Abstract
Maximal operators of Schrödinger type but with a complex parameter are considered. For these operators we obtain results which in a certain sense lie between the results for the corresponding maximal operators for solutions to the Schrödinger equation and for solutions to the heat equation.

1. Introduction
Letting \(f \) belong to the Schwartz space \(\mathcal{S}(\mathbb{R}) \) we set
\[
S_t f(x) = \int_{\mathbb{R}} e^{ix\xi} e^{it\xi^2} \hat{f}(\xi) \, d\xi, \quad x \in \mathbb{R}.
\]
Here \(t \) is a complex number with \(\text{Im} \, t \geq 0 \) and \(\hat{f} \) denotes the Fourier transform of \(f \), defined by
\[
\hat{f}(\xi) = \int_{\mathbb{R}} e^{-i\xi x} f(x) \, dx.
\]
We also set \(U(x,t) = (2\pi)^{-1} S_t f(x) \) for \(x \in \mathbb{R} \) and \(t \in \mathbb{R} \). It then follows that \(U(x,0) = f(x) \) and \(U \) satisfies the Schrödinger equation \(i \frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2} \).

We also introduce the maximal function \(S^* f \) defined by
\[
S^* f(x) = \sup_{0 < t < 1} |S_t f(x)|, \quad x \in \mathbb{R},
\]
and define Sobolev spaces \(H_s \) by setting
\[
H_s = \{ f \in \mathcal{S}' ; \| f \|_{H_s} < \infty \}, \quad s \in \mathbb{R},
\]
where
\[
\| f \|_{H_s} = \left(\int_{\mathbb{R}} (1 + \xi^2)^s |\hat{f}(\xi)|^2 \, d\xi \right)^{1/2}.
\]
It is well-known that the estimate
\[\|S^*f\|_2 \leq C \|f\|_{H_s} \]
holds for \(s > 1/2 \) and does not hold for \(s < 1/2 \) (see [2]). Here \(\|S^*f\|_2 \) denotes the norm of \(S^*f \) in the space \(L^2(\mathbb{R}) \). We then set
\[H_{uf}(x) = S_{iu}f(x) = \int_{\mathbb{R}} e^{ix\xi} e^{-u\xi^2} \widehat{f}(\xi) \, d\xi, \quad x \in \mathbb{R}, \]
for \(u \geq 0 \). If we set \(V(x, u) = (2\pi)^{-1} H_{uf}(x) \) for \(x \in \mathbb{R} \) and \(u \geq 0 \), then \(V(x, 0) = f(x) \) and \(V \) satisfies the heat equation \(\partial V / \partial u = \partial^2 V / \partial x^2 \). We also introduce the maximal function \(H^*f \) defined by
\[H^*f(x) = \sup_{0 < u < 1} |H_{uf}(x)|, \quad x \in \mathbb{R}. \]
It is then well-known that the estimate \(\|H^*f\|_2 \leq C \|f\|_{H_s} \) holds if and only if \(s \geq 0 \).

We shall then introduce a class of maximal operators for which one has results lying between the above results for \(S^* \) and \(H^* \). For \(0 < \gamma < \infty \) we set
\[P_{uf}(x) = S_{iu+iu^\gamma} f(x) = \int_{\mathbb{R}} e^{ix\xi} e^{iu\xi^2} e^{-u\gamma\xi^2} \widehat{f}(\xi) \, d\xi, \quad x \in \mathbb{R}, \ 0 < u < 1, \]
and
\[P^*f(x) = \sup_{0 < u < 1} |P_{uf}(x)|, \quad x \in \mathbb{R}. \]
We shall here study the inequality
\[\|P^*f\|_2 \leq C \|f\|_{H_s} \]
for various values of \(\gamma \). We have the following results.

Theorem 1.
(i) For \(0 < \gamma \leq 1 \) (1) holds if and only if \(s \geq 0 \).
(ii) For \(\gamma = 2 \) (1) holds if and only if \(s \geq 1/4 \).
(iii) If \(\gamma \geq 4 \) and (1) holds then \(s \geq 1/2 - 1/\gamma \).

For \(\gamma > 0 \) we let \(E_\gamma \) denote the set of all \(s \) with the property that (1) holds. Also set \(s(\gamma) = \inf E_\gamma \) for \(\gamma > 0 \). Using the fact that \(\lim_{u \to 0} P_{uf}(x) = 2\pi f(x) \) it is easy to see that \(s(\gamma) \geq 0 \). We shall use the following lemma.

