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VECTOR-VALUED SINGULAR INTEGRALS AND
MAXIMAL FUNCTIONS ON SPACES OF
HOMOGENEOUS TYPE

LOUKAS GRAFAKOS, LIGUANG LIU and DACHUN YANG*

Abstract

The Fefferman-Stein vector-valued maximal function inequality is proved for spaces of homogen-
eous type. The approach taken here is based on the theory of vector-valued Calderén-Zygmund
singular integral theory in this context, which is appropriately developed.

1. Introduction

Let (Z, d) be a metric space endowed with a regular Borel measure 1. Recall
that w is said to be a regular Borel measure on & if (4 is a nonnegative countably
subadditive set function defined on all subsets of &, open sets are measurable
and every set is contained in a Borel set with the same measure (see, for
example, [10]). We also assume that all balls defined by the metric d have finite
and positive measures on . Forany x € & and r > 0, set B(x,r) = {y €
& . d(x,y) <r}. Thetriple (€, d, ) is called a space of homogeneous type
in the sense of Coifman and Weiss ([2], [3]) if the following doubling property
holds: there exists a constant C; > 1 such that forall x € & andr > 0,

(1.1) w(B(x,2r)) = Cipn(B(x,r)).

From (1.1), it is easy to deduce that there exist n > 0 and A > 1 such that for
allx e £, r >0and A > 1,

(1.2) n(B(x, Ar)) < A" n(B(x,r)).

The number n here in some sense measures the “dimension” of the space Z.
Let A be a complex Banach space with norm || - | . Let #* be its dual space
with norm | - ||+. A function F defined on a o-finite measure space (2, i)

*The first author was supported by grant DMS 0400387 of the National Science Foundation
of the USA and the University of Missouri Research Council. The third (corresponding) author
was supported by the National Science Foundation for Distinguished Young Scholars (Grant
No. 10425106), NCET (Grant No. 04-0142) of Ministry of Education of China.

Received September 10, 2007; in revised form November 30, 2007.



VECTOR-VALUED SINGULAR INTEGRALS AND MAXIMAL FUNCTIONS ... 297

and taking values in & is called %-measurable if there exists a measurable
subset £y of & such that w(Z \ ) = 0 and F(Z)) is contained in some
separable subspace %, of %, and for every u* € $*, the complex valued map
x — (u*, F(x)) is measurable. From this definition and the theorem in [17,
p. 131], it follows that the function x — || F(x)|| on & is measurable.

For any p € (0, 0o], define L?(Z’, #) to be the space of all #-measurable
functions F on & satisfying || F||zrz, %) < 00, Where

1/p
(1.3) |Fllor 2, 2 = {/gf ILF )1l dM(X)}

with a usual modification made when p = oco. Similarly, define L? (%, )
to be the space of all Z3-measurable functions F on & satisfying || F || Lr.~# %)
< 00, where

A4 Pl =suplaludr e 2 IF@la > ap] "],

a>0

Let p € (0, 00) and L7 (&) ® 9B be the set of all finite linear combinations
of elements of # with coefficients in L? (&), that is, elements of the form,

(1.5) F = fiuy + -+ funltm,

where m € N, fj € LP(Z) and u; € % for j € {1, ..., m}. Then the space
LP(Z)® R isdensein L (X, RB); see, for example, [7] or Lemma 2.1 below.
Given F € L' (%) ® & as in (1.5), we define its integral to be the following
element of %

F(x)d = ; d .
/% (x) dp(x) ;{f%ﬁ(m u(x)}uj

Therefore, for any F € L'(Z, %), the integral [, F(x)du(x), as a unique
extension of the integral of functions in LY(Z)® B, is well defined; moreover,
it is not difficult to show that for any u* € %™,

<u*,/ F(X)dM(X)>=/ (u*, F(x)) du(x),
z z

which further implies that

(1.6) H/ F(x)du(x)
z

< / 1F G0l dis();
B X

see, for example, [7] or [17] for more details.
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Now we turn to the vector-valued singular integrals. Let %3 and %, be
Banach spaces. Consider a kernel K defined on (2 x &) \ A with A =
{(x,x): x € Z}, where Iz(x, y) is an element of 3(9{1, %,), the space of all
bounged linear operators from %, to %,. The norm of K (x, y) will be denoted

by 11K (. )12, -2,
Assume that K (x, y) is £ (%, %,)-measurable and locally integrable on
(& x &)\ A such that the integral

