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COMPOSITION OPERATORS ON SOME
HOLOMORPHIC BANACH

FUNCTION SPACES

A. EL-SAYED AHMED and M. A. BAKHIT

Abstract

In this paper, we study composition operators on some Möbius invariant Banach function spaces
like Bloch and F(p, q, s) spaces. We give a Carleson measure characterization on F(p, q, s)

spaces, then we use this Carleson measure characterization of the compact compositions on
F(p, q, s) spaces to show that every compact composition operator on F(p, q, s) spaces is com-
pact on a Bloch space. Also, we give conditions to clarify when the converse holds.

1. Introduction

Let φ be an analytic self-map of the unit disk � = {z : |z| < 1} in the complex
plane C and let dA(z) be the Euclidean area element on �. Associated with φ,
the composition operator Cφ is defined by

Cφf = f ◦ φ,

for f analytic on �. It maps analytic functions f to analytic functions. The
problem of boundedness and compactness of Cφ has been studied in many
function spaces. The first setting was in the Hardy space H 2, the space of
functions analytic on � (see [21]). Madigan and Matheson (see [15]) gave a
characterization of the compact composition operators on the Bloch space B.
Tjani (see [27]) gave a Carleson measure characterization of compact operators
Cφ on Besov spaces Bp (1 < p < ∞). Bourdon, Cima and Matheson in [7]
and Smith in [22] investigated the same problem on BMOA. Li and Wulan in
[11] gave a characterization of compact operators Cφ on QK and F(p, q, s)

spaces. In this paper we study compact composition operators on the spaces
F(p, q, s), we will define and discuss properties of these spaces, then we give
a Carleson measure characterization of the compact composition operator Cφ

on F(p, q, s) spaces, see Section 2.
In Section 3, we give another characterization of the compact composition

operator on F(p, q, s) spaces.

Received July 17, 2007.
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For a ∈ � the Möbius transformations ϕa(z) is defined by

ϕa(z) = a − z

1 − āz
, for z ∈ �.

The following identity is easily verified:

(1) 1 − |ϕa(z)|2 = (1 − |a|2)(1 − |z|2)
|1 − āz|2 = (1 − |z|2)|ϕ′

a(z)|.

Note thatϕa(ϕa(z)) = z and thusϕ−1
a (z) = ϕa(z). Fora, z ∈ � and 0 < r < 1,

the pseudo-hyperbolic disc �(a, r) is defined by �(a, r) = {z ∈ � : |ϕa(z)| <

r}. Denote by

g(z, a) = log

∣∣∣∣1 − āz

z − a

∣∣∣∣ = log
1

|ϕa(z)|
the Green function of � with logarithmic singularity at a ∈ �.

Definition 1.1 ([30]). Let f be an analytic function on � and let 0 <

α < ∞. If
‖f ‖Bα = sup

z∈�

(1 − |z|2)α|f ′(z)| < ∞,

then f belongs to the α-Bloch space Bα . The space B1 is called the Bloch
space B.

Definition 1.2 ([23], [24]). Let f be an analytic function on � and let
1 < p < ∞. If

‖f ‖p

Bp
= sup

z∈�

∫
�

|f ′(z)|p(1 − |z|2)p−2 dA(z) < ∞,

then f belongs to the Besov space Bp.

Definition 1.3 ([6], [14], [31]). Let f be an analytic function on � and
let 0 < p < ∞. If ∫

�

|f (z)|p dA(z) < ∞,

then f belongs to the Bergman space L
p
a .

Definition 1.4 ([21]). Let f be an analytic function on � and let 0 <

p < ∞. If

‖f ‖p
p = sup

0<r<1

1

2π

∫ 2π

0

∣∣f (reiθ )
∣∣p dθ < ∞,
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then f belongs to the Hardy space Hp. If ‖f ‖∞ = supz∈� |f (z)| < ∞, then
f belongs to the Hardy space H∞. Moreover, f ∈ H 2 if and only if

sup
z∈�

∫
�

|f ′(z)|2(1 − |z|2) dA(z) < ∞.

Definition 1.5 ([14]). Let f (z) = ∑∞
k=0 akz

k be an analytic function on
� and let −1 < q < ∞. If

‖f ‖2
Dq

=
∞∑

n=1

n1−q |an|2 < ∞,

then f belongs to the Dirichlet space Dq . It is easy to see that f ∈ Dq if and
only if

sup
z∈�

∫
�

|f ′(z)|2(1 − |z|2)q dA(z) < ∞.

