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VECTOR-VALUED SINGULAR INTEGRALS AND
MAXIMAL FUNCTIONS ON SPACES OF

HOMOGENEOUS TYPE

LOUKAS GRAFAKOS, LIGUANG LIU and DACHUN YANG∗

Abstract

The Fefferman-Stein vector-valued maximal function inequality is proved for spaces of homogen-
eous type. The approach taken here is based on the theory of vector-valued Calderón-Zygmund
singular integral theory in this context, which is appropriately developed.

1. Introduction

Let (X , d) be a metric space endowed with a regular Borel measure μ. Recall
that μ is said to be a regular Borel measure on X if μ is a nonnegative countably
subadditive set function defined on all subsets of X , open sets are measurable
and every set is contained in a Borel set with the same measure (see, for
example, [10]). We also assume that all balls defined by the metric d have finite
and positive measures on μ. For any x ∈ X and r > 0, set B(x, r) = {y ∈
X : d(x, y) < r}. The triple (X , d, μ) is called a space of homogeneous type
in the sense of Coifman and Weiss ([2], [3]) if the following doubling property
holds: there exists a constant C1 ≥ 1 such that for all x ∈ X and r > 0,

(1.1) μ(B(x, 2r)) ≤ C1μ(B(x, r)).

From (1.1), it is easy to deduce that there exist n > 0 and A ≥ 1 such that for
all x ∈ X , r > 0 and λ ≥ 1,

(1.2) μ(B(x, λr)) ≤ Aλnμ(B(x, r)).

The number n here in some sense measures the “dimension” of the space X .
Let B be a complex Banach space with norm ‖·‖B . Let B∗ be its dual space

with norm ‖ · ‖B∗ . A function F defined on a σ -finite measure space (X , μ)
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and taking values in B is called B-measurable if there exists a measurable
subset X0 of X such that μ(X \ X0) = 0 and F(X0) is contained in some
separable subspace B0 of B, and for every u∗ ∈ B∗, the complex valued map
x → 〈u∗, F (x)〉 is measurable. From this definition and the theorem in [17,
p. 131], it follows that the function x → ‖F(x)‖B on X is measurable.

For any p ∈ (0, ∞], define Lp(X , B) to be the space of all B-measurable
functions F on X satisfying ‖F‖Lp(X , B) < ∞, where

(1.3) ‖F‖Lp(X , B) =
{∫

X

‖F(x)‖p

B dμ(x)

}1/p

with a usual modification made when p = ∞. Similarly, define Lp, ∞(X , B)

to be the space of all B-measurable functions F on X satisfying ‖F‖Lp, ∞(X , B)

< ∞, where

(1.4) ‖F‖Lp, ∞(X , B) = sup
α>0

{
α

[
μ ({x ∈ X : ‖F(x)‖B > α})]1/p

}
.

Let p ∈ (0, ∞) and Lp(X ) ⊗ B be the set of all finite linear combinations
of elements of B with coefficients in Lp(X ), that is, elements of the form,

(1.5) F = f1u1 + · · · + fmum,

where m ∈ N, fj ∈ Lp(X ) and uj ∈ B for j ∈ {1, . . . , m}. Then the space
Lp(X )⊗B is dense in Lp(X , B); see, for example, [7] or Lemma 2.1 below.
Given F ∈ L1(X ) ⊗ B as in (1.5), we define its integral to be the following
element of B ∫

X

F(x) dμ(x) =
m∑

j=1

{∫
X

fj (x) dμ(x)

}
uj .

Therefore, for any F ∈ L1(X , B), the integral
∫

X
F(x) dμ(x), as a unique

extension of the integral of functions in L1(X )⊗B, is well defined; moreover,
it is not difficult to show that for any u∗ ∈ B∗,〈

u∗,
∫

X

F(x) dμ(x)

〉
=

∫
X

〈u∗, F (x)〉 dμ(x),

which further implies that

(1.6)

∥∥∥∥
∫

X

F(x) dμ(x)

∥∥∥∥
B

≤
∫

X

‖F(x)‖B dμ(x);

see, for example, [7] or [17] for more details.
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Now we turn to the vector-valued singular integrals. Let B1 and B2 be
Banach spaces. Consider a kernel �K defined on (X × X ) \  with  =
{(x, x) : x ∈ X }, where �K(x, y) is an element of L (B1, B2), the space of all
bounded linear operators from B1 to B2. The norm of �K(x, y) will be denoted
by ‖ �K(x, y)‖B1→B2 .

