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THE KADETS 1/4 THEOREM FOR POLYNOMIALS

JORDI MARZO and KRISTIAN SEIP*

Abstract

We determine the maximal angular perturbation of the (n + 1)th roots of unity permissible in the
Marcinkiewicz-Zygmund theorem on L” means of polynomials of degree at most n. For p = 2,
the result is an analogue of the Kadets 1/4 theorem on perturbation of Riesz bases of holomorphic
exponentials.

1. Introduction

A classical theorem of J. Marcinkiewicz and A. Zygmund generalizes the
elementary mean value formula
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valid for holomorphic polynomials P of degree at most n, in the following
way: For 1 < p < oo, there is a constant C,, independent of n such that

C—l n 2 2 ; do C n -
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for every complex polynomial P of degree at most n. (See [8] or Theorem 7.5
in Chapter X of [15].) It is natural to ask if the norm equivalence expressed

. 21

by (2) remains valid if we replace the (n + 1)th roots of unity w,; = e’
by n + 1 points z,; on the unit circle with a less regular distribution. C. K.
Chui, X.-C. Shen, and L. Zhong [2] considered this problem and found that
the norm equivalence is stable under small perturbations of the points w, ;. We
will prove the following sharp version of their result:

THEOREM 1.1. Suppose 1 < p < oo and set ¢ = max(p, p/(p — 1)). The
following statement holds if and only if § < 1/(2q): There is a constant C),
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independent of n such that if |arg(z,jo,;)| < 2m8/(n + 1) for0 < j < n,
then

-1
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for every holomorphic polynomial P of degree at most n.

We will see that this theorem is a consequence of a general result of Chui and
Zhong [3], characterizing the so-called L? Marcinkiewicz-Zygmund families
(to be defined below) in terms of Muckenhoupt (A,) weights.

Readers familiar with Paley-Wiener spaces will see the analogy with the
Kadets 1/4 theorem on perturbations of Riesz bases of complex exponentials in
L? of an interval [4]. One may view polynomials as discrete versions of band-
limited functions, with the degree of the polynomial being the counterpart to
the notion of “bandwidth”. The identity (1) is the discrete analogue of the
Plancherel identity or — what amounts to the same — the Shannon formula for
bandlimited functions. In the case when p = 2 and we require § < 1/4, our
theorem corresponds precisely to the Kadets 1/4 theorem. The L? version
(1 < p < o0) of the Kadets theorem, analogous to our theorem, can be found
in [7].

It is interesting to note that our problem as well as that of the classical
Kadets theorem fits into a general theory of unconditional bases in so-called
model spaces. (See [13], [10], and [6] for original work and [11] or [14] for
more recent expositions.) In particular, the theorem of Chui and Zhong to
be used in this note can be obtained from a theorem given in [6]. We refer

o [9] for the details of this link and to [12], where the connection between
Marcinkiewicz-Zygmund inequalities and model spaces was first mentioned
explicitly.

For p = 2, the proof to be given below is an adaption of S. Khrushchev’s
proof of the classical Kadets 1/4 theorem [5], and, for general p, we act in
a similar way as was done in [7]. Khrushchev also showed how to obtain
other perturbation results, such as a theorem of S. Avdonin [1]. We will con-
fine ourselves to proving the theorem stated above and refer to [9] for the
counterpart of Avdonin’s theorem as well as other analogues of results for
Paley-Wiener spaces and families of complex exponentials.

2. Preliminaries

Suppose that for each nonnegative integer n we are givenaset Z (n) = {z,;}j_
of n + 1 distinct points on the unit circle. We denote by & = {Z (n)},>¢ the
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corresponding triangular family of points. The family & is declared to be
uniformly separated if there exists a positive number ¢ such that

€
inf |z,; — zuk| = ——
j;ﬁklzn] an| = n+1
for every n > 0.
We will say that & is an L? Marcinkiewicz-Zygmund family if there exists
a constant C,, > 0 such that for every n > 0 and complex polynomial P of
degree at most n, we have

c-l w o c. &
4 z P(z,)|F < P(")Pdo < —2 P(z,).
4 n+1j§' (2] _/0 () —n+1§' ()]

In order to describe such families, we associate with & the following generating

polynomials )
n
F,(z) = 1-— ZinZ | -
@) H( perEd z)

Jj=0

The theorem of Chui and Zhong reads as follows [3].

THEOREM 2.1. Suppose 1 < p < oo. The family & = {Z% (n)},>0 of points
on the unit circle is an L? Marcinkiewicz-Zygmund family if and only if it is
uniformly separated and there exists a constant K, such that

1 ) 1/p 1 ) (p—1/p
(5) (-/an(ele)lde) <—/|Fn(€’9)|_[’/(p_l)d9> <K,
"] J; 1] J;

for every subarc 1 of the unit circle and every n > 0.

In other words, the sequence |F,|? satisfies a uniform (A,) condition.

In the proof of the positive part of the p = 2 case of our theorem, we will
make use of the equivalence between the (A;) and Helson-Szeg6 conditions.
We will derive the result for p # 2 from the p = 2 case using the following
estimate.

LEMMA 2.2. Let o, k > 0 be given, and set p., = max(1/2, 1 —«/(n+1)).