(1.7) T(F)(x) = /J K(x, y)F(y)du(y)

is well defined as an element of %, for all F € Lof’(% , 9B,) with bounded
support and x ¢ supp F. Assume that the kernel K satisfies Hormander’s
conditions, i.e., there exists a positive constant Cy such that forall y, z € £,

(1.8) / 1R (e, y) — R (v, D)y, dit(x) < Ci,
d(x,y)>2d(y, z)
and forall x, w € Z,
(1.9) / 1R, ) — R, Y)llgy—z di(y) < Co.
d(x,y)>2d(x, w)

The main result concerning such singular integrals is the following:

THEOREM 1.1. Let B, and B> be Banach spaces. Suppose that T given by
(1.7) is a bounded linear operator from L' (X', $1) to L' (X, %) for somer €
(1, oo] with norm A, > 0. Assume that K jatisﬁes Hormander’s conditions
(1.8) and (1.9) for some Cy > 0. Then T has well defined extensions on
LP(%, By) for all p € [1,00). Moreover, there exist positive constants Cg
and Cy depending only on & such that for all F € L'(Z, %)),

(1.10) T (F) 1, 2 < C2(Cr + ADIF iz, 2
and whenever p € (1, 00), forall F € LP(Z, $),
(1.11) T (F)llr, 2y < CaCp(Chu + A FllLr. 2)

where C, = max{p, (p — D™YY. When r = oo, (1.11) holds with C, =
max{1, (p — 7'},

Forany f € L},

A (f) is defined by

(&) and x € &, the Hardy-Littlewood maximal function

1
M =
() =sp- 5

/ | f DI dp(y),
B
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where the supremum is taken over all balls B containing x, and the central
Hardy-Littlewood maximal function . ( f) is defined by

~ 1
M = _— d .
(Hx) flig (BG.r)) B(“)If(y)l n(y)

Then it is easy to deduce that /Zlv(f)(x) < M(fHx) < A3”//7(f)(x) for
all x € &. Moreover, # is weak-type (1, 1) and bounded on L?(Z’) for
p € (1, oo]; see [2], [3] for more details.

As an application of Theorem 1.1, we obtain the Fefferman-Stein vector-
valued maximal function inequality first proved by [5] for Euclidean spaces;
see also [14].

THEOREM 1.2. Let J be the Hardy-Littlewood maximal operator. For p €
(1, 00) and g € (1, o), there exist positive constants Cy and Cg depending
only on & such that for all measurable functions { f;}en,

1/q _ 1/q
(1.12) ‘(Z[ﬂ(f,)]q) < CxC, (Zw)
jeN L1oo(&) jeN LY(&)
and
1/q 1/q
(1.13) ‘(Z[/Mf,-)]") < C#Cpg (Zw) ,
jeN Lr(Z) jeN LP(Z)

where C; = max{l, (g — 1)~'} and Cp g =max{p, (p — D~ max{1, (g —
D~ ifg € (1, 00); and if g = oo, C, and C, ;4 coincide with the norms of the
operator M : L'"(Z) — L"°(X) and M : LP(X) — LP(Z), respectively.

Theorems 1.1 and 1.2 are classical and well known in the Euclidean setting.
Their extension to spaces of homogeneous type is dictated by the wide range
of applications in which they appear; see for instance [13], [8], [9], [12] for
applications involving function spaces and [ 13] for an application in the context
of smooth manifolds with geometry given by a Carnot-Carathéodory metric
induced by a collection of vector fields of finite type.