Lemma 1. Assume that \(g \) and \(h \) are continuous functions on the interval \((0, 1)\) and that \(0 \leq g(u) \leq h(u) \) for \(0 < u < 1 \). Set
\[P^*_g f(x) = \sup_{0 < u < 1} |S_{iu+ig(u)} f(x)| \]
and
\[P_h^* f(x) = \sup_{0 < u < 1} |S_{u+i h(u)} f(x)|. \]

Then
\[\| P_h^* f \|_2 \leq C \| P_g^* f \|_2. \]

It follows from the lemma that \(s(\gamma) \) is an increasing function of \(\gamma \) on the interval \((0, \infty)\). Also the result mentioned above for the operator \(S^* \) implies that \(s(\gamma) \leq 1/2 \) (take \(g(u) \equiv 0 \) and \(h(u) = u^\gamma \) in the lemma). The results in Theorem 1 can then be stated in the following way.

Theorem 2.
(i) For \(0 < \gamma \leq 1 \) one has \(s(\gamma) = 0 \).
(ii) \(s(2) = 1/4 \).
(iii) For \(\gamma > 4 \) one has \(1/2 - 1/\gamma < s(\gamma) \leq 1/2 \) and hence \(\lim_{\gamma \to \infty} s(\gamma) = 1/2 \).

In Section 2 we shall prove Lemma 1 and state and prove a second lemma. In Section 3 we shall prove Theorem 1.

Acknowledgement. A question by Håkan Hedenmalm drew my attention to the problem studied in this paper.

2. Lemmas

Proof of Lemma 1. We have

\[
S_{u+i h(u)} f(x) = \int e^{i x \xi} e^{i u \xi^2} e^{-h(u) \xi^2} \hat{f}(\xi) d\xi
\]
\[
= \int e^{i x \xi} e^{i u \xi^2} e^{-g(u) \xi^2} e^{-(h(u)-g(u)) \xi^2} \hat{f}(\xi) d\xi
\]
\[
= \int e^{i x \xi} e^{i u \xi^2} e^{-g(u) \xi^2} e^{-v \xi^2} \hat{f}(\xi) d\xi
\]

where \(v = h(u) - g(u) \geq 0 \).

For \(v = 0 \) one has

\[
S_{u+i h(u)} f(x) = S_{u+i g(u)} f(x).
\]

We then assume \(v > 0 \). It is well-known that

\[
e^{-v \xi^2} = \hat{K}_v(\xi) = \int e^{-i \xi y} K_v(y) dy,
\]
where
\[K_v(y) = \frac{1}{v^{1/2}} \frac{1}{2\sqrt{\pi}} e^{-y^2/(4v)} = \frac{1}{v^{1/2}} K(y/v^{1/2}) \]
with \(K(y) = e^{-y^2/4}/(2\sqrt{\pi}) \).
It follows that
\[S_{u+ih(u)} f(x) = \int e^{ix\xi} e^{iu\xi^2} e^{-g(u)\xi^2} \left(\int e^{-i\xi y} K_v(y) \, dy \right) \hat{f}(\xi) \, d\xi \]
\[= \int \left(\int e^{i(x-y)\xi} e^{iu\xi^2} e^{-g(u)\xi^2} \hat{f}(\xi) \, d\xi \right) K_v(y) \, dy \]
\[= \int S_{u+ig(u)} f(x-y) K_v(y) \, dy = K_v \ast S_{u+ig(u)} f(x) \]
and hence
\[|S_{u+ih(u)} f(x)| \leq K_v \ast P_g^* f(x) \leq CM P_g^* f(x) \]
where \(M \) denotes the Hardy-Littlewood maximal operator.

We conclude that
\[P_h^* f(x) \leq P_g^* f(x) + CM P_g^* f(x) \]
and since \(M \) is a bounded operator on \(L^2(\mathbb{R}) \) we obtain \(\|P_h^* f\|_2 \leq C \|P_g^* f\|_2 \).

The following lemma was proved in [3].