Assume that �K(x, y) is L (B1, B2)-measurable and locally integrable on
(X × X ) \  such that the integral

(1.7) �T (F )(x) =
∫

X

�K(x, y)F (y) dμ(y)

is well defined as an element of B2 for all F ∈ L∞(X , B1) with bounded
support and x /∈ supp F . Assume that the kernel �K satisfies Hörmander’s
conditions, i.e., there exists a positive constant CH such that for all y, z ∈ X ,

(1.8)

∫
d(x, y)>2d(y, z)

‖ �K(x, y) − �K(x, z)‖B1→B2 dμ(x) ≤ CH,

and for all x, w ∈ X ,

(1.9)

∫
d(x, y)>2d(x, w)

‖ �K(x, y) − �K(w, y)‖B1→B2 dμ(y) ≤ CH .

The main result concerning such singular integrals is the following:

Theorem 1.1. Let B1 and B2 be Banach spaces. Suppose that �T given by
(1.7) is a bounded linear operator from Lr(X , B1) to Lr(X , B2) for some r ∈
(1, ∞] with norm Ar > 0. Assume that �K satisfies Hörmander’s conditions
(1.8) and (1.9) for some CH > 0. Then �T has well defined extensions on
Lp(X , B1) for all p ∈ [1, ∞). Moreover, there exist positive constants CX

and C̃X depending only on X such that for all F ∈ L1(X , B1),

(1.10) ‖ �T (F )‖L1, ∞(X , B2) ≤ C̃X (CH + Ar)‖F‖L1(X , B1),

and whenever p ∈ (1, ∞), for all F ∈ Lp(X , B1),

(1.11) ‖ �T (F )‖Lp(X , B2) ≤ CX Cp(CH + Ar)‖F‖Lp(X , B1),

where Cp = max{p, (p − 1)−1}. When r = ∞, (1.11) holds with Cp =
max{1, (p − 1)−1}.

For any f ∈ L1
loc(X ) and x ∈ X , the Hardy-Littlewood maximal function

M(f ) is defined by

M(f )(x) = sup
B�x

1

μ(B)

∫
B

|f (y)| dμ(y),
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where the supremum is taken over all balls B containing x, and the central
Hardy-Littlewood maximal function M̃(f ) is defined by

M̃(f )(x) = sup
r>0

1

μ(B(x, r))

∫
B(x,r)

|f (y)| dμ(y).

Then it is easy to deduce that M̃(f )(x) ≤ M(f )(x) ≤ A3nM̃(f )(x) for
all x ∈ X . Moreover, M is weak-type (1, 1) and bounded on Lp(X ) for
p ∈ (1, ∞]; see [2], [3] for more details.

As an application of Theorem 1.1, we obtain the Fefferman-Stein vector-
valued maximal function inequality first proved by [5] for Euclidean spaces;
see also [14].

Theorem 1.2. Let M be the Hardy-Littlewood maximal operator. For p ∈
(1, ∞) and q ∈ (1, ∞], there exist positive constants CX and C̃X depending
only on X such that for all measurable functions {fj }j∈N,

(1.12)

∥∥∥∥
(∑

j∈N

[M(fj )]
q

)1/q∥∥∥∥
L1, ∞(X )

≤ C̃X Cq

∥∥∥∥
(∑

j∈N

|fj |q
)1/q∥∥∥∥

L1(X )

and

(1.13)

∥∥∥∥
(∑

j∈N

[M(fj )]
q

)1/q∥∥∥∥
Lp(X )

≤ CX Cp, q

∥∥∥∥
(∑

j∈N

|fj |q
)1/q∥∥∥∥

Lp(X )

,

where Cq = max{1, (q − 1)−1} and Cp, q = max{p, (p − 1)−1} max{1, (q −
1)−1} if q ∈ (1, ∞); and if q = ∞, Cq and Cp, q coincide with the norms of the
operator M : L1(X ) → L1, ∞(X ) and M : Lp(X ) → Lp(X ), respectively.

Theorems 1.1 and 1.2 are classical and well known in the Euclidean setting.
Their extension to spaces of homogeneous type is dictated by the wide range
of applications in which they appear; see for instance [13], [8], [9], [12] for
applications involving function spaces and [13] for an application in the context
of smooth manifolds with geometry given by a Carnot-Carathéodory metric
induced by a collection of vector fields of finite type.