If a given triangular family of real numbers ,; satisfies sup,; |8,;| < 1/2, then

n .
27‘![(/‘#5"‘]-)

o
l_[(Z—,Oxne it ) >

j=0

n o
2m(/+m6ni)

[[G—pwe )

J=0

= R,(2)

where R,(z) is bounded from above and below by positive constants, inde-
pendently of z € Tand n > 0.
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PrROOF. Set
27j 27 B8,;
P 9 l9 l}» (/3) h )\, ] .
5(0) = j]"£<e = PP, where j(B) = =+ ==
‘We have
Pene™i P (B
log P3(0) — log Py(0) _ReZ/ ) Z/ h(6 — 1) dt,
- e % (0)
=0
where

Picn SIN T
1+ p2, —2pncost’

h(t) =

By the fundamental theorem of calculus,

log Pg(9) — log Py(0)

ri(B)  pt
= A A (0)h(O — ;0 WO —rt)drdt.
Z( (B) — 35 (O)h( ())+Z/m) /W 6 — ) drdr

We compute /' (¢) and find that the absolute value of the latter sum is bounded
independently of 6 and n. Therefore,

log Py(6) — 10gP0(9)—OlZ ”’h(e 35 (0) + bya(2)

= a(log Py (0) — log Po(6) — by.1(2)) + bya(2)

with uniform bounds on the L* norms of b, ,. This gives the result because
Py(0) is trivially bounded from above and below by positive constants, inde-
pendently of z € Tand n > 0.

3. Proof of the theorem: Sufficiency

For each set Z (n), we define C,(Z (n)) as the minimum of all positive numbers
C such that

-1 n

C 2w
P(z,)|P < P 1911 P(z,)|”
n+1]§=0| (Znj)l _/0 |P(e™)] E | P (znj)l

for every complex polynomial P of degree at most n. Among all sets &' (n)
satisfying | arg(z,j@,;)| < 2nd/(n + 1) for 0 < j < n, we may choose
a set with maximal C,(Z (n)). From now on, we will assume that the points
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Z,j = wyje 1 constitute a set of points with this extremal property. It suffices
to show that the corresponding triangular family is an L” Marcinkiewicz-
Zygmund family. Clearly, this family is uniformly separated when§ < 1/(2¢q).

When p = 2, condition (5) is equivalent to the following uniform Helson-
Szeg6 condition: There exist sequences u,, and v,, of real functions in L°°(T)
such that

6) |F,|* = i tin with  sup ||u,]lec < 00 and sup ||v,|lee < /2.
n n

Here v — v denotes the conjugation operator.

We need two steps in order to identify the appropriate functions u, and v,,.
In the first step, we “pull” the points z,,; more deeply into the unit disc. For
k > 0, we set p,, = max(1/2,1 —«/(n + 1)). We define

Fen(2) = 1_[(] - pknajz)-
j=0

For fixed ¥ > 0, we find that
|Fa(e)? = e[ Fey (e[,

with sup,, ||tt,n|lcc < 00.
We now move to the second step. Writing

n

Z = PxnZnj
B =[] —=2£

—_—
=0 1 - Pininjl

we get ,
Fen(2) _ _n+l [ Fin (2)]

Ben(z) = "1 =z
“ Fien(2) F2,(2)

for |z| = 1. Since F?, is an outer function with 2 (0) = 1, this means that
F? = e, where

‘ o n | — 2
v/(n(ele) :/ Z—Imdn —(m+1)8 —c
0 ':

0 |gi’7 - IOKnan|2

and c is any suitable constant. If we set

c=j2:(;/0

1_,0,%,1

= ——d1),
278 le'n — IOKna)njl2
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then we may write

0—2ms; 1—p?
Kn

i0
Ven(€) = / —————dn—(n+ 1)6.
‘ 12:(; 0 |€”7 - IOKna)nj|2

On the other hand, using that

042 /(n+1) 1 — ,02
| IR N
0 =0 le' — pannjl
and n 5
1— Cn+1
Z % —(m+ Dl < ¥’
=0 le' — pannjl K
we get

_ n_ p6-2m8; 1—p2
vm<e’9>=2f —— Pyt 0w
j=0"?

|ei'7 — PinWnj |2

when « — oo. Consequently,

0+278/(n+1) 1 1= 2 1
Vien ll oo Ssup/ " dn + Ok )
0 6 =0 |€ - pknwnj|

=218+ Ok V).

Assuming § < 1/4, we now obtain (6) by choosing « sufficiently large.
Finally, we consider the case p # 2. We introduce the triangular family
given by the sets

2mj TG Bp;

— i)"nj( /2)n 1 . —
Lypln) = (P PY it y(q/2) = A

If 6 < 1/(2q), then the p = 2 case applies. In other words, if we set

n

Gu(@) =[] (1 = pene™02),

Jj=0

then the functions |G, |*> meet the uniform (A,) condition. By Lemma 2.2 and
Holder’s inequality, this implies that the functions |F, |? satisfy the uniform
(A,) condition.
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4. Proof of the theorem: Necessity

We will consider the sets

2ij/(2n+1 —27i (j—28)/(2n+1
F(2n) = { mij/(2n+ ) _0 U mi(j—28)/2n+ )} o
which can be viewed as perturbations of the rotated (2n + 1)th roots of unity
e?/@n D g0, 5. Let Fay, be the generating polynomial for Z(2n). We set
b (2) = Fon(z)/ (22 — p%;’“) and observe that we may write

n —2mi(j—28)
2n+1

Z — Pwe
¢n(z)=]_["—w

j=1 % = Pme€ ntl

We have

log [ (2)] = Re(log ¢, (2)) = Rez f

r,,jé—Z

. . . —2mij it
where I'); is the arc with the parametrization I',; () = pane WA @ T ,0<tr<
467 It follows that 25

|fn(e)] —> ‘

1+t

_% p—l
dt)
7 bid ) p—1
sliminf/ |¢n|”(f |¢n|ﬁ'> .
n 0 0

Hence, when 6 = 1/2q, the weights |¢,|” do not meet the uniform (A,)

condition, and the same holds for the weights | Fy,|* since the polynomials

2t p§”+ ! are uniformly bounded away from O for |z| = 1.

for 0 < t < . By Fatou’s lemma,

=0

l_eit

1+ et

1—e
1+ et
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