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REPRESENTATIONS OF BANACH ALGEBRAS
AS ALGEBRAS OF COMPLETELY

BOUNDED MAPS

TIMUR OIKHBERG∗

Abstract

We use the notion of �2-hyperreflexivity to construct, for a wide variety of Banach algebras
A , an operator space X and a representation π : A → CB(X), such that CB(X) consists of
2-summing perturbations of π(A ). This gives rise to some examples of operator spaces with
interesting properties.

1. Introduction

In this paper, we try to answer two related questions.

(1) Suppose a unital Banach algebra A , and a unital contractive faithful
representation π : A → B(E) (E is a Banach space), are given. Can
we equip E with an operator space structure X, such that CB(X) =
π(A )+�2(X), where �2(X) denotes the set of 2-summing operators
on X?

(2) Suppose a unital Banach algebra A is given. Can we construct an oper-
ator space X, and a unital contractive faithful representation π : A →
CB(X), such that CB(X) = π(A )+�2(X)?

Here, �2 is the ideal of 2-summing operators (see Section 2 for its definition
and basic properties), and CB(X) denotes the set of completely bounded maps
on an operator space X (see e.g. [13], [27], [31] for more information). For
certain Banach algebras A (and certain representations π ), we give a positive
answer to the above questions in Section 3 (Theorem 3.1, Corollary 3.3). In
Section 4, we construct further examples of Banach algebras A , representa-
tionsπ , and operator spacesX as above. This gives rise to operator spaces with
unusual and interesting properties (Theorems 4.3, 4.6). The proofs require an
investigation into hyperreflexivity of spaces and sets with respect to the ideal
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�2. In Section 2, we review hyperreflexivity with respect to operator ideals,
and prove some preliminary results.

In a slightly different context, the problems of representing Banach algebras
in a “nice” way has recently been considered in [8], [9], [20], [36]. We briefly
describe these results in Section 3 (Remark 3.7).

2. Preliminary results on hyperreflexivity

In this paper, we use the notion of hyperreflexivity with respect to an operator
ideal, introduced in [23]. Suppose � is a maximal Banach operator ideal.
That is, for any pair X, Y of Banach spaces, �(X, Y ) is a subset of B(X, Y ),
equipped with the norm β(·) in such a way that (�(X, Y ),β) is a Banach
space. By convention, we set β(T ) = ∞ if T ∈ B(X, Y )\�(X, Y ). The
ideal property means that, for any Banach spaces X0, X, Y, Y0, and every
T ∈ �(X, Y ), TX ∈ B(X0, X), and TY ∈ B(Y, Y0), we have β(TY T TX) �
‖TY‖β(T )‖TX‖. The ideal � is maximal if, for every T ∈ B(X, Y ), β(T ) =
sup β(qT i), where i : E → X is an injection, q : Y → F is a quotient,
and the spaces E and F are finite dimensional. For further information about
operator ideals, see [10], [11], [29], [35].

In this paper, we concentrate on the ideal �2 of 2-summing maps. Recall
that the 2-summing norm of T ∈ B(X, Y ) (denoted by π2(T )) is defined as
the smallest positive constant c such that, for every x1, . . . , xn ∈ X,(∑

i

‖T xi‖2

)1/2

� c sup
x∗∈X∗,‖x∗‖�1

(∑
i

|x∗(xi)|2
)1/2

.

The ideal of 2-summing operators is denoted by �2. If X and Y are Hilbert
spaces, then it is well-known that�2(X, Y ) = S2(X, Y ), and π2(T ) = ‖T ‖2.
Here, S2 and ‖ ·‖2 denote the space of Hilbert-Schmidt maps, and the Hilbert-
Schmidt norm, respectively.

Suppose A is a non-empty convex balanced subset of B(X, Y ), and � is
an operator ideal. For T ∈ B(X, Y ) denote by dA ,�(T ) the infimum of all
λ > 0 with the property that, for any γ � 1, β(uT v) � λγ whenever the
contractions v : E → X and u : Y → F (E and F are finite dimensional)
satisfy β(uav) � γ for every a ∈ A . Equivalently, dA ,�(T ) > λ iff there
exists γ � 1 and contractions u, v s.t. β(uT v) > λγ , yet β(uav) � γ

∀a ∈ A .
Observe that, for any λ ∈ C, a ∈ A , and S ∈ �(E, F ), we have β(u(λa +

S)v) � |λ|γ + β(S) for any pair of contractions u, v, with the property that
β(uav) � γ for every a ∈ A . Thus,

(2.1) dA ,�(λa + S) � |λ| + β(S).
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The definition of Azoff-Shehada hyperreflexivity given below arose from an
attempt to reverse this implication: namely, to conclude that any T ∈ B(E, F )
with finite dA ,�(T ) belongs to CA + �(E, F ).

For C1, C2 > 0, we say that A is (C1, C2) − �-Azoff-Shehada hyperre-
flexive ((C1, C2)− �-ASHR, for short) if, for any T ∈ B(X, Y )with dA ,�(T )

finite, and any ε > 0, we can write T = λa + S, with a ∈ A , λ ∈ C,
S ∈ �(X, Y ), |λ| < C1dA ,�(T ) + ε, and and β(S) < C2dA ,�(T ) + ε. A is
said to be �-ASHR if it (C1, C2)− �-ASHR for some C1 and C2.

Throughout the paper, we work with maximal Banach ideals. In this case,
the condition that E and F are finite dimensional is redundant.

Now suppose A ↪→ B(X, Y ) (throughout the paper, we use the notation
“Z1 ↪→ Z2” to mean “Z1 is a closed linear subspace of a Banach spaceZ2”). It
is easy to see that, if A is (C ′, C)− �-ASHR, then it is (c, C)− �-ASHR for
any c > 0 (indeed, in the definition above, |λ| can be made arbitrarily small). In
this case, we say that A isC−�-hyperreflexive. A is called �-hyperreflexive
if it isC−�-hyperreflexive for someC. It as observed in [23] that A isC−�-
hyperreflexive iff infa∈A β(T−a) � CdA ,�(T ), and dA ,�(T ) = sup β(uT v),
with the sup taken over all finite rank contractions u and v with uAv = 0.
Note that, in this case, dA ,�(T ) = sup β(qT i), where the supremum runs over
all injections i : E → X and quotient maps q : Y → F , for which E and F
are finite dimensional, and qA i = 0.

The definitions presented above were introduced in [23] (although the defin-
ition of the Azoff-Shehada hyperreflexivity given there is slightly different).
Numerous examples of sets which are, and are not, ASHR, can be found there.
The same paper explains the connection with the classical notion of hyperre-
flexivity (see e.g. [6], [7], [19] for more information).

The following proposition (essentially proved in [23]) illustrates the con-
nection between the connection between the hyperreflexivity of a space, and
the ASHR of its unit ball.