In [29] Zhao gave the following definition:

Definition 1.6. Let f be an analytic function on � and let 0 < p < ∞,
−2 < q < ∞ and 0 < s < ∞. If

‖f ‖p

F(p,q,s) = sup
a∈�

∫
�

|f ′(z)|p(1 − |z|2)qgs(z, a) dA(z) < ∞,

then f ∈ F(p, q, s). Moreover, if

lim|a|→1

∫
�

|f ′(z)|p(1 − |z|2)qgs(z, a) dA(z) = 0,

then f ∈ F0(p, q, s).

The spaces F(p, q, s) were intensively studied by Zhao in [29] and Rättyä
in [18]. It is known from ([29], Theorem 2.10) that, for p ≥ 1, the spaces
F(p, q, s) are Banach spaces under the norm

‖f ‖ = ‖f ‖F(p,q,s) + |f (0)|.
Moreover, it is known that in Definition 1.6 the Green function g(z, a) can
be replaced by the weight function 1 − |ϕa(z)|2 and that for q + s ≤ −1 the
spaces F(p, q, s) and F0(p, q, s) both reduce to the space of constant functions
(see [29], Theorem 2.4 and Proposition 2.12). It is sometimes convenient to
replace the parameter q by p − 2 and consider the spaces F(p, p − 2, s) and
F0(p, p − 2, s) instead of the spaces F(p, q, s) and F0(p, q, s) (see [18]). If
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q = p −2 and s = 0, we denote F(p, p −2, 0) = F0(p, p −2, 0) = Bp. The
Besov-spaces have been studied by many authors, for example in [1], [2], [25],
[26], [31] and [32]. If p = 2 the spaces F(2, 0, s) and F0(2, 0, s) are denoted
by Qs and Qs,0. The spaces Qs and Qs,0 were introduced by Aulaskari et al.
(see [3] and [4] respectively).

Zhao in ([29], Proposition 4.3) showed that all F(p, q, s) are q+2
p

-Möbius
invariant spaces. The same author [29] collected the following immediate re-
lations of F(p, q, s) and F0(p, q, s) (see also [13]):

(1) F(p, q, s) = B(q+2)/p and F0(p, q, s) = B
(q+2)/p

0 , for s > 1.

(2) F(2, 0, s) = Qs , F0(2, 0, s) = Qs,0 and then an analytic function f :
� → C defined on the unit disk � belongs to the spaces F(p, q, s) if

‖f ‖p

F(p,q,s) = sup
a∈�

∫
�

|f ′(z)|p(1 − |z|2)qgs(z, a) dA(z) < ∞,

where g(z, a) = log 1
|ϕa(z)| is the Green function of � with logarithmic

singularity at a ∈ �.

(3) F(2, 1, 0) = H 2.

(4) F(p, p, 0) = L
p
a , for 1 ≤ p < ∞ (see [31], Theorem 4.2.9).

(5) F(2, q, 0) = Dq , for −1 < q < ∞.

(6) F(p, p − 2, 0) = Bp, for 1 < p < ∞.

The following theorem is useful for our study (see [30]):

Theorem 1.1. Let 0 < α < ∞, 0 < r < 1, 0 < p < ∞ and 1 < s < ∞.
Then, for an analytic function f in �, the following quantities are equivalent:

(A) ‖f ‖Bα

(B) sup
a∈�

1

|�(a, r)|1− pα

2

∫
�(a,r)

|f ′(z)|p dA(z),

(C) sup
a∈�

∫
�(a,r)

|f ′(z)|p(1 − |z|2)pα−2 dA(z),

(D) sup
a∈�

∫
�(a,r)

|f ′(z)|p(1 − |z|2)pα−2(1 − |ϕa(z)|2)s dA(z),

(E) sup
a∈�

∫
�(a,r)

|f ′(z)|p(1 − |z|2)pα−2gs(z, a) dA(z),

(F) sup
a∈�

∫
�(a,r)

|f ′(z)|p
(

log
1

|z|
)pα

|ϕ′
a(z)|2 dA(z).
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We will need the following lemma:

Lemma 1.1 (see [27]). Let X, Y be two Banach spaces of analytic functions
on �. Suppose

(i) the point evaluation functionals on X are continuous,

(ii) the closed unit ball of X is a compact subset of X in the topology of
uniform convergence on compact sets,

(iii) T : X → Y is continuous when X and Y are given the topology of
uniform convergence on compact sets.

Then T is a compact operator if and only if given a bounded sequence (fn)

in X such that fn → 0 uniformly on compact sets, then the sequence (Tfn)

converges to zero in the norm of Y .

Proof. This Lemma is proved by Tjani in [27].