Lemma 2. Assume that \(a > 1, 1/2 \leq s < 1 \) and \(\mu \in C_0^\infty(\mathbb{R}) \). Then

\[\left| \int_{\mathbb{R}} e^{ix\xi + it|\xi|^s} |\xi|^{-s} \mu(\xi/N) \, d\xi \right| \leq C \frac{1}{|x|^{1-s}} \]

for \(x \in \mathbb{R}, t \in \mathbb{R} \) and \(N = 1, 2, 3, \ldots \). Here the constant \(C \) may depend on \(s \) and \(a \) but not on \(x, t \) or \(N \).

The next lemma will be used to prove that \(s(2) \leq 1/4 \).

Lemma 3. Assume that \(1/2 \leq \alpha < 1, 0 < d_1 < 1, 0 < d_2 < 1 \), and \(\mu \in C_0^\infty(\mathbb{R}) \) and \(\mu \) even and real-valued. Then

\[\left| \int_{\mathbb{R}} e^{i(d_1-x_1)\xi^2 - x_1^2} e^{-(d_2^2 + d_2^2)\xi^2} \mu(\xi/N) \, d\xi \right| \leq K(x) \]

for \(x \in \mathbb{R} \) and \(N = 1, 2, 3, \ldots \), where \(K \in L^1(\mathbb{R}) \). Here \(K \) is independent of \(d_1, d_2 \) and \(N \), and one may take \(K(x) = Cx^{-2} \) for \(|x| \geq C_0 \) and \(K(x) = C|x|^{\alpha-1} \) for \(|x| < C_0 \). Here \(C_0 \) denotes a large constant.
Proof of Lemma 3. The structure in the proof of the lemma will be the same as in the proof of Lemma 3 in [4]. Without loss of generality we may assume \(d_2 < d_1 \). We set \(d = d_1 - d_2 \) and \(\epsilon = d_1^2 + d_2^2 \) so that \(0 < d < 1 \) and \(0 < \epsilon < 2 \). First assume \(|x| \geq C_0 \) where \(C_0 \) denotes a large constant.

We choose an even function \(\varphi_0 \in C_0^\infty(\mathbb{R}) \) such that \(\varphi_0(\xi) = 1 \) for \(|\xi| \leq 1/2 \) and \(\varphi_0(\xi) = 0 \) for \(|\xi| \geq 1 \).

Set \(\psi(\xi) = (1 + \xi^2)^{-\alpha/2} e^{-\epsilon \xi^2} \mu(\xi/N) \) and \(\psi_0 = \psi \varphi_0 \) so that \(\text{supp} \psi_0 \subset [-1, 1] \).

We also set \(\rho = |x|/(2d) \) and let \(K \) denote a large constant. Then choose \(\varphi_2 \in C_0^\infty(\mathbb{R}) \) so that \(\text{supp} \varphi_2 \subset [\rho/4, 2K \rho] \) and \(\varphi_2(\xi) = 1 \) for \(\rho/2 \leq \xi \leq K \rho \). We may also assume that \(|\varphi''_2(\xi)| \leq C \xi^{-1} \) and \(|\varphi''_2(\xi)| \leq C \xi^{-2} \) for \(\xi > 0 \). We then set \(\varphi_3 = (1 - \varphi_2) \chi_{(K \rho, \infty)} \) and \(\varphi_1 = (1 - \varphi_2 - \varphi_0) \chi_{[0, \rho/2]} \).

Let \(\tilde{\varphi} \) be defined by \(\tilde{\varphi}(\xi) = \varphi(-\xi) \) and set \(\varphi_{-1} = \tilde{\varphi}_1, \varphi_{-2} = \tilde{\varphi}_2 \) and \(\varphi_{-3} = \tilde{\varphi}_3 \). Setting \(F(\xi) = d\xi^2 - x\xi \) we then have

\[
\int_{-\infty}^{\infty} e^{iF} \psi \varphi_j d\xi = \sum_{j=0}^{3} \int e^{iF} \psi \varphi_j d\xi + \sum_{j=1}^{3} \int e^{iF} \psi \varphi_{-j} d\xi.
\]

The integrals \(\int e^{iF} \psi \varphi_{-j} \) can be reduced to \(\int e^{iF} \psi \varphi_j \) for \(j = 1, 2, 3 \). Setting \(\psi_j = \psi \varphi_j, j = 0, 1, 2, 3 \), it is therefore sufficient to estimate the integrals

\[
J_j = \int e^{iF} \psi_j d\xi, \quad j = 0, 1, 2, 3.
\]