Proposition 2.1. Suppose (�,β) is a maximal ideal, and let A be a
C − �-hyperreflexive subspace of B(X, Y ). Then Ba(A ) is (C + 1, C)− �-
Azoff-Shehada hyperreflexive.

As in the classical theory of hyperreflexivity, we can use ampliations to
create hyperreflexive spaces (or ASHR sets). To this end, consider a symmetric
sequence space E (that is, a space with a 1-symmetric basis). Denote by En
(n ∈ N) the span of n elements of the canonical basis of E . For T ∈ B(E, F )
and n ∈ N ∪ {∞}, the n-th ampliation of T (on E ) is defined as T (n,E ) =
IE ⊗T ∈ B(E (E), E (F )). For A ⊂ B(E, F ), set A (n,E ) = {T (n,E ) | T ∈ A }.
When there is no possibility of confusion, we will omit E , and simply write
T (n) and A (n).
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Theorem 2.2. Suppose A is a convex balanced subset subset of the unit
ball of B(E, F ) (E and F are Banach spaces), closed in the topology induced
by E ⊗̂ F ∗. Suppose, furthermore, that (�,β) is a maximal Banach operator
ideal, and limn β(IEn ) = ∞, where E is �p (1 � p < ∞) or c0. Then A (∞,E )

is a (5, 25)− �-ASHR subset of B(E (E), E (F )).

The lemmas below lead to the proof of Theorem 2.2. For the sake of brevity,
introduce some notation. For E as above, Ẽ = E (E) and F̃ = E (F ). For
F ⊂ N, define the contractive projection PF ∈ B(E ) by setting

PF δi =
{
δi i ∈ F

0 i /∈ F

where (δi) is the canonical basis for E . Abusing the notation somewhat, we
use PF for PF ⊗ IE ∈ B(Ẽ) and PF ⊗ IF ∈ B(F̃ ). We denote by Qn the
projection P{1,...,n} on the first n elements of the basis of E (with the con-
ventions described above). An operator T ∈ B(Ẽ, F̃ ) is called diagonal if
T = ∑

i P{i}T P{i} (convergence in the strong operator topology). We also
write T = (diag(P{i}T P{i})).

Lemma 2.3. Suppose E is an unconditional sequence space, � is a maximal
operator ideal,E andF are Banach spaces, and A ⊂ B(E, F ) is closed in the
topology induced byE⊗̂F ∗. Suppose, furthermore, thatT ′ ∈ B(Ẽ, F̃ ) satisfies
dA (∞),�(T

′) < 1. Then there exists a diagonal operator T s.t. β(T − T ′) � 4.
Consequently, dA (∞),�(T ) < 5.

Proof. Denote by T the diagonal part of T ′, that is T = ∑
n P{n}T ′P{n}

(convergence in the strong operator topology). Let T ′′ = T ′ − T . For any
n ∈ N,

QnT
′′Qn = 22−n ∑

F⊂{1,...,n}
(Qn − PF )T

′PF .

However, (Qn − PF )B(E, F )
(∞)PF = 0, hence β((Qn − PF )T

′PF ) < 1.
Therefore, β(QnT

′′Qn) < 4 for every n.
By the maximality of �, β(T ′′) � 4. Indeed, otherwise there exists a finite

rank contraction u s.t. β(T ′′u) > 4. However, limn(Qnu−u) = 0 (this follows
from the fact that, for any finite rank map S, β(S) � ν1(S), where ν1(·) denotes
the nuclear norm). Therefore, we can assume that Qmu = u (m is sufficiently
large). In a similar fashion, we find n � m s.t. β(QnT

′′Qmu) > 4. Therefore,
β(QnT

′′Qn) > 4, which contradicts the results of the previous paragraph.
By (2.1), dA (∞),�(T ) < 5.

Lemma 2.4. Suppose E is a symmetric sequence space, �,E, F , and A are
as in the previous lemma. Suppose, furthermore, T = diag(Ti) ∈ B(Ẽ, F̃ ) is a
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diagonal operator, and dA (∞),�(T ) is finite. Then the sequence (Ti) converges
in norm.

Proof. Without loss of generality, dA (∞),�(T ) < 1. We show that there
exists T0 ∈ B(E, F ) s.t. limi ‖Ti − T0‖ = 0. Indeed, suppose otherwise. Then
there exist c > 0 a sequence n1 < m1 < n2 < m2 < · · ·, and a sequence of
norm-1 vectors ei ∈ E, s.t. ‖(Tni − Tmi )ei‖ > c for every i. Consequently, we
can find a sequence of norm-1 vectors f ∗

i ∈ F ∗, s.t. 〈(Tni − Tmi )ei, f
∗
i 〉 > c.

Fix N ∈ N s.t. β(IEN ) > 4/c. Denote by (δi)∞i=1 the canonical basis of E .
Consider the contractions u : EN = span[δ1, . . . , δN ] → Ẽ and v : F̃ → EN ,
defined by

uδi = ei ⊗ (δni + δmi )/2, v

(∑
j

fj ⊗ δj

)
=

N∑
i=1

1

2
〈fni − fmi , f

∗
i 〉δi .

Then vA (∞)u = 0, and vT uδi = ciδi , where, for each i, ci � c/4. Therefore,

1 > β(vT u) � c

4
β(IEN ) > 1,

a contradiction.

Consider T = diag(Ti) ∈ B(Ẽ, F̃ ), for which dA (∞),�(T ) is finite. By the
previous result, T0 = lim Ti exists. For brevity, write T̃ = T

(∞)
0 .

Lemma 2.5. Suppose E, F , A , E , and � are as above, and the diagonal
operator T ∈ B(Ẽ, F̃ ) satisfies dA (∞),�(T ) < 1. Then β(T − T̃ ) � 4, and
dA (∞),�(T̃ ) < 1.

Proof. Suppose, for the sake of contradiction, β(T − T̃ ) > 4. Then
β(Qn(T − T̃ )Qn) > 4 for some n. Find a finite rank contraction u0 : E0 →
ranQn s.t. β(Qn(T − T̃ )Qnu0) > 4. Fix ε > 0, and find N > n so large that
‖Ti − T0‖ < ε/(n rank u0) for i > N . Let SE be the right shift operator on Ẽ,
defined by SE((e1, e2, . . .)) = (0, e1, e2, . . .). Then β((T − T̃ )SNE Qnu0) < ε.

Let u = (u0 + SNE u0)/2. Define v ∈ B(F̃ ) by setting

v((f1, f2, . . .)) = 1

2
(f1 − fN+1, . . . , fn − fN+n, 0, 0, . . .)

Then u and v are contractions, satisfying vB(E, F )(∞)u = 0 Furthermore,

vT u = 1

2
v(T − T̃ )(u0 + SNE u0) = 1

4

(
(T − T̃ )u0 + (SNF )

−1(T − T̃ )SNE u0
)
,
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where SF is defined similarly to SE . However, β((T − T̃ )SNE u0) < ε, hence
β(vT u) > 1 − ε/4. As ε is an arbitrary positive number, we arrive at a
contradiction.