Recall that a linear operator T : X → Y is said to be compact if it takes
bounded sets in X to sets in Y which have compact closure. For Banach spaces
X and Y of the space of all analytic functions H(�), we say that T is compact
from X to Y if and only if for each bounded sequence {xn} in X, the sequence
{T xn} ∈ Y contains a subsequence converging to some limit in Y .

2. Carleson measures and compact composition operators

Shapiro solved the compactness problem for composition operators on Hardy
spaces in [21] using the Nevanlinna counting function Nφ(w) = ∑

φ(z)=w

− log |z|.
Madigan and Matheson characterize compact composition operators in the
Bloch space (see [15]). Tjani characterized the compact composition operators
on Besov spaces in [27] using the Nevanlinna type counting function for the
p-Besov space Bp is

Np(w, φ) =
∑

φ(z)=w

{|φ′(z)|(1 − |z|2)}p−2
for w ∈ �, p > 1.

In [11] Li and Wulan gave a modification of the Nevanlinna type counting
function and they used it to characterize the compact composition operators
on F(p, q, s) as follows:

Definition 2.1 (see [11]). The counting function for the F(p, q, s) spaces
is

(2) Np,q,s,φ(w) =
∑

φ(z)=w

{|φ′(z)|p−2(1 − |z|2)qgs(z, a)
}
,
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for w ∈ φ(�), 2 ≤ p < ∞, −2 < q < ∞ and 0 < s < ∞.

The above counting functions come up in the change of variables formula
in the respective spaces as follows: For f ∈ F(p, q, s), 2 ≤ p < ∞, −2 <

q < ∞, 0 < s < ∞ and q + s > −1,

‖Cφf ‖p

F(p,q,s) = sup
a∈�

∫
�

|(f ◦ φ)′(z)|p(1 − |z|2)qgs(z, a) dA(z)

= sup
a∈�

∫
�

|f ′(φ(z))|p|φ′(z)|p(1 − |z|2)qgs(z, a) dA(z).

By making a non-univalent change of variables as in [21], we see that

(3) ‖Cφf ‖p

F(p,q,s) = sup
a∈�

∫
�

|f ′(w)|pNp,q,s,φ(w) dA(w).

Now we consider the restriction of Cφ to F(p, q, s). Then Cφ is a bounded
operator if and only if there is a positive constant K such that

(4) ‖Cφf ‖p

F(p,q,s) ≤ K‖f ‖p

F(p,q,s)

for all f ∈ F(p, q, s) or, equivalently by (3),

sup
a∈�

∫
�

|f ′(w)|pNp,q,s,φ(w) dA(w) ≤ K‖f ‖p

F(p,q,s)

for all f ∈ F(p, q, s).
Now, let 0 < h < 1, 0 ≤ θ < 2π , and let

�(h, θ) = {reit : 1 − h < r < 1 and |t − θ | < h},
S(h, θ) = {reit : |reit − reiθ | < h}.

A positive measure μ on � is a Carleson measure if there is a constant A with

μ(S(h, θ)) ≤ Ah, where 0 < h < 1 and 0 ≤ θ < 2π.

Here, we shall show that the measures which obey a “generalized" Carleson
condition, play a role in understanding which analytic functions φ mapping
� into � produce bounded composition operators on certain Möbius invariant
spaces X = (F (p, q, s) or X = B).

This leads, as in [1], to the following definition of generalized Carleson type
measures. Since we are interested in characterizing the compact composition
operators, we will also talk about vanishing Carleson measures.
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Definition 2.2. Let μ be a positive measure on �, and let X = B or
F(p, q, s) for 0 < p < ∞, −2 < q < ∞ and 0 < s < ∞. Then μ is an
(X, p)-Carleson measure if there is a constant A > 0 so that

∫
�

|f ′(w)|p dμ(w) ≤ A‖f ‖p

X,

for all f ∈ X, holds.

Definition 2.3. For 1 < p < ∞, μ is called a vanishing p-Carleson
measure if

lim
h→0

sup
θ∈[0,2π)

μ(S(h, θ))

hp
= 0.

In view of (4) above we see that Cφ is a bounded operator on F(p, q, s)

if and only if the measure Np,q,s,φ(w)dA(w) is a (F (p, q, s), p)-Carleson
measure. Now we give a characterization of compact composition operators
on F(p, q, s) spaces in terms of p-Carleson measures.