One may give another proof of Theorem 1.2 using the weighted theory on
spaces of homogeneous type (see, for instance, [16]) and by a procedure as
in [5] (see also [14, Chapter II]). This was pointed out in [13] but neither that
proof nor the one in this paper has been previously published in this general
framework with careful verification of all the details involved, some of which
are rather delicate.
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The organization of the paper is as follows. In Section 2, we discuss a suit-
able adaptation of the Calderón-Zygmund decomposition on X to the vector-
valued setting and we prove Theorem 1.1 following [6, Section V.3] (see also
[7, pp. 326-327]). The proof of Theorem 1.2 is given in Section 3 and is also
based on the approach in [6, Section V.4].

We use the following notation: N = {1, 2, . . .}, Z+ = N ∪ {0}, and for
p ∈ [1, ∞], p′ is the unique element of [1, ∞] satisfying 1/p +1/p′ = 1. We
denote by C positive constants independent of the main parameters involved,
which may vary at different occurrences. Constants with subscripts do not
change through the whole paper. We use f <∼ g and f >∼ g to denote f ≤ Cg

and f ≥ Cg, respectively. If f <∼ g <∼ f , we then write f ∼ g. For any
x ∈ X and r > 0, denote μ(B(x, r)) by Vr(x).

2. Proof of Theorem 1.1

We begin with the following density lemma, parts of whose conclusions are
already known and others are easy. We omit the details; see, for example, [7,
pp. 320–321] or [4].

Lemma 2.1. For p ∈ (0, ∞), the set of functions with the form

�(x) =
m∑

j=1

χEj
(x)uj ,

where m ∈ N, uj ∈ B, {Ej }mj=1 are pairwise disjoint bounded subsets of X

and 0 < μ(Ej ) < ∞, is dense in Lp(X , B). For p = ∞, the set of functions
with the form �(x) = ∑∞

j=1 χEj
(x)uj , where {uj }j∈N ⊂ B and {Ej }j∈N is a

partition of X , is dense in L∞(X , B).

Remark 2.2. Denote by L∞
b (X , B) the set of functions in L∞(X , B)

with bounded support. For p ∈ (0, ∞), Lemma 2.1 says that Lp(X ) ⊗ B is
dense in Lp(X , B), which further implies that L∞

b (X , B) is also dense in
Lp(X , B).

Using Lemma 2.1 and arguing as in [4, pp. 97–98], we obtain the following
conclusions by leaving the details to the reader. By B∗ we denote the dual
space of B.

Lemma 2.3. Let p ∈ [1, ∞], p′ be the conjugate index of p, i.e., 1/p +
1/p′ = 1 and let B be a Banach space. Then,

(a) for any F ∈ Lp(X , B),

‖F‖Lp(X , B) = sup
‖G‖

Lp′
(X , B∗)

≤1

∣∣∣∣
∫

X

〈G(x), F (x)〉 dμ(x)

∣∣∣∣ ;
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(b) for any G ∈ Lp′
(X , B∗),

‖G‖Lp′
(X , B∗) = sup

‖F‖Lp(X , B)≤1

∣∣∣∣
∫

X

〈G(x), F (x)〉 dμ(x)

∣∣∣∣ .
Remark 2.4. From Theorem 1 in [4, p. 98] and Example 1 in [4, p. 60],

it follows that in general, Lp′
(X , B∗) � (Lp(X , B))∗ for p ∈ [1, ∞). How-

ever, if B is reflexive and separable, then Lp′
(X , B∗) = (Lp(X , B))∗ by

Corollary 4 in [4, p. 82] and Theorem 1 in [4, p. 98].

The following vector-valued version of the Marcinkiewicz interpolation
is essentially contained in [1, Lemma 1]. The formulation below keeps into
account the constants; the details of the proof are standard and omitted.