We claim that one has the following estimates for \(j = 1, 2, 3 \) and \(\xi \geq 1/2 \):

\[
|\psi_j(\xi)| \leq C \frac{1}{(1 + \xi^2)^{\alpha/2}}, \quad (2)
\]

\[
|\psi'_j(\xi)| \leq C \frac{1}{(1 + \xi^2)^{\alpha/2} \xi}, \quad (3)
\]

and

\[
|\psi''_j(\xi)| \leq C \frac{1}{(1 + \xi^2)^{\alpha/2} \xi^2}, \quad (4)
\]

We set \(h(\xi) = h_\epsilon(\xi) = e^{-\epsilon \xi^2} \) for \(\xi \geq 1/2 \) and \(0 < \epsilon < 2 \). The above estimates for \(\psi_j, \psi'_j \) and \(\psi''_j \) will follow if we can prove that

\[
|h'(\xi)| \leq C \frac{1}{\xi}, \quad \xi \geq 1/2.
\]
\begin{align*}
\frac{\varrho \lambda}{\eta} & \leq \frac{1}{\xi^2}, \quad \xi \geq 1/2, \\
\text{with } C \text{ independent of } \varepsilon. \quad \text{(6)}
\end{align*}

We have
\begin{align*}
h'(\xi) &= -e^{-\varepsilon \xi^2} 2 \varepsilon \xi
\end{align*}
and
\begin{align*}
h''(\xi) &= -e^{-\varepsilon \xi^2} 2 \varepsilon + e^{-\varepsilon \xi^2} 4 \varepsilon^2 \xi^2.
\end{align*}

It follows that for \(\xi \geq 1/2 \) one has
\begin{align*}
|h'(\xi)| &\leq e^{-\varepsilon \xi^2} 2 \varepsilon \xi = e^{-\varepsilon \xi^2} 2 \varepsilon \xi^2 \frac{1}{\xi^2} \leq 2 (\max_{t>0} t e^{-t}) \frac{1}{\xi} = 2 A \frac{1}{\xi}, \\
\text{where } A &= \max_{t \geq 0} t e^{-t}. \text{ Also}
\end{align*}
\begin{align*}
|h''(\xi)| &\leq e^{-\varepsilon \xi^2} 2 \varepsilon + 4 e^{-\varepsilon \xi^2} \varepsilon^2 \xi^2 \\
&= e^{-\varepsilon \xi^2} 2 \varepsilon \xi^2 \frac{1}{\xi^2} + 4 e^{-\varepsilon \xi^2} \varepsilon^2 \xi^4 \frac{1}{\xi^2} \leq 2 A \frac{1}{\xi^2} + 4 B \frac{1}{\xi^2},
\end{align*}
where \(B = \max_{t \geq 0} t^2 e^{-t} \). Hence (5) and (6) are proved and (2), (3) and (4) follow.

We shall first estimate \(J_0 \). We have
\begin{align*}
J_0 &= \int e^{-i \xi} e^{i \xi} \psi_0(\xi) d\xi
\end{align*}
where \(\text{supp } \psi_0 \subset [-1, 1] \) and two integrations by parts give the estimate
\(|J_0| \leq C x^{-2} \).

We shall then estimate \(J_2 \). One has
\begin{align*}
J_2 &= \int e^{i F} \psi_2 d\xi
\end{align*}
where
\begin{align*}
\psi_2(\xi) &= (1 + \xi^2)^{-a/2} e^{-\varepsilon \xi^2} \mu(\xi/N) \varphi_2(\xi)
\end{align*}
and \(\text{supp } \psi_2 \subset [\rho/4, 2K \rho] \).

We have \(F''(\xi) = 2d \) and van der Corput’s Lemma with the second derivative (see Stein [5], p. 334) gives
\begin{align*}
[J_2] &\leq Cd^{-1/2} \left(\max |\psi_2| + \int |\varphi'_2| d\xi \right).
\end{align*}
It is clear that

\begin{equation}
\max |\psi_2| \leq C \rho^{-\alpha} e^{-\epsilon \rho^2}
\end{equation}

where \(c \) denotes a positive constant.