Now suppose u and v are finite rank contractions s.t. β(va(∞)u) � γ

(γ � 1) for any a ∈ A . We shall show that β(vT̃ u) � γ . Let vN = S−N
F and

uN = SNE . Then, for anyN , β(vb(∞)u) = β(vNb
(∞)uN) for any b ∈ B(E, F ),

hence, in particular, β(vNa
(∞)uN) � γ . On the other hand, limN β((T −

T̃ )uN) = 0, and therefore,

β(vT̃ u) = β(vN T̃ uN) = lim
N

β(vNT uN) � γ,

as desired.

Lemma 2.6. Suppose, E, F , E , �, and A as above, and T ∈ B(E, F ) is
such that dA (∞),�(T

(∞)) < 1. Then T ∈ A .

Proof. As A is convex, balanced, and (B(E, F ),E⊗̂F ∗)-closed, there ex-
ist c > 0 and a norm-1 s ∈ E⊗̂F ∗, s.t. |〈a, s〉| < c for any a ∈ A , yet 〈T , s〉 >
c. Moreover, we can always assume that s belongs to the algebraic tensor
product E ⊗ F ∗. Write s = ∑N

i=1 γiei ⊗ f ∗
i , where e1, . . . , eN , f

∗
1 , . . . , f

∗
N

are are norm-1 elements of E and F ∗, respectively, the numbers (γi) are pos-
itive, adding up to 1. We can write γi = αiβi , where the positive scalars (αi)
and (βi) satisfy ‖(αi)Ni=1‖E = 1 = ‖(βi)Ni=1‖E ∗ .

FixM > 2/c, and define the linear maps u : EM → Ẽ and v : F̃ → EM by

uδi =
N∑
j=1

αjδNi+j ⊗ ei, v

(∑
j

δj ⊗ fj

)
=

M∑
i=1

N∑
j=1

βj 〈fNi+j , f ∗
j 〉δi

(here, as before, (δi) stands for the canonical basis of E ). Clearly, u and v
are contractions. For any a ∈ B(E, F ), va(∞)u = diag(〈a, s〉) (repeated
M times). Thus, for a ∈ A , β(va(∞)u) < cMβ(IEN ), and β(vT (∞)u) >

cMβ(IEN ). This contradicts our assumption that dA (∞),�(T
(∞)) < 1.

Proof of Theorem 2.2. Suppose T ′ ∈ B(E (E), E (F )) is such that
dA ,�(T

′) < 1/5. By Lemma 2.3, there exists a diagonal T ∈ B(E (E), E (F ))

s.t. β(T − T ′) < 4/5, and dA ,�(T ) < 1. By Lemmas 2.5 and 2.6, there exists
a ∈ A s.t. β(T − a(∞)) � 4. Therefore, β(T ′ − a(∞)) � 24/5.

3. Representations of Banach algebras

In this section, we apply �2-ASHR to constructing operator spaces with pre-
scribed families of c.b. maps (see e.g. [21], [22], [24], [25] for other work
in this direction). More precisely, for a given subset A of B(E), we seek to
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equip E with an operator space structure X s.t. CB(X) consists of 2-summing
perturbations of CA . Furthermore, for a given unital Banach algebra A , we
look for a representation π : A → CB(X), s.t. CB(X) = π(A )+�2(X). 2-
summing operators are strictly singular, hence CB(X) is comprised of “small
perturbations” of π(A ).

Theorem 3.1. Suppose E is a Banach space with separable dual, and A

is a balanced convex subset of Ba(B(E)), closed in the topology induced by
E ⊗̂ E∗, containing the identity, and such that ab ∈ A whenever a, b ∈ A .
Suppose, furthermore, that A is (C1, C2) − �2-ASHR. Then there exists an
operator space X, isometric to E, such that CB(X) = CA + �2(E). More
precisely:

(1) If a ∈ A , then ‖a‖cb � 1. If S ∈ �2(X), then ‖S‖cb � π2(S).

(2) If T ∈ CB(X), then there exists S ∈ �2(X) and a ∈ A , so that
T = λa + S, a ∈ A , |λ| � 4C1‖T ‖cb, and π2(S) � 4C2‖T ‖cb.

Remark 3.2. Proposition 2.1 shows that the above theorem can be applied
when A is a �2-hyperreflexive subspace of B(E).

An application of Theorem 2.2 immediately yields:

Corollary 3.3. Suppose E is a Banach space with separable dual, and
A is a convex balanced subset of Ba(B(E)), closed in the topology induced
byE ⊗̂E∗, containing the identity, and such that ab ∈ A whenever a, b ∈ A .
Denote by E the sequence space �p (1 < p < ∞) or c0. Then there exists an
operator space X, isometric to E (E), such that CB(X) = A (∞) + �2(X).
More precisely:

(1) If a ∈ A , then ‖a(∞)‖cb � 1. If S ∈ �2(X), then ‖S‖cb � π2(S).

(2) If T ∈ CB(X), then there exists S ∈ �2(X) and a ∈ A , so that
T = λa(∞) + S, a ∈ A , |λ| � 25‖T ‖cb, and π2(S) � 120‖T ‖cb.

Note that the decomposition T = a(∞)+S is unique, since any 2-summing
operator is strictly singular.

In our previous work (see [23] and references therein), we dealt with rep-
resentations of Banach algebras on Hilbertian operator spaces. However, for a
given algebra, non-trivial representations on a Hilbert space need not exist (see
[3]). Thus, the results of this paper cover a wider class of Banach algebras.

Recall that a dual Banach algebra is a Banach algebra which is dual as a
Banach space, such that multiplication is separately weak∗ continuous.

Corollary 3.4. Suppose A is a dual Banach algebra with a separable
predual. Then there exists a separable reflexive Banach space E, a unital
isometric weak∗-to-weak∗ continuous representation π : A → B(E), and an
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operator spaceX, isometric to �2(E), such that CB(X) = π(A )⊗I�2 +�2(X).
More precisely, T ∈ B(X) is completely bounded if and only if T = π(a)⊗
I�2 + S, with a ∈ A and S ∈ �2(X).

(1) If S ∈ �2(X), then ‖S‖cb � π2(S). If a ∈ A , then ‖π(a)‖cb = ‖a‖.

(2) Every T ∈ CB(X) can be written as T = π(a) + b, with a ∈ A ,
S ∈ �2(X), π2(S) � 120‖T ‖cb, and ‖a‖ � ‖T ‖.

Remark 3.5. Reasoning as in [25], we can show that the spaceX we con-
struct in the proof of this corollary fails the Operator Approximation Property
(OAP). Examples of other “interesting” spacing without the OAP can be found,
for instance, in [23], [24].