Lemma 2.5. Let B1 and B2 be Banach spaces. Let 0 < p0 < p < p1 ≤ ∞
and s ∈ (0, 1) satisfy (1− s)/p0 + s/p1 = 1/p. Suppose that �T is a sublinear
operator, that is, it satisfies

‖ �T (F + G)‖B2 ≤ ‖ �T (F )‖B2 + ‖ �T (G)‖B2

for all F and G. Assume that �T maps Lp0(X , B1) to Lp0, ∞(X , B2) with norm
A0 and Lp1(X , B1) to Lp1, ∞(X , B2) with norm A1. Then �T maps Lp(X , B1)

to Lp(X , B2) with norm at most 2
(

p

p−p0
+ p

p1−p

)1/p
A1−s

0 As
1.

Using Lemma 2.1 and an adaptation of the proof of the classical Riesz-
Thorin interpolation theorem (see, for example, [7], [15]), we obtain the fol-
lowing result. The details are omitted.

Lemma 2.6. Let B1 and B2 be Banach spaces. Let 1 ≤ p0, p1, q0, q1 ≤ ∞,
s ∈ (0, 1), 1/p = (1−s)/p0+s/p1 and 1/q = (1−s)/q0+s/q1. Assume that
�T is a bounded linear operator from Lpi (X , B1) to Lqi (X , B2) with norm
Ai , where i = 1, 2. Then �T is bounded from Lp(X , B1) to Lq(X , B2) with
norm at most A1−s

0 As
1.

From Lemma 2.5 and Lemma 2.6, we deduce the following conclusion; see
[7, p. 43] for the scalar case.

Corollary 2.7. Let B1 and B2 be Banach spaces. Let 1 < p < r ≤ ∞.
Suppose that �T is a linear operator bounded from L1(X , B1) to L1, ∞(X , B2)

with norm A0 and from Lr(X , B1) to Lr(X , B2) with norm A1. Then �T is
bounded from Lp(X , B1) to Lp(X , B2) with norm at most 8 max{1, (p −
1)−1}1/pA

1/p−1/r

1−1/r

0 A
1−1/p

1−1/r

1 .

Proof. Applying Lemma 2.5 and interpolating between L1(X , B1) and
Lr(X , B1), we obtain the boundedness of �T from L(p+1)/2(X , B1) to
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L(p+1)/2(X , B2). Then using Lemma 2.6 and interpolating between
L(p+1)/2(X , B1) and Lr(X , B1), we further obtain the boundedness of �T
from Lp(X , B1) to Lp(X , B2), which completes the proof of Corollary 2.7.

The Calderón-Zygmund decomposition in Coifman and Weiss [2] can be
generalized to functions in L1(X , B) with bounded support as follows.

Lemma 2.8. Let F ∈ L1(X , B) with bounded support and α >

‖F‖L1(X , B)/μ(X ). Then there exist positive constants C2, M depending only
on X and a sequence of metric balls {B(xi, ri)}i such that

(i) F(x) = g(x) + h(x), where h(x) = ∑
i hi(x) holds for all x ∈ X ;

(ii) for almost every x ∈ X , ‖g(x)‖B ≤ C2α;

(iii) ‖g‖L1(X , B) ≤ C2‖F‖L1(X , B);

(iv) for any i, supp hi ⊂ B(xi, ri) and
∑

i μ(B(xi, ri)) ≤ C2‖F‖L1(X , B)/α;

(v) for any i,
∫

X
hi(x) dμ(x) = θB , where θB denotes the zero element of

B;

(vi)
∑

i ‖hi‖L1(X ,B) ≤ C2‖F‖L1(X , B);

(vii) every point of X belongs to no more than M balls of {B(xi, ri)}i .
Proof. We only give a sketch of the proof. Given any α > 0, set

�α = {x ∈ X : M(‖F(·)‖B)(x) > A26nα}.
Then the weak-(1, 1) property of M implies that μ(�α) <∼ ‖F‖L1(X ,B)/α <

∞. It is obvious that �α is open. By [3, Lemma (3.9)], we know that �α is
bounded, i.e., �α is contained in some ball of X .

Thus, applying the Whitney covering lemma (see [2], [3]) yields a sequence
of balls {B(xi, ri)}i satisfying that: (1) �α = ⋃

i B(xi, ri); (2) every point
x ∈ X belongs to no more than M balls of {B(xi, ri)}i ; (3) there exists a
constant C > 1 depending only on X such that {B(xi, C

−1ri)}i are mutually
disjoint and B(xi, Cri) ∩ ��

α �= ∅ for any i, where and in what follows,
��

α = X \ �α .
For any i, set Bi = B(xi, ri) and

ηi(x) = χBi
(x)∑

j χBj
(x)

,

where χBi
(x) = 1 if x ∈ Bi , and = 0 if x /∈ Bi . Define

g(x) = F(x)χ��
α
(x) +

∑
i

(
1

μ(Bi)

∫
Bi

F (y)ηi(y) dμ(y)

)
χBi

(x),
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and for any given i,

hi(x) = F(x)ηi(x) −
(

1

μ(Bi)

∫
Bi

F (y)ηi(y) dμ(y)

)
χBi

(x).