One may give another proof of Theorem 1.2 using the weighted theory on
spaces of homogeneous type (see, for instance, [16]) and by a procedure as
in [5] (see also [14, Chapter II]). This was pointed out in [13] but neither that
proof nor the one in this paper has been previously published in this general
framework with careful verification of all the details involved, some of which
are rather delicate.
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The organization of the paper is as follows. In Section 2, we discuss a suit-
able adaptation of the Calderén-Zygmund decomposition on & to the vector-
valued setting and we prove Theorem 1.1 following [6, Section V.3] (see also
[7, pp. 326-327]). The proof of Theorem 1.2 is given in Section 3 and is also
based on the approach in [6, Section V.4].

We use the following notation: N = {1,2,...}, Z, = N U {0}, and for
p € [1, 0o], p’ is the unique element of [1, co] satisfying 1/p+1/p’ = 1. We
denote by C positive constants independent of the main parameters involved,
which may vary at different occurrences. Constants with subscripts do not
change through the whole paper. We use f < gand f = g todenote f < Cg
and f > Cg, respectively. If f < g < f, we then write f ~ g. For any
x € & and r > 0, denote w(B(x, r)) by V,(x).

2. Proof of Theorem 1.1

We begin with the following density lemma, parts of whose conclusions are
already known and others are easy. We omit the details; see, for example, [7,
pp- 320-321] or [4].

LEmMMA 2.1. For p € (0, 00), the set of functions with the form
m
D(x) =Y xg, (Nuj,
j=1

wherem € N, u; € B, {E; };”:1 are pairwise disjoint bounded subsets of &
and 0 < pu(E;j) < oo, is dense in LY (X, B). For p = oo, the set of functions
with the form ®(x) = Z;il XE;,(X)uj, where {u;}jen C B and {E;}jcn is a
partition of &, is dense in L°(Z, R).

REMARK 2.2. Denote by L;°(Z, %) the set of functions in L>(Z, %)
with bounded support. For p € (0, oo), Lemma 2.1 says that L”(Z) ® % is
dense in L”(Z’, %), which further implies that L;°(Z’, #) is also dense in
LY(Z, B).

Using Lemma 2.1 and arguing as in [4, pp. 97-98], we obtain the following

conclusions by leaving the details to the reader. By %* we denote the dual
space of A.

LEMMA 2.3. Let p € [1,00], p’ be the conjugate index of p, i.e., 1/p +
1/p' = 1 and let B be a Banach space. Then,

(a) forany F € LP(Z, B),

| Fllee 2, ) = sup
IGI

/ (Gx), F(x))du(x)|;
z

<
L @, 3= 1
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(b) forany G € L" (¥, B*),

/ (G), F()) dp()|.
Z

”G”L[’/ (ﬁﬂ’ %*) == Sup
NFllLr 2, =<1

REMARK 2.4. From Theorem 1 in [4, p. 98] and Example 1 in [4, p. 60],
it follows that in general, L? (%, %) C (L(Z, B))* for p € [1, 00). How-
ever, if % is reflexive and separable, then LY (X, B*) = (LP(ZL, B))* by
Corollary 4 in [4, p. 82] and Theorem 1 in [4, p. 98].

The following vector-valued version of the Marcinkiewicz interpolation
is essentially contained in [1, Lemma 1]. The formulation below keeps into
account the constants; the details of the proof are standard and omitted.

LEMMA 2.5. Let %81 and $> be Banach spaces. Let0 < py < p < p; < 00
ands € (0, 1) satisfy (1 —s)/po+s/p1 = 1/p. Suppose that T is a sublinear
operator, that is, it satisfies

IT(F 4 Gl < IT(F)llg, + 1T (G) |2,

forall F and G. Assume that T maps LP (2, %) to LPo: “g%, PB) with norm
Agand LP (X, B) to LP (X, B) withnorm A|. Then T maps L? (X, B,)

to LP(Z, %,) with norm at most2(p_pp0 + ﬁ)l/pAéﬂAi.

Using Lemma 2.1 and an adaptation of the proof of the classical Riesz-
Thorin interpolation theorem (see, for example, [7], [15]), we obtain the fol-
lowing result. The details are omitted.