Remark 3.6. The term�2(X) in the statement of Corollary 3.4 cannot be
avoided. Indeed, �1(Z), equipped with its convolution product, is a dual Banach
algebra (see Section 4.4 of [33] for further results in this direction). However,
the space CB(X) cannot be isomorphic (in the Banach algebra sense) to �1(Z).
Indeed, if this were the case,Xwould need to be infinite dimensional. As any fi-
nite dimensional subspace ofX is completely complemented, CB(X) contains
infinitely many idempotents. However, �1(Z) contains only two idempotents:
0 and 1.

Remark 3.7. The Gelfand-Naimark-Segal theorem shows that every C∗-
algebra can be represented as an algebra of operators on a Hilbert space. For
a general Banach algebra, however, non-trivial representations on a Hilbert
space need not exist [3]. Thus, we have to consider representations on larger
classes of spaces. Recently, several results reminiscent of Corollary 3.4 ap-
peared. M. Daws [8] showed that any dual Banach algebra has an isometric
representation on E, for some Banach space E. M. Daws [9] and, independ-
ently, F. Uygul [36] showed that every completely contractive dual Banach
algebra is completely isometric to a weak∗-closed subalgebra of CB(X), for
some reflexive operator space X. However, in these constructions, a generic
element of B(E) or CB(X) need not be a “small perturbation” of the image of
an element of the algebra.

Finally, [20] gives examples of “natural” representations of certain algebras
A , arising from a non-abelian groupG, of the formπ : A → CB(B(L2(G))).
Here, once again, the small perturbations ofπ(A ) do not “fill” CB(B(L2(G))).

The proof of Corollary 3.4 follows from the fact that any 2-summing oper-
ator is strictly singular, and the following lemma:

Lemma 3.8. Suppose A is a dual unital Banach algebra with a separable
predual. Then there exists a separable reflexive Banach space E, and a unital
contractive weak∗-to-weak∗ continuous representation π : A → B(E).
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Proof. A recent result of M. Daws [8] states that, for any dual Banach
algebra, A , there exists a weak∗-to-weak∗ continuous isometric representation
ψ : A → B(F), where F is a reflexive Banach space. We first show that F
may be selected to be separable if A is separable in the weak∗ topology.

The existence of a countable fundamental, total, and bounded biorthogonal
system in (A∗,A ) (see [26], [28]) implies the existence of a weak∗-dense
sequence (an)n∈N in ψ(A ). For each n,m ∈ N, find a norm one fn,m ∈ F s.t.
‖anfn,m‖ � ‖an‖/(1 + 2−m). Let F1 = span f1,1, and, for n > 1,

Fn = span[akfi,j , akFn−1, Fn−1 | 1 � i, j, k,� n].

Clearly, Fn is finite dimensional, hence G = ⋃
n Fn is separable. Moreover,

akFn ⊂ Fn+1 for 1 � k � n, hence akG ⊂ G for each k. We shall show that
aG ⊂ G for every a ∈ ψ(A ). Indeed, suppose af /∈ G for some f ∈ G.
Pick f ∗ ∈ F ∗ s.t. f ∗|G = 0, and 〈f ∗, af 〉 �= 0. Pick a sequence (nk)k∈N s.t.
ank → a in the weak∗ topology. In particular,

0 = 〈f ∗, ankf 〉 → 〈f ∗, af 〉 �= 0,

a contradiction.
Defineφ : A → B(G) by setting, for a ∈ A , φ(a) = ψ(a)|G. Clearly, φ is

an isometric representation. To show thatφ is weak∗-to-weak∗ continuous, sup-
poseai → 0 in the weak∗ topology of A , and show that limi

∑∞
k=1〈g∗

k , φ(a)gk〉= 0 whenever (gk) ⊂ G and (g∗
k ) ⊂ G∗ satisfy

∑
k ‖gk‖‖g∗

k‖ < ∞. Find
(f ∗
k ) ⊂ F ∗ s.t. ‖f ∗

k ‖ = ‖g∗
k‖, and f ∗

k |G = g∗
k . Recall that ψ(ai) → ψ(a)

weak∗ in B(F), hence

∞∑
k=1

〈g∗
k , φ(a)gk〉 =

∞∑
k=1

〈f ∗
k , ψ(a)gk〉 → 0.

Now denote by e the identity in A . Thenp = φ(e) is a norm 1 idempotent in
B(G). Let E = p(G), and define π : A → B(E) by setting π(a) = φ(a)|E .
It is easy to show that π is isometric, unital, and weak∗-to-weak∗ continuous.

The proof of Theorem 3.1 uses some ideas of [23]. To define the space X,
pick a sequence (ni)∞i=1 ⊂ N, in which every positive integer occurs infin-
itely many times. By [25], there exists a family (Ei)∞i=1 of finite dimensional
operator spaces such that: (i) Ei is isometric to �ni2 , and (ii) for any oper-
ator u : E∗

i → Ej , we have ‖u‖1/(4 + 2−i ) � ‖u‖cb � ‖u‖1 if i = j ,
‖u‖cb = ‖u‖2 if i �= j . Here, ‖ · ‖1 and ‖ · ‖2 are, respectively, the trace class
norm and the Hilbert-Schmidt norm on operators between Hilbert spaces (they
coincide with ν1(·) and π2(·)).
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Find a sequence of operators ui : E → �
ni
2 such that π2(ui) = 1 and, for

any ε > 0, n ∈ N, and u : E → �n2 with π2(u) = 1, there exists i ∈ N for
which ni = n and ν1(ui − u) < ε. We identify the range of ui with the space
Ei described above. Denote by K0 the space of compact operators on �2 with
finitely many non-zero entries. We define the operator space X as follows: for
x ∈ E ⊗ K0, let

(3.1) ‖x‖X⊗K0 = sup
{‖(uia ⊗ IK0)x‖Ei⊗K0

∣∣ i ∈ N, a ∈ A
}
.

In other words,X is Banach isometric to the spaceE, embedded into
(∑

i Ei
)
∞

via the map e → (uie)i . Therefore, X is an operator space (Ruan’s axioms
hold). It is easy to see that X is isometric to E (as a Banach space). A is a
unital semigroup, hence ‖a‖cb � 1 for any a ∈ A . Moreover, all 2-summing
operators on X are completely bounded:

Lemma 3.9. If Y is an operator space, and T : Y → X is a 2-summing
operator, then ‖T ‖cb � π2(T ).

Proof. By (3.1),

‖T ‖cb = sup{‖uiaT ‖cb | i ∈ N, a ∈ A } � sup{ν1(uiaT ) | i ∈ N, a ∈ A }.
We have to show that, for any Banach spaces X and Y , u ∈ B(Y,X), and
v ∈ B(X, �n2), we have ν1(vu) � π2(v)π2(u). By duality,

ν1(vu) = sup{tr(vuw) | w ∈ B(�n2, Y ), ‖w‖ � 1}.
By Lemma 1.16 of [30], tr(vuw) � π2(v)π2(uw) � π2(v)π2(u).