Notice that F(y)ηi(y) is B-measurable and the integral
∫
Bi

F (y)ηi(y) dμ(y)

makes sense, which imply that g and hi are well defined. Properties (i) through
(vii) above can then be verified easily. This completes the proof of Lemma 2.8.

Proof of Theorem 1.1. Since L∞
b (X , B1) is dense in Lp(X , B1) for

p ∈ [1, ∞) (see Remark 2.2), we only need to verify the theorem for F ∈
L∞

b (X , B1). We further assume that μ(X ) < ∞ since the proof for the case
μ(X ) = ∞ is similar and simple.

We first show the theorem for the case r < ∞. Let us now prove the weak
estimate (1.10). If 0 < A−1

r λ ≤ ‖F‖L1(X , B1)/μ(X ) (this happens only when
μ(X ) < ∞), then

(2.1) μ
({x ∈ X : ‖ �T (F )(x)‖B2 > λ}) ≤ μ(X ) ≤ Ar

‖F‖L1(X , B1)

λ
.

If A−1
r λ > ‖F‖L1(X , B1)/μ(X ), then applying Lemma 2.8 to F ∈ L∞

b (X , B1)

and A−1
r λ yields that

F(x) = g(x) + h(x) = g(x) +
∑

i

hi(x),

where g and hi satisfy Properties (i) through (vii) of Lemma 2.8 with constant
α replaced by A−1

r λ. For any i, set B̃i = B(xi, 2ri). Notice that

μ
({x ∈ X : ‖ �T (F )(x)‖B2 > λ})

≤ μ
({x ∈ X : ‖ �T (g)(x)‖B2 > λ/2})
+ μ

({x ∈ X : ‖ �T (h)(x)‖B2 > λ/2})
≤ 2r

λr

∥∥‖ �T (g)‖B2

∥∥r

Lr (X )
+ μ

(⋃
j

B̃j

)

+ μ

({
x /∈

⋃
j

B̃j : ‖ �T (h)(x)‖B2 > λ/2

})

≡ Z1 + Z2 + Z3.

The boundedness of �T fromLr(X , B1) toLr(X , B2) together with Lemma 2.8
(ii) and (iii) shows that

Z1 ≤ (2Ar)
r

λr
‖g‖r

Lr (X , B1)
≤ (2C2)

rAr

C2λ
‖g‖L1(X , B1) ≤ (2C2)

rAr

λ
‖F‖L1(X , B1).
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By (1.2) and Lemma 2.8 (iv),

Z2 ≤ A2n
∑

j

μ(B(xj , rj )) ≤ A2nC2Ar

λ
‖F‖L1(X , B1).

Now we estimate Z3. Notice that Lemma 2.8 (v) and (1.6) imply that for any
x /∈ (

⋃
j B̃j ),

‖ �T (h)(x)‖B2 =
∥∥∥∥∑

j

∫
B(xj , rj )

[ �K(x, y) − �K(x, xj )
]
hj (y) dμ(y)

∥∥∥∥
B2

≤
∑

j

∫
B(xj , rj )

∥∥[ �K(x, y) − �K(x, xj )
]
hj (y)

∥∥
B2

dμ(y)

≤
∑

j

∫
B(xj , rj )

∥∥ �K(x, y) − �K(x, xj )
∥∥

B1→B2
‖hj (y)‖B1 dμ(y).

Thus,

Z3

≤ 2

λ

∫
(
⋃

j B̃j )�

∥∥ �T (h)(x)
∥∥

B2
dμ(x)

≤ 2

λ

∑
j

∫
B(xj , rj )

∫
(
⋃

j B̃j )�

∥∥ �K(x, y) − �K(x, xj )
∥∥

B1→B2
‖hj (y)‖B1dμ(x)dμ(y).