We also set

\[v(\xi) = (1 + \xi^2)^{-\alpha/2} \mu(\xi/N) \varphi_2(\xi) \]

so that

\[\psi_2(\xi) = v(\xi) e^{-\epsilon \xi^2} \]

and

\[\psi_2'(\xi) = v(\xi) \left(\frac{d}{d\xi} e^{-\epsilon \xi^2} \right) + v'(\xi) e^{-\epsilon \xi^2}. \]

It follows that

\[\int |\psi_2'(\xi)| d\xi \leq \int v(\xi) \left(\frac{d}{d\xi} e^{-\epsilon \xi^2} \right) d\xi + \int |v'(\xi) e^{-\epsilon \xi^2}| d\xi \]

\[\leq C \rho^{-\alpha} \int_{\rho/4}^{2K\rho} \left| \frac{d}{d\xi} e^{-\epsilon \xi^2} \right| d\xi + \int_{\rho/4}^{2K\rho} \rho^{-\alpha-1} d\xi e^{-\epsilon \rho^2} \]

\[\leq C \rho^{-\alpha} \int_{\rho/4}^{2K\rho} - \left(\frac{d}{d\xi} e^{-\epsilon \xi^2} \right) d\xi + C \rho^{-\alpha} e^{-\epsilon \rho^2} \]

\[= -C \rho^{-\alpha} \left[e^{-\epsilon \xi^2} \right]_{\rho/4}^{2K\rho} + C \rho^{-\alpha} e^{-\epsilon \rho^2} \leq C \rho^{-\alpha} e^{-\epsilon \rho^2}. \]

Combining this estimate with (7) and (8) we obtain

\[|J_2| \leq C d^{-1/2} \rho^{-\alpha} e^{-\epsilon \rho^2} = C d^{-1/2} \left(\frac{|x|}{d} \right)^{-\alpha} e^{-\epsilon x^2/d^2} \]

\[\leq C d^{\alpha-1/2} |x|^{-\alpha} e^{-\epsilon x^2} \leq C e^{-\epsilon x^2}, \]

since \(\alpha \geq 1/2 \) and \(d^2 \leq \epsilon \). In fact

\[d^2 = (d_1 - d_2)^2 = d_1^2 + d_2^2 - 2 d_1 d_2 \leq d_1^2 + d_2^2 = \epsilon. \]

This concludes the estimate of \(J_2 \) and we shall then estimate \(J_1 \). One has

\[J_1 = \int e^{iF} \psi_1 d\xi \]

where \(\text{supp } \psi_1 \subset [1/2, \rho/2] \) and \(F' = 2 d\xi - x \).

On the interval \([1/2, \rho/2]\) one has

\[2 d\xi \leq 2 d\rho/2 = d \rho = d \frac{|x|}{2d} = \frac{|x|}{2} \quad \text{and} \quad |F'| \geq |x|/2 \geq 2 d\xi. \]
Also $F'' = 2d$ and $F^{(3)} = 0$. It follows that $|F''|/|F'| \leq C \xi^{-1}$ for $1/2 \leq \xi \leq \rho/2$. Integrating by parts twice we obtain

$$J_1 = \int e^{iF} \psi_1 \, d\xi = \int i F' e^{iF} \frac{\psi_1}{i F'} \, d\xi$$

$$= -\int e^{iF} \left(\frac{1}{i F'} \psi_1 - \frac{1}{i} \frac{F''}{(F')^2} \psi_1 \right) \, d\xi$$

$$= -\int i F' e^{iF} \left(\frac{1}{(i F')^2} \psi_1' + \frac{F''}{(F')^3} \psi_1 \right) \, d\xi$$

$$= \int e^{iF} \left(\frac{1}{i^2 (F')^2} \psi_1'' - \frac{1}{i^2 (F')^3} \psi_1' \right.$$

$$+ \frac{F''}{(F')^3} \psi_1' + \frac{F^{(3)}}{(F')^3} \psi_1 - \frac{3(F'')^2}{(F')^4} \psi_1 \left.) \, d\xi \right.$$ and hence

$$|J_1| \leq C \int \frac{1}{|F'|^2} \left(|\psi_1''| + \frac{|F''|}{|F'|} |\psi_1'| + \frac{|F''|^2}{|F'|^2} |\psi_1| \right) \, d\xi$$

(9)

$$\leq C \frac{1}{x^2} \int_{1/2}^\infty \xi^{-\alpha-2} \, d\xi = C \frac{1}{x^2}.$$

It remains to estimate $J_3 = \int e^{iF} \psi_3 \, d\xi$. Here supp $\psi_3 \subset [K \rho, \infty)$. For

$$\xi \geq K \rho = K \frac{|x|}{2d}$$

we have

$$2d\xi \geq 2dK \frac{|x|}{2d} = K |x|$$

and hence $|F'| \geq c|x|$ and $|F'| \geq c \, d \, \xi$.