To estimate the c.b. norms of operators from below, we need:

Lemma 3.10. Suppose Y is a subspace of X. Consider the operators T :
Y → X, u : X → �n2 , and v : �n2 → Y , such that π2(u) = 1 = ‖v‖. Let
C = sup{‖uav‖1 | a ∈ A }. Then ‖T ‖cb � ‖uT v‖1/(4 max{C, 1}).

Proof. Fix ε > 0, and find i ∈ N s.t. n = ni , and ν1(u − ui) < ε, and
4−i < ε (we identify �n2 with Ei). We view u and v as maps from X to Ei and
from E∗

i to Y , respectively. By (3.1), ‖v‖cb = sup{‖ujav‖cb | j ∈ N, a ∈ A }.
If i = j , then, for any a ∈ A ,

‖uiav‖cb � ‖uiav‖1 � ‖uav‖1 + ν1(u− ui) = C + ε.

If j �= i,

‖ujav‖cb � ‖ujav‖2 = π2(ujav) � π2(uj )‖a‖‖v‖ � 1.
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Therefore, ‖v‖cb � max{C + ε, 1}.
By (3.1), ‖ui‖cb = 1, hence ‖u‖cb � ‖ui‖cb+ν1(u−ui) < 1+ε. Therefore,

‖T ‖cb � ‖uT v‖cb
‖u‖cb‖v‖cb � ‖uT v‖1

(1 + ε)(4 + ε)max{C + ε, 1} .

However, ε can be chosen to be arbitrarily small.

Proof of Theorem 3.1. By (3.1) and the remark following it, a is com-
pletely contractive whenever a ∈ A . By Lemma 3.9, ‖S‖cb � π2(S) for any
S ∈ �2(S). This proves part (1) of the theorem.

To prove part (2), pick T ∈ CB(X) with ‖T ‖cb < 1/4. Suppose, for the
sake of contradiction, that we cannot represent T = λa + S, with a ∈ A ,
|λ| � C1, and π2(S) � C2. Then there exist γ > 1, finite dimensional spaces
E0 andF0, and contractionsu0 ∈ B(E0, E), v ∈ B(E, F0), s.t.π2(v0au0) � γ

for any a ∈ A , yet π2(v0T u0) > γ . By the remark on page 10 of [30], we
can assume that E0 = �n2. By trace duality (p. 19 of [30], or [35]), there
exists w ∈ B(F0, �

n
2), s.t. π2(w) = 1, and tr(wv0T u0) > γ . Moreover,

‖wv0au0‖1 � π2(w)π2(v0au0) � γ for any a ∈ A . Lemma 3.10 then yields
‖T ‖cb � 1/4, a contradiction.

4. Examples and applications

By Corollary 3.3 (see also Corollary 3.4), an infinite ampliation of any con-
tractive unital weak∗-to-weak∗ continuous representation π : A → B(E)

gives rise to an operator space X, isometric to �2(E), s.t. CB(X) = π(A )⊗
I�2 +�2(X). In some cases, however, we can prove that π(A ) is �2-ASHR
without resorting to ampliation. Some examples can be found in [22], [24].
These examples are used to construct “pathological” operator spaces. Below,
we present further representations π with this property, and operator spaces
arising from them (Theorems 4.2, 4.3, 4.6).

4.1. The long James algebra

We show that the unit ball of the “long James algebra”, viewed as a set of
diagonal operators on �2, is�2-ASHR. As a consequence, we construct a sep-
arable Hilbertian operator space with a complete transfinite basis, but without
the Complete Bounded Approximation Property (and consequently, without
a complete basis). This answers the non-commutative version of a question
asked in [32]. For the construction, we need the notion of the long James
space, introduced in [12]. The construction we present here is slightly differ-
ent, but it is easy to check that it yields an equivalent norm on the same Banach
space.
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Suppose η is an infinite ordinal. Denote by Iη, or simply I , the set of all
ordinals α < η which are not limit ordinals. For f : I → C, define

‖f ‖J = sup

{( n∑
k=1

|f (α2k−1)− f (α2k)|2
)1/2 ∣∣∣∣ (αi)2ni=1 ∈ Fn, n ∈ N

}
.

Here, the set Fn = Fn(η) consists of all 2n-tuples (αi)2ni=1 of members of I , for
which eitherα1 < α2 < · · · < α2n−1 < α2n, orα2n < α1 < α2 < · · · < α2n−1.
Then ‖ · ‖J is a seminorm on c00(I ) + C1, with the kernel C1. We define by
J (η) the completion of c00(I )+ C1 with respect to ‖ · ‖J .

For the sake of convenience, we introduce a new norm on J . Let I ′ =
I ∪ {η, η+}. Extend f : I → C to f̃ : I ′ → C by setting f̃ |I = f ,
f̃ (η) = f̃ (η+) = 0. Set

‖f ‖ = sup

{( n∑
k=1

|f̃ (α2k−1)− f̃ (α2k)|2
)1/2 ∣∣∣∣ (αi)2ni=1 ∈ Fn(η++), n ∈ N

}
.

Then ‖ · ‖ is a norm on J (η). Moreover, any f ∈ J (η) has a unique represent-
ation f0 + λ1, with λ ∈ C and f0 ∈ c00

‖·‖J . For future reference, we need the
following easy inequality: for any f ∈ J (η),

(4.1) max{‖f ‖J , ‖f ‖∞} � ‖f ‖ �
(‖f ‖2

J + 2‖f ‖2
∞

)1/2
.

Next we use the techniques of [2] to make J (η) into a commutative unital
Banach algebra. For any f ∈ �∞(I ), set ‖f ‖A = sup{‖fg‖ | ‖g‖ � 1}. We
call A (η) = {f ∈ �∞(I ) | ‖f ‖A < ∞} the long James algebra. Clearly, it is
a unital Banach algebra. The next lemma shows that A (η) and J (η) coincide
as sets, and describes useful properties of A (η).

Lemma 4.1. Suppose η is an infinite ideal.

(1) For any f ∈ �∞(I ), ‖f ‖A � ‖f ‖∞.

(2) Suppose γ1 < γ2 � η are ordinals. Define

f (β) =
{

1 γ1 � β < γ2,

0 otherwise.

Then either f = 0, or ‖f ‖A = 1.

(3) A (η) and J (η) coincide as sets. For any f ∈ J (η),
‖f ‖/√2 � ‖f ‖A � 2‖f ‖.
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Proof. (1) Fix α ∈ I , and define g : I → C by setting

f (β) =
{

1 β = α,

0 β �= α.

Then fg = f (α)g, hence ‖f ‖A � |f (α)|.
(2) It suffices to show that, for any g ∈ J (η) and (αi)2ni=1 ∈ Fn(η+ +), we

have

(4.2)
n∑
k=1

|f̃ (α2k−1)g̃(α2k−1)− f̃ (α2k)g̃(α2k)|2 � ‖g‖2.