For any j , since x /∈ (⋃
j B̃j

)
implies that x /∈ B̃j , it follows that for any

y ∈ B(xj , rj ), d(x, xj ) ≥ 2rj > 2d(y, xj ). Then by (1.8) and Lemma 2.8 (vi),

Z3 ≤ 2CH

λ

∑
j

∫
B(xj , rj )

‖hj (y)‖B1 dμ(y) ≤ 2CHC2

λ
‖F‖L1(X , B1).

Then combining (2.1) and the estimates of Z1 through Z3 yields (1.10) for the
case r < ∞.

By Corollary 2.7 and interpolating between �T : L1(X, B1) → L1,∞(X, B2)

and �T : Lr(X , B1) → Lr(X , B2), we then have that for p ∈ (1, r), there
exists a constant CX > 0 such that for all F ∈ Lp(X , B1),

(2.2) ‖ �T (F )‖Lp(X , B2) ≤ CX max{1, (p − 1)−1}(CH + Ar)‖F‖Lp(X , B1),

namely, (1.11) holds for p ∈ (1, r).
We still need to verify (1.11) for p > r . From �K ∈ L (B1, B2), it follows

that its adjoint �K∗ ∈ L (B∗
2 , B∗

1 ) has the same norm as �K . Therefore, (1.9)
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for �K is equivalent to (1.8) for �K∗. The boundedness of �T from Lr(X , B1)

to Lr(X , B2) and Lemma 2.3 (b) together with Hölder’s inequality show that
for any F ∈ Lr ′

(X , B∗
2 ),

‖ �T ∗(F )‖Lr′ (X , B∗
1 ) = sup

‖G‖Lr (X , B1)≤1

∣∣∣∣
∫

X

〈 �T ∗(F )(x), G(x)〉 dμ(x)

∣∣∣∣
≤ sup

‖G‖Lr (X , B1)≤1

∫
X

‖F(x)‖B∗
2
‖ �T (G)(x)‖B2 dμ(x)

≤ sup
‖G‖Lr (X , B1)≤1

‖F‖Lr′ (X , B∗
2 )‖ �T (G)‖Lr (X , B2)

≤ Ar‖F‖Lr′ (X , B∗
2 ).

That is, �T ∗ is bounded from Lr ′
(X , B∗

2 ) to Lr ′
(X , B∗

1 ) with norm at most Ar .
Repeating the proof above for (1.10), we obtain

‖ �T ∗(F )‖L1, ∞(X , B∗
1 ) ≤ CX (CH + Ar)‖F‖L1(X , B∗

2 ).

Then using these bounds and interpolating yield that for any p ∈ (1, r ′),

(2.3) ‖ �T ∗(F )‖Lp′
(X , B∗

1 ) ≤ CX max{1, p − 1}(CH + Ar)‖F‖Lp′
(X , B∗

2 ),

since (p′ − 1)−1 = p − 1. Hence, (2.3) and Lemma 2.3 (a) together with
Hölder’s inequality give that for any p ∈ (r, ∞),

‖ �T (F )‖Lp(X , B2) = sup
‖G‖

Lp′
(X , B∗

2 )
≤1

∣∣∣∣
∫

X

〈G(x), �T (F )(x)〉 dμ(x)

∣∣∣∣
≤ sup

‖G‖
Lp′

(X , B∗
2 )

≤1
‖ �T ∗(G)‖Lp′

(X , B∗
1 )‖F‖Lp(X , B1)

≤ CX max{1, p − 1}(CH + Ar)‖F‖Lp(X , B1).

This estimate combined with (2.2) yields (1.11). Thus Theorem 1.1 holds when
r < ∞.

Now we consider the case r = ∞. Notice that if

0 < λ ≤ 2A∞C2‖F‖L1(X , B)/μ(X ),

then in a way similar to the case r < ∞, we obtain (2.1) with Ar replaced by
2A∞C2. Otherwise, we apply Lemma 2.8 to F ∈ L∞

b (X , B1) and
(2A∞C2)

−1λ > ‖F‖L1(X , B)/μ(X ). Moreover, since for any x ∈ X , the
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boundedness of �T from L∞(X , B1) to L∞(X , B2) and Lemma 2.8 (ii) imply
that for all x ∈ X ,

‖ �T (g)(x)‖B2 ≤ A∞‖g(x)‖B1 ≤ λ/2,

we then have

μ
({

x ∈ X : ‖ �T (F )(x)‖B2 > λ
}) ≤ μ

({
x ∈ X : ‖ �T (h)(x)‖B2 > λ/2

})
.