LEMMA 2.6. Let By and B, be Banach spaces. Let 1 < pg, p1, qo, g1 < 00,
se,1),1/p=00-s)/po+s/prand1/q = (1—s)/qo+s/q:. Assume that
T is a bounded linear operator from LP: (L, By) to LY(Z, B>) with norm
A;, wherei = 1, 2. Then T is bounded from L?(Z, B,) to LI(Z, B,) with
norm at most Ay~* AS.

From Lemma 2.5 and Lemma 2.6, we deduce the following conclusion; see
[7, p. 43] for the scalar case.

COROLLARY 2.7. Let % and B, be Banach spaces. Let 1 < p <r < 00.
Suppose that T is a linear operator bounded from L' (X, %)) to L' *(Z, %)
with norm Ag and from L' (X, B,) to L' (X, B,) with norm A,. Then T is
bounded from LP (X, B,) to LP (X, B,) with norm at most 8 max {1, (p —

1p=l/r 1=1/p

1)_1}1/1)A01—1/r All—l/r‘

ProoF. Applying Lemma 2.5 and interpolating between LY (Z, %) and
L' (Z, %), we obtain the boundedness of T from LP*tV/>2(Z, B, to
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L@WtD2(Z, PB,). Then using Lemma 2.6 and interpolating between
LPtV2(x RB)) and L' (X, B,), we further obtain the boundedness of T
from LP(Z, %) to L? (2, %B,), which completes the proof of Corollary 2.7.

The Calderén-Zygmund decomposition in Coifman and Weiss [2] can be
generalized to functions in L' (%, 2) with bounded support as follows.

LEMMA 2.8. Let F € LY (Z,%) with bounded support and a >
| Flloz. )/ m(Z). Then there exist positive constants C, M depending only
on & and a sequence of metric balls { B(x;, r;)}; such that

(1) F(x) = g(x) + h(x), where h(x) = Zi h;(x) holds forall x € Z';
(ii) for almost every x € Z, |g(x)|lz < Cra;
(i) llglevz. 3 < CollFllev, 3y
(iv) foranyi, supph; C B(x;, r;) and Y, j/(B(xi, 17)) < CollFllpiw, /ot
(v) foranyi, f% hi(x)du(x) = 0p, where g denotes the zero element of
Vi) X Mhillevr.a) < C2llF L, »)
(vil) every point of & belongs to no more than M balls of { B(x;, r;)}i.

PrOOF. We only give a sketch of the proof. Given any o > 0, set
Qu=1{x €2 : M F(O)llz)(x) > A*6"a}.

Then the weak-(1, 1) property of ./ implies that 1(R2y) < [|FllLi 2.3/ <
oo. It is obvious that €2, is open. By [3, Lemma (3.9)], we know that €, is
bounded, i.e., 2, is contained in some ball of £ .

Thus, applying the Whitney covering lemma (see [2], [3]) yields a sequence
of balls {B(x;, r;)}; satisfying that: (1) @, = |, B(x;, r;); (2) every point
x € & belongs to no more than M balls of {B(x;, r;)};; (3) there exists a
constant C > 1 depending only on & such that { B(x;, C~'r;)}; are mutually
disjoint and B(x;, Cr;) N QE # () for any i, where and in what follows,
Ql =2\ Q,.

For any i, set B; = B(x;, r;) and

_ X, (x)
Z] XBj ('x) ’

where xp (x) = 1if x € B;,and = 0if x ¢ B;. Define

;i (x)

1
g(x) = F(x)xge(¥) + Y (m f F(y)mi(y) du(y)) X5, (x),
i i B,‘
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and for any given i,
1
hi(x) = F(om(x) — (— f FO ) du(y)> 25, ().
w(B;) B;

Notice that F(y)n;(y) is %-measurable and the integral fB. F(y)n(y)du(y)
makes sense, which imply that g and 4; are well defined. Properties (i) through
(vii) above can then be verified easily. This completes the proof of Lemma 2.8.

PrOOF OF THEOREM 1.1. Since L;°(Z’, %) is dense in LP (X, %) for
p € [1, 00) (see Remark 2.2), we only need to verify the theorem for F €
L (X, %1). We further assume that u(2°) < oo since the proof for the case
(&) = oo is similar and simple.