We can estimate J_3 in the same way as we estimated J_1. We can use the inequality (9) with ψ_1 replaces by ψ_3 and J_1 replaced by J_3. One obtains $|J_3| \leq C|x|^{-2}$.

We have proved Lemma 3 in the case $|x| \geq C_0$. It remains to study the case $|x| < C_0$. The estimate in this case follows from the proof in [3] of our Lemma 2. The proof of Lemma 3 is complete.
3. Proof of Theorem 1

Proof of Theorem 1. We shall first study the case $0 < \gamma \leq 1$. It is well-known that e^{-ax^2} has Fourier transform $\frac{\sqrt{\pi}}{z^{1/2}} e^{-\xi^2/4z}$ for $a > 0$. For $Re z > 0$ we then set $z^{1/2} = |z|^{1/2} e^{i(\arg z)/2}$ where $-\pi/2 < \arg z < \pi/2$. By use of elementary properties of analytic functions it is then easy to prove that e^{-zx^2} has Fourier transform

$$\frac{\sqrt{\pi}}{z^{1/2}} e^{-\xi^2/4z}$$

for $Re z > 0$. It also follows that $e^{-z\xi^2}$ is the Fourier transform of

$$(10) \quad \frac{1}{2\sqrt{\pi}z^{1/2}} e^{-x^2/4z}$$

for $Re z > 0$.

Setting $t = u + iv$ with $u > 0$, $v > 0$ we then have $e^{it\xi^2} = e^{i(u+iv)\xi^2} = e^{-(v-iu)\xi^2}$. Taking $z = v - iu$ in (10) it then follows that $e^{-(v-iv)\xi^2}$ is the Fourier transform of

$$K(x) = \frac{1}{2\sqrt{\pi}(v-iu)^{1/2}} e^{-x^2/(4(v-iu))}.$$

It is clear that

$$|K(x)| \leq \frac{1}{(v^2 + u^2)^{1/4}} |e^{-x^2/(4(v-iu))}|.$$

Since

$$\frac{1}{v - iu} = \frac{v}{v^2 + u^2} + i \frac{u}{v^2 + u^2}$$

we conclude that

$$|K(x)| \leq \frac{1}{(v^2 + u^2)^{1/4}} e^{-x^2v/(4(v^2+u^2))}.$$

Letting $0 < u < 1$ and $v = u^\gamma$ with $0 < \gamma \leq 1$ we then obtain

$$|K(x)| \leq \frac{1}{(u^{2\gamma} + u^2)^{1/4}} \exp\left(-\frac{x^2}{4} \frac{u^\gamma}{u^{2\gamma} + u^2}\right) \leq \frac{1}{u^{\gamma/2}} e^{-c x^2/u^\gamma} = \frac{1}{u^{\gamma/2}} L(x/u^{\gamma/2}),$$

where $c > 0$ and $L(x) = e^{-c x^2}$. It follows that $P^* f(x) \leq CMf(x)$ and hence the first part of Theorem 1 follows.
We shall then study the case $\gamma = 2$. We let $u(x)$ denote a measurable function on \mathbb{R} with $0 < u(x) < 1$ and set

$$Pf(x) = \int_{\mathbb{R}} e^{ix\xi} e^{iu(x)\xi^2} e^{-u(x)\xi^2} \hat{f}(\xi) d\xi, \quad x \in \mathbb{R}.$$

We have to prove that

$$(11) \quad \|Pf\|_2 \leq C \|f\|_{H_s} = C \left(\int_{\mathbb{R}} |\hat{f}(\xi)|^2 (1 + \xi^2)^s d\xi \right)^{1/2}$$

for $s \geq 1/4$. We may also assume $s < 1/2$.