Then repeating the estimates above for Z2 and Z3 yields (1.10), which together
with Corollary 2.7 further shows that (2.2) holds for any p ∈ (1, ∞). This
finishes the proof of Theorem 1.1.

By Theorem 1.1 and an argument similar to the proof of [7, Proposi-
tion 4.6.4], we obtain the following conclusion, whose details are left to the
reader.

Corollary 2.9. Let p, q ∈ (1, ∞) and B1, B2 be Banach spaces. Sup-
pose that �T given by (1.7) is a bounded linear operator from Lq(X , B1) to
Lq(X , B2) with norm Aq > 0. Assume that �K satisfies Hörmander’s condi-
tions (1.8) and (1.9) for some CH > 0. Then there exist positive constants CX ,
C̃X depending only on X such that for all B1-valued functions {Fj }j∈N,∥∥∥∥
(∑

j∈N

‖ �T (Fj )‖q

B2

)1/q∥∥∥∥
L1, ∞(X , B2)

≤ C̃X (CH + Aq)

∥∥∥∥
(∑

j∈N

‖Fj‖q

B1

)1/q∥∥∥∥
L1(X , B1)

and∥∥∥∥
(∑

j∈N

‖ �T (Fj )‖q

B2

)1/q∥∥∥∥
Lp(X , B2)

≤ CX Cp(CH + Aq)

∥∥∥∥
(∑

j∈N

‖Fj‖q

B1

)1/q∥∥∥∥
Lp(X , B1)

,

where Cp = max{p, (p − 1)−1}.

3. Proof of Theorem 1.2

To prove the Fefferman-Stein vector-valued maximal function inequality, the
existence of the following approximation of the identity on spaces of homo-
geneous type, proved in [9, Theorem 2.1], plays a key role.
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Lemma 3.1. There exist C3 > 1 and a sequence of bounded linear integral
operators {Sk}k∈Z on L2(X ) such that for all k ∈ Z and all x, x ′, y and y ′ ∈ X ,
Sk(x, y), the integral kernel of Sk is a measurable function from X × X into
R+ satisfying

(i) Sk(x, y) = 0 if d(x, y) > 22−k and Sk(x, y) ≤ C3
1

V2−k (x)+V2−k (y)
;

(ii) Sk(x, y) = Sk(y, x);

(iii) |Sk(x, y)−Sk(x
′, y)| ≤ C32kd(x, x ′) 1

V2−k (x)+V2−k (y)
for d(x, x ′) ≤ 23−k;

(iv) |[Sk(x, y)−Sk(x, y ′)] − [Sk(x
′, y)−Sk(x

′, y ′)]| ≤ C322k d(x,x ′)d(y,y ′)
V2−k (x)+V2−k (y)

for d(x, x ′) ≤ 23−k and d(y, y ′) ≤ 23−k;

(v)
∫

X
Sk(x, y) dμ(x) = 1;

(vi) C3V2−k (x)Sk(x, x) ≥ 1.

Remark 3.2. From (iii) and (vi) above, we deduce that for any C4 ∈
(0, (C3)

−2), there exists C5 > 0 such that for any k ∈ Z and x, y ∈ X

satisfying d(x, y) < C42−k ,

(3.1) C5V2−k (x)Sk(x, y) > 1,

where C5 = C3/(1 − (C3)
2C4).

Proof of Theorem 1.2. If q = ∞, then (1.12) and (1.13) can be de-
duced directly from the fact supj∈N M(fj )(x) ≤ M(supj∈N |fj |)(x) and the
boundedness of M. Thus we only need to consider the case q < ∞.

Let {Sk}k∈Z be as in Lemma 3.1. For f ∈ L1
loc(X ), set

M0(f )(x) = sup
k∈Z

|Sk(f )(x)|.

Notice that for any x ∈ X , by (1.2),

M(f )(x) = sup
r>0

1

μ(B(x, r))

∫
B(x, r)

|f (y)| dμ(y)

∼ sup
k∈Z

1

V2−k (x)

∫
B(x, 2−k)

|f (y)| dμ(y),

which together with (3.1) yields that for any x ∈ X ,

(3.2) M(f )(x) <∼ sup
k∈Z

∫
B(x, 2−k)

Sk(x, y)|f (y)| dμ(y) <∼ M0(|f |)(x).
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We will obtain the claimed vector-valued inequality for “bigger” maximal
operator M0. For any given y, z ∈ X and y �= z, set J1 = {k ∈ Z : d(y, z) ≤
23−k} and J2 = Z \ J1. Then we write,

(3.3)

∫
d(x, y)≥2d(y, z)

sup
k∈Z

|Sk(x, y) − Sk(x, z)| dμ(x)

≤
∑
k∈Z

∫
d(x, y)≥2d(y, z)

|Sk(x, y) − Sk(x, z)| dμ(x)

≡
∑
k∈Z

Ik.