We first show the theorem for the case r < oo. Let us now prove the weak
estimate (1.10). If 0 < Ar‘lk < [|FllL1z. #,)/n(Z) (this happens only when
w(&) < 00), then

2.1) :u({x e : ||T(F)(x)||%2 > )»}) <uw(&) < Ar”F”Llﬂ‘

If A,‘lk > |Flloz, )/ m(Z), then applying Lemma 2.8 to F € Ly°(Z, %)
and A~ ') yields that

F(x) =g(x) +h(x) = g(x) + Y _ hi(x),
where g and £; satisfy Properties (i) through (vii) of Lemma 2.8 with constant
o replaced by A,‘l)». For any i, set B; = B(x;, 2r;). Notice that
w(lx € 2 ITF) @)z, > A))

<u(lx eZ: IT@OWlz > 1/2})
+u(lx e Z: ITW@) Nz, > 1/2))

2 , ~
= L@ +’“‘<U B/‘)

< 4
J
+M({x ¢\ JBi: T @)z, > A/z})
J

=7Z1+7Z,+7Z;.

T (&)lm

The boundedness of T from L (&, B1)to L' (L, B,) together with Lemma 2.8
(i1) and (iii) shows that

(2A,)" (2C)'A (2C)"A,

r
7 < gl . @) < WH&’HL'(%,%) < T”F”L‘(ﬂ”,%l)-

A
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By (1.2) and Lemma 2.8 (iv),

. A2"CHA,
Zy = A2' ) p(B(xj 1) < ———IIF Lz, -

J

Now we estimate Z3. Notice that Lemma 2.8 (v) and (1.6) imply that for any

x ¢ (U, Ej)7

IT (h)(x) ||, = [K (x,y) — K(x, x)]h; (») d ()

B()C,‘,rj) By

< Z/B( IR = Ko Iy, dn
j Xj, 1

< Z/ 1R e, v) = R )y I, dia(o).

B(x, r,
Thus,
Z;
<2 [ 1w, dud
~a B Y, 1)

A
| D

= ij /B » /u,. s VR = Rl Wi,

For any j, since x ¢ (U] Ej) implies that x ¢ B;, it follows that for any
y € B(xj,rj),d(x,x;) > 2rj > 2d(y, x;). Then by (1.8) and Lemma 2.8 (vi),

_2Cu 2C4C
Z/ 1,0l di ) < =1 Flluicz. .

B(x;j, r;)

Then combining (2.1) and the estimates of Z, through Z; yields (1.10) for the
case r < 0. _

By Corollary 2.7 and interpolating between T : L' (%, %) — L"*(Z, %,)
and T : L"(Z, B,) — L' (£, $B>), we then have that for p € (1, r), there
exists a constant Cg > 0 such that for all F € L?(Z, %),

22) NTF)llLr.m < Comax{l, (p — D)™ WCh + A F Lo, 3.

namely, (1.11) holds for p € (1, r).
We still need to verify (1.11) for p > r. From Ke> (.%’1, PB,), it follows
that its adjoint K*e ¥ (B3, PB7) has the same norm as K. Therefore, (1.9)
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for K is equivalent to (1.8) for K*. The boundedness of T from L'(Z, %)
to L"(Z’, %>) and Lemma 2.3 (b) together with Holder’s inequality show that
forany F € L" (¥, %3),

IT*(F)llp . )=  sup

IGllLr . 3,)=<1

< sup /29 IF )13 1T (G) ()|, d pa ()

Gl 2. 2)=<1

/% (T*(F)(x), G(x)) du(x)

= sup IFl L 2, a1 T (OlLr e, )

Gl 2, 2)<1

< Al Fll ., 2y

That is, T* is bounded from L" (&, B3) to L'(Z, PB7) with norm at most A,.
Repeating the proof above for (1.10), we obtain

IT*(F) o~ 3 < Co(Cu + ADIF i, 3p)-
Then using these bounds and interpolating yield that for any p € (1, r'),
23) T Oz, 3 < Comax{l, p = I}(Cu + ADNFllLr 2, 2)

since (p’ — 1)~' = p — 1. Hence, (2.3) and Lemma 2.3 (a) together with
Holder’s inequality give that for any p € (r, 00),

TP oy = s | [ (G Ty de
1G5, <1 1)
= sup ||T*(G)||L,,/(% %;)||F||LP(%, By)
Gl g, 5, <!