Setting $g(\xi) = \hat{f}(\xi) (1 + \xi^2)^{s/2}$ and defining T by

$$Tg(x) = \int_{\mathbb{R}} e^{ix\xi} e^{iu(x)\xi^2} e^{-u(x)\xi^2} (1 + \xi^2)^{-s/2} g(\xi) d\xi,$$

we have $Pf(x) = Tg(x)$. It is therefore sufficient to prove that $\|Tg\|_2 \leq C\|g\|_2$. For $N = 1, 2, 3, \ldots$ set

$$T_N g(x) = \chi_N(x) \int_{\mathbb{R}} e^{ix\xi} e^{iu(x)\xi^2} e^{-u(x)\xi^2} (1 + \xi^2)^{-s/2} \rho_N(\xi) g(\xi) d\xi.$$

Here $\chi_N(x) = \chi(x/N)$ and $\rho_N(\xi) = \rho(\xi/N)$ and χ and $\rho \in C_0^\infty(\mathbb{R})$ and have the property that $\chi(x) = \rho(x) = 1$ for $|x| \leq 1$ and $\chi(x) = \rho(x) = 0$ for $|x| \geq 2$. We also assume that χ and ρ are even and real-valued. It is sufficient to prove that

$$\|T_N g\|_2 \leq C\|g\|_2, \quad N = 1, 2, 3, \ldots.$$

It is clear that

$$T_N^* h(\xi) = \rho_N(\xi)(1 + \xi^2)^{-s/2} \int_{\mathbb{R}} e^{-ix\xi} e^{-iu(x)\xi^2} e^{u(x)^2\xi^2} \chi_N(x) h(x) dx$$

and it is sufficient to prove that

$$(12) \quad \|T_N^* h\|_2 \leq C\|h\|_2, \quad N = 1, 2, 3, \ldots.$$
Invoking Lemma 3 we now have

\[\| T_N^* h \|_2^2 = \int T_N^* h(\xi) \overline{T_N^* h(\xi)} d\xi \]

\[= \int \rho_N(\xi)^2 (1 + \xi^2)^{-s} \left(\int e^{-ix\xi} e^{-iu(x)\xi^2} \chi_N(x) h(x) dx \right) \times \left(\int e^{iy\xi} e^{iu(y)\xi^2} \chi_N(y) \overline{h(y)} dy \right) \]

\[= \int \int \left(\int (1 + \xi^2)^{-s} e^{i(y-x)\xi} e^{i(u(y)-u(x))\xi^2} e^{-(u(x)^2 + u(y)^2)\xi^2} \mu(\xi/N) d\xi \right) \times \chi_N(x) \chi_N(y) h(x) \overline{h(y)} dxdy \]

\[\leq C \int \int K(x-y) |h(x)| |h(y)| dxdy \leq C \| h \|_2^2. \]

Here we have set \(\mu = \rho^2 \) and according to Lemma 3 we have \(K \in L^1(\mathbb{R}) \) since \(1/4 \leq s < 1/2 \). Hence (12) and (11) are proved.

We shall then prove that if \(\gamma = 2 \) and \(s < 1/4 \) then (1) does not hold. First choose \(g \in C^\infty_0(\mathbb{R}) \) such that \(\text{supp } g \subset (-1, 1) \), \(g(\xi) \geq 0 \) and \(g(\xi) = 1 \) for \(|\xi| \leq 1/2 \). Then let \(v > 0 \) denote a small number and define a function \(f_v \) by setting

\[\hat{f}_v(\xi) = v g(v\xi + 1/v). \]

It is well-known and easy to prove that \(\| f_v \|_{H_s} \to 0 \) as \(v \to 0 \) if \(s < 1/4 \) (see [1]). Setting \(u = u(x) = xv^2/2 \) and assuming \(0 < x < 1/100 \) we have

\[P_u f_v(x) = \int v g(v\xi + 1/v) e^{ix\xi} e^{ixv^2\xi^2/2} e^{-(x^2v^4\xi^2/4)} d\xi. \]

In this integral we make a change of variable \(\eta = v\xi + 1/v \), so that \(d\eta = v d\xi \) and \(\xi = \eta/v - 1/v^2 \). One obtains

\[P_u f_v(x) = \int g(\eta) e^{iF(\eta)} e^{G(\eta)} d\eta \]

where

\[F(\eta) = x \left(\frac{\eta}{v} - \frac{1}{v^2} \right) + \frac{xv^2}{2} \left(\frac{\eta}{v} - \frac{1}{v^2} \right)^2 \]

and

\[G(\eta) = -\frac{x^2v^4}{4} \left(\frac{\eta}{v} - \frac{1}{v^2} \right)^2. \]
Hence

\[F(\eta) = \frac{x \eta}{v} - \frac{x}{v^2} + \frac{x v^2}{2} \left(\frac{\eta^2}{v^2} + \frac{1}{v^4} - \frac{2\eta}{v^3} \right) \]

\[= \frac{x \eta}{v} - \frac{x}{v^2} + \frac{x \eta^2}{2} + \frac{x}{2v^2} - \frac{x \eta}{v} = \frac{x \eta^2}{2} - \frac{x}{2v^2} \]

and it follows that

\[|P_u f_v(x)| = \left| \int_{-1}^{1} g(\eta) e^{ix \eta^2/2} e^{G(\eta)} d\eta \right|. \]