For each k ∈ J2, by Lemma 3.1 (i) and the triangle inequality for the metric
d, we can deduce that Ik = 0. For any k ∈ J1, set

Dk = {x ∈ X : d(x, y) ≥ 2d(y, z)}
⋂ (

B(y, 22−k)
⋃

B(z, 22−k)
)

.

Thus when k ∈ J1, by the support condition of Sk and the regularity of Sk ,

Ik =
∫

Dk

|Sk(x, y) − Sk(x, z)| dμ(x)

<∼
∫

Dk

2kd(y, z)

V2−k (x) + V2−k (y)
dμ(x) <∼ 2kd(y, z),

which implies that
∑

k∈J1
Ik <∼ 1. Combining this with (3.3) yields that

(3.4) sup
y, z∈X

∫
d(x, y)≥2d(y, z)

sup
k∈Z

|Sk(x, y) − Sk(x, z)| dμ(x) <∼ 1.

Set B1 = C, B2 = 
∞ and view M0 as the linear operator f → {Sk(f )}k∈Z

that maps B1-valued functions to B2-valued functions. Precisely, we define
a B2-valued kernel �K(x, y) = {Sk(x, y)}k∈Z and a B2-valued linear operator
�M0(f ) = {Sk(f )}k∈Z. For any f ∈ L∞(X ) and x ∈ X ,

|Sk(f )(x)| ≤
∫

d(x, y)≤22−k

Sk(x, y)|f (y)| dμ(y) <∼ ‖f ‖L∞(X ).

Therefore, �M0 is bounded from L∞(X , B1) to L∞(X , B2). By (3.4) and the
symmetry of Sk(x, y), we have that �K satisfies Hörmander’s conditions (1.8)
and (1.9). Then applying Theorem 1.1 yields that for any q ∈ (1, ∞),

‖ �M0(f )‖Lq(X , B2)
<∼ max{1, (q − 1)−1)}‖f ‖Lq(X , B1).
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Furthermore, using Corollary 2.9, we obtain∥∥∥∥
(∑

j∈N

‖ �M0(fj )‖q

B2

)1/q∥∥∥∥
L1, ∞(X , B2)

<∼ max{1, (q − 1)−1}
∥∥∥∥
(∑

j∈N

‖fj‖q

B1

)1/q∥∥∥∥
L1(X , B1)

and∥∥∥∥
(∑

j∈N

‖ �M0(fj )‖q

B2

)1/q∥∥∥∥
Lp(X , B2)

<∼ Cp, q

∥∥∥∥
(∑

j∈N

‖fj‖q

B1

)1/q∥∥∥∥
Lp(X , B1)

,

where Cp, q = max{p, (p − 1)−1} max{1, (q − 1)−1}. Combining this with
(3.2) and using the fact ‖ �M0(fj )(x)‖B2 = M0(fj )(x), we deduce the desired
inequalities and complete the proof of Theorem 1.2.

Remark 3.3. Let d be a quasi-metric, which means that there exists A0 ≥ 1
such that for all x, y, z ∈ X , d(x, y) ≤ A0(d(x, z) + d(z, y)). Recall that
Macías and Segovia [11, Theorem 2] proved that there exists an equivalent
quasi-metric d̃ such that all balls corresponding to d̃ are open in the topology
induced by d̃, and there exist constants A′

0 > 0 and θ ∈ (0, 1) such that for all
x, y, z ∈ X ,

|d̃(x, z) − d̃(y, z)| ≤ A′
0d̃(x, y)θ [d̃(x, z) + d̃(y, z)]1−θ .

It is known that the approximation of the identity as in Lemma 3.1 also exists
for d̃; see [9]. Obviously, all results in this paper are invariant on equivalent
quasi-metrics. From these facts, we deduce that all conclusions of this paper
are still valid for quasi-metrics.
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