< Cgmax{l, p — 1}(Cy + A Fllrrz, 5)-

This estimate combined with (2.2) yields (1.11). Thus Theorem 1.1 holds when
r < oo.
Now we consider the case r = 00. Notice that if

0 <A =2AC|Flipvz, 3/ (L),

then in a way similar to the case r < 0o, we obtain (2.1) with A, replaced by
2A,C,. Otherwise, we apply Lemma 2.8 to F € Ly}*(Z, %) and
(2AxC2) 'A% > ||IFllpiz. %)/ 1(Z). Moreover, since for any x € &, the
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boundedness of T from L®°(&Z, By) to L>®°(X, B>) and Lemma 2.8 (ii) imply
that for all x € &,

IT (@)X lm, < Ascllg@®)llz, < 1/2.

we then have

n({x € £ NTEDNz, > 1)) < p({x € £ ITW®g, > 2/2}).

Then repeating the estimates above for Z, and Z5 yields (1.10), which together
with Corollary 2.7 further shows that (2.2) holds for any p € (1, co). This
finishes the proof of Theorem 1.1.

By Theorem 1.1 and an argument similar to the proof of [7, Proposi-
tion 4.6.4], we obtain the following conclusion, whose details are left to the
reader.

COROLLARY 2.9. Let p, g € (1, 00) and B, B> be Banach spaces. Sup-
pose that T given by (1.7) is a bounded linear operator from L% (&, B) to
LI(Z , Br) with norm A, > 0. Assume that K satisfies Hormander’s condi-
tions (1.8) and (1.9) for some Cy > 0. Then there exist positive constants C g,
Cy depending only on & such that for all $,-valued functions {Fj};en,

. 1/q
H (Z ||T<F,)||‘;32)

JEN

Ll.{)o(é/l” %2)

< Cy(Cy+A4Ay,)

(Z I ||‘;,31)1/q

jeN LY, B)
and
. 1/q
H (Z IIT(F,-)IIf%Z>
jeN LN, B) 1
q
< CoCp(Cy + Ay) (Z ||F,-||?%) »
Lr(Z, Br)

JjeN
where C,, = max{p, (p — 1)7'}.

3. Proof of Theorem 1.2

To prove the Fefferman-Stein vector-valued maximal function inequality, the
existence of the following approximation of the identity on spaces of homo-
geneous type, proved in [9, Theorem 2.1], plays a key role.
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LEMMA 3.1. There exist C3 > 1 and a sequence of bounded linear integral
operators {Si}rez on L*(Z) such that for allk € Zand all x, x', y and y' € Z,
Sk(x, ), the integral kernel of Sy is a measurable function from & x & into
RT satisfying

@) Si(x,y) =0ifd(x,y) > 2> and Sy(x.y) = G0y
(i) Si(x, y) = Se(y, x);

(i) |SkCr, )= S, )| < C32¥d(x, ¥) gty ford(x, ¥') < 237,

(V) [[Sk(x, ») = Sk e, Y] = [Sk(x's y) = Sp(x', y)]| < €322 pdpls
ford(x,x") < 2> and d(y,y') < 237,
W) [y SkCx, ) dp(x) =1;
(vi) C3Vo-r(x)Sk(x, x) > 1.
REMARK 3.2. From (iii) and (vi) above, we deduce that for any C4 €

(0, (C3)7?), there exists C5s > O such that forany k € Zand x, y € &
satisfying d(x, y) < C427%,

3.1) CsVpte (X)Se(x, y) > 1,

where Cs = C3/(1 — (C3)>Cy).

PrOOF OF THEOREM 1.2. If ¢ = oo, then (1.12) and (1.13) can be de-
duced directly from the fact sup;cy #(fj)(x) < M (sup;.y|f;1)(x) and the
boundedness of .#. Thus we only need to consider the case g < oco.