We consider the case of α1 < α2 < · · · < α2n; the other possibility is handled
similarly. By erasing the pairs (α2i−1, α2i ) for which f (α2i−1) = f (α2i ) = 0,
we can restrict our attention to one of the following three cases:

(i) γ1 � α1 < α2 < · · · < α2n < γ2;

(ii) α1 < γ1 � α2 < · · · < α2n < γ2;

(iii) γ1 � α1 < α2 < · · · < α2n−1 < γ2 � α2n;

(iv) α1 < γ1 � α2 < · · · < α2n−1 < γ2 � α2n.

In case (i), the inequality (4.2) clearly holds. In case (ii), consider α′
1 = η, and

α′
i = αi for 2 � i � 2n. Then (α′

i )
2n
i=1 ∈ Fn(η + +), and

n∑
k=1

|f̃ (α2k−1)g̃(α2k−1)− f̃ (α2k)g̃(α2k)|2 =
n∑
k=1

|g̃(α′
2k−1)− g̃(α′

2k)|2

� ‖g‖2.

The case (iii) is handled in the similar fashion. Finally, if (iv) occurs, we pass
to α′

1 = η+, α′
2n = η, and α′

i = αi for 2 � i � 2n− 1.

(3) To show the inequality ‖f ‖A � ‖f ‖/√2, note that, by part (1),

‖f ‖A � ‖f 1‖
‖1‖ = ‖f ‖√

2
.

To obtain the upper estimate on ‖f ‖A , observe that f̃g = f̃ g̃. Suppose
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(αi)
2n
i=1 ∈ Fn(η + +). Then

n∑
k=1

∣∣f̃ (α2k−1)g̃(α2k−1)− f̃ (α2k)g̃(α2k)
∣∣2

=
n∑
k=1

∣∣f̃ (α2k−1)(g̃(α2k−1)− g̃(α2k))+ (f̃ (α2k−1)− f̃ (α2k))g̃(α2k)
∣∣2

� 2
n∑
k=1

(|f̃ (α2k−1)|2|g̃(α2k−1)− g̃(α2k)|2 + |f̃ (α2k−1)− f̃ (α2k)|2|g̃(α2k)|2
)

� 2(‖f ‖2
∞‖g‖2 + ‖f ‖2‖g‖2

∞) � 4‖f ‖2‖g‖2

(here, we use the left hand side of (4.1). Taking the supremum over all (αi)2ni=1 ∈
Fn(η + +), we obtain the inequality ‖fg‖ � 2‖f ‖‖g‖, as desired.

Denote by (eα)α∈I the canonical orthonormal basis in �2(I ). Consider
the “natural” representation π : A (η) → B(�2(η)) by setting π(f )eα =
f (α)eα . It follows from the discussion above that π is a unital contractive
representation. A particular case of the following lemma is implicit in [22].

Theorem 4.2. Suppose η is an infinite ordinal. Then π(Ba(A (η))) is
(10

√
6, 4)-�2-ASHR.

Proof. For the sake of brevity, let H = �2(I ). Suppose T ∈ B(H) is
such that ‖uT v‖2 < 1/5 whenever the finite rank contractions u and v satisfy
‖uπ(a)v‖2 � 1 for any a ∈ Ba(A (η)). We shall show that T = T1 + π(f ),
where ‖T1‖2 � 4/5, and ‖f ‖A � 2

√
6.

For α ∈ I , set f (α) = 〈T eα, eα〉. Let T0 be the diagonal part of T (that is,
T0eα = f (α)eα for any α ∈ I ), and let T1 = T − T0 be the off-diagonal part.
Suppose S1 and S2 are disjoint finite subsets of I . LetPS1 andPS2 be the corres-
ponding orthogonal projections. ThenPS1π(a)PS2 = 0 for any a ∈ Ba(A (η)),
hence ‖PS1T PS2‖2 < 1/5. An averaging (cf. the proof of Lemma 2.3) argument
yields ‖T1‖2 � 4/5. Moreover, if the finite rank contractions u and v satisfy
‖uπ(a)v‖2 � 1 for any a ∈ Ba(A (η)), then ‖uT0v‖2 � ‖uT v‖2+‖T1‖2 � 1.

Recall that T0eα = f (α)eα . It suffices to show that ‖f ‖A � 2
√

6. To
this end, note first that ‖f ‖∞ � 1. Indeed, otherwise there exists α ∈ I s.t.
|f (α)| > 1. Let u and v be equal to the orthogonal projection onto Ceα . Then
‖uπ(a)v‖2 � 1 for any a ∈ Ba(A (η)), yet ‖uT0v‖2 > 1, a contradiction.

Next consider (αi)2ni=1 ∈ Fn, and show that
∑n

k=1 |f (α2k−1)−f (α2k)|2 � 4
(and therefore, ‖f ‖J � 2). Indeed, denote by (δk)nk=1 an orthonormal basis in
�n2, and consider

v : �n2 → H : δk �→ (eα2k−1 + eα2k )/
√

2,
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and

u : H → �n2 : ξ �→
n∑
k=1

1√
2
〈ξ, eα2k−1 − eα2k 〉δk.

If S is a diagonal operator with Seα = g(α)eα for α ∈ I , then

uSvδk = 1

2

(
g(α2k−1)− g(α2k)

)
δk,

hence

(4.3) ‖uSv‖2
2 =

n∑
k=1

|g(α2k−1)− g(α2k)|2/4.

Then, for any a ∈ A (η), ‖uπ(a)v‖2 � ‖a‖J � ‖a‖ < 1, by (4.1) and
Lemma 4.1. Thus, ‖uT0v‖2 � 1. By (4.3), ‖f ‖J � 2. By (4.1), ‖f ‖ �

√
6.

By Lemma 4.1, ‖f ‖A � 2
√

6.

4.2. Transfinite bases

The notion of a transfinite basis in a Banach space was introduced by C. Bessaga
[4]. We refer the reader to that paper, and to Section 2 of [32], for more in-
formation. Here we present a non-commutative version of the same definition.
Suppose X is an operator space, η is an ordinal, and (Pγ )0�γ�η is a family
of projections on X such that supγ ‖Pγ ‖cb < ∞, PαPβ = Pmin{α,β}, P0 = 0,
Pη = IX, and for each x ∈ X, the map γ �→ Pγ x is continuous on [0, η] (here,
[0, η] andX are equipped with the order, resp. norm, topology). Then the family
(Pγ )0�γ�η is called a complete transfinite Schauder decomposition (of length
η). If, in addition, dim(Pγ+ − Pγ ) = 1 for any γ , then (Pγ )0�γ�η is called
a complete transfinite (Schauder) basis (of length η). Note that (complete)
transfinite bases of length ω (the first infinite ordinal) in Banach (operator)
spaces are just the usual (complete) bases.