We have

\[|G(\eta)| \leq \frac{x^2 v^4}{4} \left(\frac{2}{v^2} \right)^2 = x^2 \leq 1 \]

for \(|\eta| \leq 1\) and we conclude that

\[|P_u f_v(x)| \geq \int_{-1}^{1} g(\eta) \cos(x \eta^2/2) e^{G(\eta)} d\eta \geq \int_{-1}^{1} g(\eta) e^{-1/2} d\eta \geq \frac{1}{2e}. \]

Hence \(P^* f_v(x) \geq 1/(2e)\) for \(0 < x < 1/100\) and \(\|P^* f_v\|_2 \geq c > 0\) for small \(v\). It follows that the estimate \(\|P^* f_v\|_2 \leq C \|f_v\|_{H_s}\) does not hold for \(s < 1/4\).

Hence the statement in Theorem 1 in the case \(\gamma = 2\) has been proved.

It remains to study the case \(\gamma \geq 4\). Take \(g\) as above and choose \(f\) so that \(\hat{f}(\xi) = g(\xi + N)\) where \(N\) denotes a large positive number. Also set \(u = u(x) = x/(2N)\) and assume \(2^{-1} N^{1-2/\gamma} \leq x \leq N^{1-2/\gamma}\).

Setting \(\eta = \xi + N\) we obtain

\[P_u f(x) = \int e^{ix \xi} e^{iu \xi^2} e^{-u \xi^2} g(\xi + N) d\xi \]

\[= \int e^{ix(\eta - N)} e^{iu(\eta - N)^2} e^{-u \gamma (\eta - N)^2} g(\eta) d\eta \]

\[= \int g(\eta) e^{iF(\eta)} e^{G(\eta)} d\eta \]

where \(F(\eta) = x(\eta - N) + u(\eta - N)^2\) and \(G(\eta) = -u \gamma (\eta - N)^2\). Hence

\[F(\eta) = x \eta - x N + u \eta^2 + u N^2 - u 2 \eta N \]

\[= x \eta - x N + \frac{x}{2N} \eta^2 + \frac{x}{2N} N^2 - 2 \eta \frac{x N}{2N} N \]

\[= x \eta - x N + \frac{x}{2N} \eta^2 + \frac{x N}{2} - x \eta \]

\[= \frac{x}{2N} \eta^2 - \frac{x N}{2} \]
and it follows that
\[|P^*_uf(x)| = \left| \int_{-1}^{1} g(\eta)e^{ix\eta^2/(2N)}e^{G(\eta)}d\eta \right|. \]

We have
\[|G(\eta)| \leq u^\gamma (2N)^2 = \frac{x^\gamma}{2^\gamma N^\gamma} \leq N^{(1-2/\gamma)\gamma} N^{2-\gamma} = 1 \]
for $|\eta| \leq 1$ and we conclude that
\[|P^*_uf(x)| \geq \int_{-1}^{1} g(\eta) \cos(x\eta^2/(2N))e^{G(\eta)}d\eta \geq \int_{-1}^{1} g(\eta) \frac{1}{2} e^{-1}d\eta \geq \frac{1}{2e}. \]

Hence $P^*f(x) \geq 1/(2e)$ for $2^{-1}N^{1-2/\gamma} \leq x \leq N^{1-2/\gamma}$ and it follows that
\[\|P^*f\|_2 \geq c N^{(1-2/\gamma)/2} = c N^{1-1/\gamma}. \]

On the other hand it is easy to see that $\|f\|_{H^s} \leq CN^s$, and if (1) holds, one obtains $N^{1/2-1/\gamma} \leq CN^s$. We conclude that $s \geq 1/2 - 1/\gamma$ and the proof of Theorem 1 is complete.

REFERENCES