11) are proved.

We shall then prove that if γ = 2 and s < 1/4 then (1) does not hold. First
choose g ∈ C∞

0 (R) such that supp g ⊂ (−1, 1), g(ξ) ≥ 0 and g(ξ) = 1 for
|ξ | ≤ 1/2. Then let v > 0 denote a small number and define a function fv by
setting

f̂v(ξ) = v g(vξ + 1/v).

It is well-known and easy to prove that ‖fv‖Hs → 0 as v → 0 if s < 1/4 (see
[1]). Setting u = u(x) = xv2/2 and assuming 0 < x < 1/100 we have

Pufv(x) =
∫
v g(vξ + 1/v)eixξ eixv

2ξ 2/2e−x
2v4ξ 2/4dξ.

In this integral we make a change of variable η = vξ +1/v, so that dη = v dξ

and ξ = η/v − 1/v2. One obtains

Pufv(x) =
∫
g(η)eiF (η)eG(η)dη

where

F(η) = x

(
η

v
− 1

v2

)
+ xv2

2

(
η

v
− 1

v2

)2

and

G(η) = −x
2v4

4

(
η

v
− 1

v2

)2

.
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Hence
F(η) = xη

v
− x

v2
+ xv2

2

(
η2

v2
+ 1

v4
− 2η

v3

)

= xη

v
− x

v2
+ xη2

2
+ x

2v2
− xη

v
= xη2

2
− x

2v2

and it follows that

|Pufv(x)| =
∣∣∣∣
∫ 1

−1
g(η)eixη

2/2eG(η)dη

∣∣∣∣.
We have

|G(η)| ≤ x2v4

4

(
2

v2

)2

= x2 ≤ 1

for |η| ≤ 1 and we conclude that

|Pufv(x)| ≥
∫ 1

−1
g(η) cos(xη2/2) eG(η)dη ≥

∫ 1

−1
g(η)

1

2
e−1 dη ≥ 1

2e
.

Hence P ∗fv(x) ≥ 1/(2e) for 0 < x < 1/100 and ‖P ∗fv‖2 ≥ c > 0 for small
v. It follows that the estimate ‖P ∗fv‖2 ≤ C‖fv‖Hs does not hold for s < 1/4.
Hence the statement in Theorem 1 in the case γ = 2 has been proved.

It remains to study the case γ ≥ 4. Take g as above and choose f so
that f̂ (ξ) = g(ξ + N) where N denotes a large positive number. Also set
u = u(x) = x/(2N) and assume 2−1N1−2/γ ≤ x ≤ N1−2/γ .

Setting η = ξ +N we obtain

Puf (x) =
∫
eixξ eiuξ

2
e−u

γ ξ 2
g(ξ +N) dξ

=
∫
eix(η−N)eiu(η−N)

2
e−u

γ (η−N)2g(η) dη

=
∫
g(η)eiF (η)eG(η)dη

where F(η) = x(η −N)+ u(η −N)2 and G(η) = −uγ (η −N)2. Hence

F(η) = xη − xN + uη2 + uN2 − u 2ηN

= xη − xN + x

2N
η2 + x

2N
N2 − 2η

x

2N
N

= xη − xN + x

2N
η2 + xN

2
− xη

= x

2N
η2 − xN

2
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and it follows that

|Puf (x)| =
∣∣∣∣
∫ 1

−1
g(η)eixη

2/(2N)eG(η)dη

∣∣∣∣.
We have

|G(η)| ≤ uγ (2N)2 = xγ

2γNγ
4N2 ≤ N(1−2/γ )γ N2−γ = 1

for |η| ≤ 1 and we conclude that

|Puf (x)| ≥
∫ 1

−1
g(η) cos(xη2/(2N))eG(η)dη ≥

∫ 1

−1
g(η)

1

2
e−1 dη ≥ 1

2e
.

Hence P ∗f (x) ≥ 1/(2e) for 2−1N1−2/γ ≤ x ≤ N1−2/γ and it follows that

‖P ∗f ‖2 ≥ c N(1−2/γ )/2 = c N1/2−1/γ .

On the other hand it is easy to see that ‖f ‖Hs ≤ CNs , and if (1) holds, one
obtains N1/2−1/γ ≤ CNs . We conclude that s ≥ 1/2 − 1/γ and the proof of
Theorem 1 is complete.
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