Recall that an operator space X is said to have the Completely Bounded
Compact Approximation Property (CBCAP for short) if there exists a constant
C s.t. for every finite dimensional E ↪→ X there exists a compact operator
T ∈ CB(X) s.t. ‖T ‖cb � C, and T |E = IE . The definition of the Completely
Bounded Approximation Property (CBAP) is similar, but more restrictive: the
operators T are required to have finite rank. For Banach spaces, the Bounded
(Compact) Approximation Property (BAP, CBAP) are defined in a similar
fashion.

Clearly, every operator (Banach) space with a (complete) basis has the
CBAP (resp. BAP). It was shown in [32] that every Banach space with a
transfinite basis has the Approximation Property (which is strictly weaker
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that the BAP – see e.g. [5] for the connections between the two proper-
ties). The problem of whether the existence of the transfinite basis implies
the Bounded Approximation Property is open. We give a negative answer to
the non-commutative version of this question.

Theorem 4.3. There exists an operator space with a transfinite basis,
failing the Completely Bounded Compact Approximation Property.

Proof. Consider the ordinal η = ω2. For simplicity, let A = A (η). In
the previous subsection, it is shown that π(Ba(A )) is �2-ASHR. We build
an operator space X “around” this set. More precisely, we use the results of
Chapter 3 to construct an operator space X, isometric to �2(I ) on the Banach
space level, such that T ∈ B(X) is completely bounded iff T ∈ π(A )+ S2.
Moreover, for any a ∈ A and S ∈ S2, we have ‖π(a)+S‖cb � ‖a‖A +‖S‖2,
while there exists a constant c s.t. every T ∈ CB(X) can be represented as
T = π(a)+ S, with ‖a‖A + ‖S‖2 � c‖T ‖cb.

For γ � η, define fγ by setting, for α ∈ I ,

fγ (α) =
{

1 α < γ ,

0 α � γ .

By Lemma 4.1(b), ‖fγ ‖A = 1 unless γ = 1, and ‖1 − fγ ‖A = 1 unless
γ = η.

Therefore, for any γ � η, the projection Pγ = π(fγ ) is completely con-
tractive. Moreover,

Pγ eα =
{ eα α < γ

0 α � γ

for any α ∈ I . Thus, the family (Pγ ) defines a completely transfinite basis on
X.

Suppose, for the sake of contradiction, that X has the CBCAP. For each
n, consider En = span[eω, e2ω, . . . , enω] ↪→ X. Then there exists a compact
operator T = π(f )+ S s.t. ‖f ‖A + ‖S‖2 < C (C is a constant), and T |En =
IEn . In particular,

n∑
j=1

|f (jω)− 1|2 =
n∑
j=1

‖Sej‖2 � ‖S‖2
2 < C2.

Suppose n > 32C2. Then the set

Gn = {1 � j � n | |f (jω)− 1| < 1/4}
is such that |Gc

n| < 16C2.
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On the other hand, π(f ) is compact, hence for any j ∈ [1, n], there exists
αj ∈ (jω, (j + 1)ω) s.t. |f (αj )| < 1/4. Then

‖f ‖2 �
∑
j∈Gn

|f (αj )− f (jω)|2 � |Gn|
4

� n

8
.

By Lemma 4.1, ‖f ‖A � √
n/4, which yields the desired contradiction.

Remark 4.4. As in Section 2 of [32], we can show that any operator
space with a complete transfinite basis has the Strong Operator Approximation
Property (SOAP). Thus, Theorem 4.3 yields an example of an operator space
with the SOAP, but without the CBCAP. The classical counterpart of this result
is the existence of Banach spaces with theApproximation Property, but without
the Bounded Compact Approximation Properties (see Section 8 of [5] for the
examples).

Remark 4.5. We can generalize the definition of the long James space
in the following way. Suppose E is a symmetric separable sequence space,
which is mononormalizing (in the terminology of p. 88 of [14]; see also Sec-
tion 3 of [23]). That is, we require that two conditions be satisfied: (i) if
limn ‖(x1, . . . , xn, 0, 0, . . .)‖E = C < ∞, then (xi)i∈N ∈ E , and ‖(xi)i∈N‖E =
C; and (ii) if (xi)i∈N ∈ E , then limn ‖(xn, xn+1, . . .)‖E = 0. The space E is
nice if, in addition, limn ‖(1, . . . , 1, 0, . . .)‖E = ∞.

We denote by SE the operator ideal, corresponding to a nice space E : for a
compact operator T , denote by (σi(T )) the sequence of singular numbers of
T , and set ‖T ‖E = ‖(σi(T ))‖E .

For any infinite ordinal η, and for any nice sequence space E , we define a
modified long James space: for f : I → C, define

‖f ‖JE
= sup

{‖(f (α2k−1)− f (α2k)1�k�n)‖E

∣∣ (αi)2ni=1 ∈ Fn, n ∈ N
}
.

Here, the set Fn = Fn(η) consists of all 2n-tuples (αi)2ni=1 of members of I , for
which eitherα1 < α2 < · · · < α2n−1 < α2n, orα2n < α1 < α2 < · · · < α2n−1.
Then ‖ · ‖JE

is a seminorm on c00(I )+ C1, with the kernel C1. We define by
JE (η) the completion of c00(I )+ C1 with respect to ‖ · ‖JE

.
Similarly, we define on c00 + C1 the norms ‖ · ‖E and ‖ · ‖AE (η) (analogues

of ‖ · ‖ and ‖ · ‖A (η)). As above, we show that the norms ‖ · ‖E and ‖ · ‖AE (η)

are equivalent to each other, and both of them are equivalent to ‖ · ‖JE
on c00.

Denote by πE the identity representation of AE (η) on the diagonal of
B(�2(I )). As before, we show that πE (Ba(AE (η))) is SE -ASHR.

Now suppose the ordinalη is countable, and the formal identity map �2 → E

is bounded. By [23], we can equip �2(I ) with an operator space structure X,
s.t. CB(X) = π(AE (η))+ SE (�2(I )).
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4.3. Almost multiplicative functionals

An old problem in Banach algebras asks whether every “almost multiplicative”
linear functional on a given Banach algebra is near multiplicative. More pre-
cisely: suppose A is a Banach algebra. We say that f ∈ A ∗ is δ-multiplicative
|f (a)f (b)− f (ab)| < δ‖a‖‖b‖ for any a, b ∈ A . 0-multiplicative function-
als are referred to simply as multiplicative. A Banach algebra A is called
AMNM (almost multiplicative near multiplicative) if there exists a function ε
on (0,∞), with limδ→0 ε(δ) = 0, such that for any δ-multiplicative f ∈ A ∗
there exists a multiplicative g ∈ A ∗ s.t. ‖f − g‖ < ε(δ).