Let {Si}rez be as in Lemma 3.1. For f € Ll (Z), set

loc

AMo(f)(x) = sup |Se(f)(x)].

kez

Notice that for any x € &, by (1.2),

1
M = _— d
(fHx) fggM(B(X’r)) B(xqr)lf(y)l w(y)

~

[fDDldu(y),

u
kez Vot (X) Jpx, 2%

which together with (3.1) yields that for any x € &,

(3.2  MHX) = SUP/ ) Sk MW du(y) < Mo(| f1)(x).
B(x,27%)

kez
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We will obtain the claimed vector-valued inequality for “bigger” maximal
operator . For any given y,z € £ andy # z,setJ; = {k € Z:d(y,2) <
23=%}and J, = Z\ J;. Then we write,

/ sup |Se(x, ¥) — Sk (x, )| du(x)
d(x,y)>2d(y,z) kez
(3.3) SZ/ ISk(x, y) — Si(x, )| du(x)
rez Yd(x, y)=2d(y, 2)
= Zlk
kez

For each k € J,, by Lemma 3.1 (i) and the triangle inequality for the metric
d, we can deduce that I; = 0. For any k € Ji, set

Di={xeZ: dx,y)>2d(y, Z)}m (B(y, 22Ky UB(Z, 22—1<)) .

Thus when k € Jy, by the support condition of S; and the regularity of S,

I = / |Sk(x, y) — Sk(x, 2)|du(x)
Dy

2kd(y, 2) .
s di(x) < 24d(y, 2),
/;k Vot ()C) + Vox (y) M()C) (y Z)

which implies that ), 5 e = 1. Combining this with (3.3) yields that

(3.4) sup / sup | Sk(x, y) — Sk(x, 2)|dp(x) < 1.
v, 22 Jd(x,y)>2d(y,z) keZ

Set B, = C, B, = £ and view M as the linear operator f — {Si(f)}kez
that maps %’rvaluedﬁfunctions to %,-valued functions. Precisely, we define

a %r-valued kernel K (x, y) = {Sk(x, y)}rez and a %,-valued linear operator
Mo(f) = {Sk(f)}kez- Forany f € L®(Z) and x € Z,

ISk ()0 < / S, MIFDId(y) < I1f lle@).-

d(x, y)<22*

Therefore, /Zlo is bounded from LOO(%”, PB) to L=®(Z, %,). By (3.4) and the
symmetry of Si(x, y), we have that K satisfies Hormander’s conditions (1.8)
and (1.9). Then applying Theorem 1.1 yields that for any g € (1, 00),

1l (PllLscr. 2 < max{1, (g — DN FllLoce, -
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Furthermore, using Corollary 2.9, we obtain

1/q
H (Z Lo (£ 11 )

JjeN

L\ (%, B>)

< max{l, (g — 17"}

(Z ||fj||;,,)l/q

jeN

LUZ, $1)

and

CP’ q

’

Lr (X, B)

(Z I £; ||;;l)l/q

JjEN

H (Z L2ty ()11 )

JjeN

LP(Z, Bn)

where C,, , = max{p, (p — 1)"'} max{l, (¢ — 1)~'}. Combining this with
(3.2) and using the fact |4y (f;)(x) |3, = Ao(fj)(x), we deduce the desired
inequalities and complete the proof of Theorem 1.2.

REMARK 3.3. Letd be aquasi-metric, which means that there exists Ay > 1
such that for all x, y, z € &, d(x,y) < Ao(d(x,z) + d(z, y)). Recall that
Macias and Segovia [11, Theorem 2] proved that there exists an equivalent
quasi-metric d such that all balls corresponding to d are open in the topology
induced by d. , and there exist constants Aj > 0 and 6 € (0, 1) such that for all
x,y,2€,

d(x,2) —d(y, 2)| < Apd(x, y)’[d(x,2) +d(y, 2)]"™.

It is known that the approximation of the identity as in Lemma 3.1 also exists
for d; see [9]. Obviously, all results in this paper are invariant on equivalent
quasi-metrics. From these facts, we deduce that all conclusions of this paper
are still valid for quasi-metrics.
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