Describing the AMNM Banach algebras is a long-standing open problem.
There reader is referred to [16], [17], and references therein, for a brief intro-
duction. Here, we mention several results: (1) The algebras C0(K) (K locally
compact Hausdorff) are AMNM. (2) The disk algebra is AMNM. Moreover,
any singly generated uniform algebra is AMNM [15] (3) There exists a uni-
form algebra which is not AMNM [34]. (4) If G is a locally compact abelian
group, thenL1(G) is AMNM. (5) It is not known whetherH∞ is AMNM (that
is, whether H∞ has “almost corona”).

No examples of Banach spacesE for whichB(E) is notAMNM are known.
Note that, if E is isomorphic to �n∞(E) for some n, then B(E) is AMNM.
Indeed, in this case, there exist idempotents p1, . . . , pn ∈ B(E), s.t. pipj =
δijpi , and

∑n
i=1 pi = IE , and u1, v1, . . . , un, vn ∈ B(E) s.t. uivi = pi , and

viui = IE . Let K = maxi ‖ui‖‖vi‖. If f ∈ B(E)∗ is δ-multiplicative, then
|f (IE)2 − f (IE)| � δ. Therefore, either |f (IE)| < φ(δ), or |f (IE) − 1| <
φ(δ), where φ is a continuous map on [0,∞), s.t. φ(0) = 0. In the former
case,

|f (T IE)− f (T )f (IE)| = |f (T )||1 − f (IE)| � φ(δ)‖T ‖
for any T ∈ B(E), hence ‖f ‖ � φ(δ)/(1−φ(δ)). The latter case can be ruled
out as follows: if |f (IE)− 1| < φ(δ), then

|f (ui)f (vi)− 1| � |f (vi)f (ui)− f (IE)| + |f (IE)− 1| � Kδ + φ(δ).

However, |f (ui)f (vi)− f (pi)| � Kδ, hence |f (pi)− 1| � 2Kδ + φ(δ) for
each i. Then

n− 1 − φ(δ) � |f (IE)− n| �
∑
i

|f (pi)− 1| � n(2Kδ + φ(δ)),

which is clearly impossible for δ small enough.
The spacesE which are isomorphic to �n∞(E) include the Orlitz spaces, the

Schatten spaces, and more.
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For many classes of Banach spaces, however, it is not known whetherB(E)
isAMNM. For instance, supposeE a hereditarily indecomposable space. Then
for every T ∈ B(E) there exists a (unique) λT ∈ C s.t. T − λT IE is strictly
singular. It is well-known (see e.g. [18]) that the spectrum of any strictly
singular operator is countable, 0 its only possible cluster point, and all isolated
points are finite rank eigenvalues. By [1], f (S) = 0 whenever f ∈ B(E)∗
is multiplicative, and S is finite rank. Moreover, by [1] again, f (S) ∈ σ(S)

whenever S ∈ B(E), and f is multiplicative.
This shows that the only non-trivial multiplicative functional on B(E),

with E as above, is defined by f (T ) = λT , with λT defined in the previous
paragraph. We have no good description of δ-multiplicative members ofB(E)∗.

The same reasoning could be repeated for the algebras CB(X). In this case,
however, we can exhibit an example of X s.t. CB(X) is not AMNM.

Theorem 4.6. There exists an operator space X such that CB(X) is not
AMNM.

Proof. We recapitulate B. Johnson’s construction (Example 9.1 of [16]).
There, it is shown that there exists a sequence of unital Banach algebras An

s.t., for each n ∈ N, (1) An is Cn with pointwise multiplication; (2) there
exists fn ∈ A ∗

n s.t. ‖fn‖ = f (1n) (1n is the identity of the algebra An); (3)
|fn(a)fn(b)−fn(ab)| � ‖a‖‖b‖/n for any a, b ∈ An; (4) ‖fn−f ‖ � 1−1/n
whenever f ∈ A ∗

n is multiplicative.
Consider now the Banach algebra A = C1 ⊕1 (

∑
i Ai )�1 . It has a predual

A∗ = C ⊕∞ (
∑

i A ∗
i )c0 . We shall show that the multiplication in A is weak∗

continuous. By commutativity, it suffices to show the following: suppose y ∈
A , and a net (xα) converges weak∗ to x ∈ A . Then xαy → xy weak∗. By
triviality of multiplication by 1, we it suffices to consider y = (yi), with
yi ∈ Ai . Furthermore, write x = a1 + (xi), and xα = aα1 + (xαi). Clearly,
limα aα = a. Therefore, we can assume a = 0, and aα = 0 for each α.
Then xy = (xiyi), and xαy = (xαiyi). We have to show that, for any (zi) ∈
(
∑

A ∗
i )c0 ,

lim
α

∑
i

〈xαiyi, zi〉 =
∑
i

〈xiyi, zi〉.

We can identify A ∗
i with Cn as a vector space. Let z′i = yizi (with point-

wise multiplication). A standard Banach algebra calculation yields ‖z′i‖ �
‖yi‖‖zi‖. Therefore, z′ = (z′i ) ∈ (∑ A ∗

i )c0 . Thus,

lim
α

∑
i

〈xαiyi, zi〉 = lim
α

〈xα, z′〉 = 〈xz′〉 =
∑
i

〈xiyi, zi〉,

as desired.
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Now extend the functional fn ∈ A ∗
n to the whole algebra A , by setting

gn(a1 ⊕ (xi)i∈N) = a + fn(xn) (here, xi ∈ Ai). By definition, ‖gn‖ = 1. We
shall show that gn is n−1-multiplicative. Indeed, consider norm 1 x = a1⊕(xi)
and y = b1 ⊕ (yi). Then gn(x) = a+fn(xn), gn(y) = bn+fn(yn), gn(xy) =
ab + af (yn)+ bf (xn)+ fn(xnyn), and

|gn(x)gn(y)− gn(xy)| = |fn(xn)fn(yn)− fn(xnyn)| � n−1‖xn‖‖yn‖ � n−1.

The last inequality shows that gn is n−1-multiplicative.
Next we show that ‖gn−g‖ � 1−n−1 whenever g ∈ A ∗ is multiplicative.

Indeed, theng|An
is also multiplicative, and ‖gn−g‖ � ‖fn−g|An

‖ � 1−n−1,
per the result of B. Johnson described above.

By Corollary 3.4, there exists a Banach space E, an operator space X,
isometric to �2(E), and a unital isometric representation π : A → B(E) s.t.
CB(X) = π(A ) ⊗ I�2 +�2(X). For n ∈ N, define g̃n ∈ CB(X)∗ by setting
g̃n(π(a)⊗ I�2 + S) = gn(a) whenever a ∈ A , and S is 2-summing. Clearly,
g̃n is well-defined, ‖g̃n‖ = 1, and g̃n is n−1-multiplicative. Moreover, for any
multiplicative g̃ ∈ CB(X)∗, define g ∈ A ∗ by setting g(a) = g̃(π(a)⊗ I�2).
Then ‖g̃n− g̃‖ � ‖gn−g‖ � 1−n−1, which shows that CB(X) is not AMNM.
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