Theorem 2.1. Let 0 < p < ∞ and 1 < s < ∞. The following are
equivalent:

(i) μ is a (F (p, p − 2, s), p)-Carleson measure,

(ii) there is a constant A such that μ(S(h, θ)) ≤ Ahp for all h ∈ (0, 1) and
all θ ∈ [0, 2π),

(iii) there is a constant C such that

sup
a∈�

∫
�

|ϕ′
a(z)|p dμ(z) ≤ C for all a ∈ �.

Proof. Suppose (i) holds. Then using Theorem 1.1 and Definition 2.2, we
obtain ∫

�

|f ′(z)|p dμ(z) ≤ C

∫
�

|f ′(z)|p(1 − |z|2)p−2gs(z, a) dA(z),

for all f ∈ F(p, p − 2, s). In particular this holds for f (z) = ϕa(z) = a−z
1−āz

.
Hence

sup
a∈�

∫
�

|ϕ′
a(z)|p dμ(z) ≤ C sup

a∈�

∫
�

|ϕ′
a(z)|p(1 − |z|2)p−2gs(z, a) dA(z)

≤ C‖ϕa‖p

F(p,p−2, s) ≤ C const.,
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for all a ∈ �. This gives (iii). The equivalence of (ii) and (iii) was given by
Arazy, Fisher and Peetre in ([1] Theorem 13). Suppose now that (ii) holds; we
shall show that (i) is true, thus completing the implications. For z = reiθ , let

E1(z) =
{
w : |w − z| <

1 − |z|
2

}
and E2(z) =

{
w : |w − z| < 1 − |z|

}
.

Then
E1(z) ⊆ E2(z) ⊆ S(2(1 − |z|), θ).

Further, if w ∈ E1(z), then

1

2
≤ 1 − |w|

1 − |z| ≤ 3

2
.

Let f ∈ F(p, q, s); because f is analytic we have

f ′(z) = 4

π(1 − |z|)2

∫
E1(z)

f ′(w) dA(w).

Therefore by Jensen’s inequality (see [20]),

|f ′(z)|p ≤ 4

π(1 − |z|)2

∫
E1(z)

|f ′(w)|p dA(w).

Thus,∫
�

|f ′(z)|p dμ(z) ≤
∫

�

4

π(1 − |z|)2

(∫
E1(z)

|f ′(w)|p dA(w)

)
dμ(z)

≤ 4

π

∫
�

(∫
E1(z)

|f ′(w)|p
(

3

2(1 − |w|)
)2

dA(w)

)
dμ(z)

≤ 9

π

∫
�

∫
�

|f ′(w)|pχE1(z)(w)(1 − |w|)−2 dA(w) dμ(z)

≤ 9

π

∫
�

|f ′(w)|p(1 − |w|)−2
∫

�

χE1(z)(w) dμ(z) dA(w).

However, χE1(z)(w) ≤ χS(2(1−|z|),θ)(w), z = |z|eiθ , since w ∈ E1(z) implies
that |w − eiθ | < 2(1 − |w|).
Now applying (ii) we have∫

�

χE1(z) dμ(z) ≤ μ(S(2(1 − |w|), θ)) ≤ A2p(1 − |w|)p.
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Therefore,∫
�

|f ′(z)|p dμ(z) ≤ 9

π
A2p

∫
�

|f ′(w)|p(1 − |w|)p−2 dA(w)

≤ C

∫
�

|f ′(w)|p(1 − |w|)p−2 dA(w),

where C is a constant. By Theorem 1.1 the quantities (C) and (E) are equivalent
so, for α = 1, we have∫

�

|f ′(z)|p dμ(z) ≤ C

∫
�

|f ′(w)|p(1 − |w|)p−2gs(z, a) dA(w)

≤ C‖f ‖F(p,p−2,s),

which is (i). This finishes the proof.

Hence, Theorem 2.1 yields:

Theorem 2.2. Let φ be an analytic function on �, 0 < p < ∞, and
1 < s < ∞. Then Cφ is a bounded operator on F(p, p − 2, s) if and only if

sup
a∈�

‖Cφ ϕa‖F(p,p−2,s) < ∞.

The following proposition comes from ([5], Lemma 2.1):

Proposition 2.1. For 0 < p < ∞, a positive measure μ on � is a bounded
p-Carleson measure if and only if

sup
a∈�

∫
�

|ϕ′
a(z)|p dμ(z) < ∞;

μ is a compact p-Carleson measure if and only if

lim|a|→1

∫
�

|ϕ′
a(z)|p dμ(z) = 0.

Arazy, Fisher, and Peetre in [1], Cima and Wogen in [8], Tjani in [27] gave
the characterization of the p-Carleson measure on Besov spaces.

We will prove the following lemmas on F(p, q, s) spaces:

Lemma 2.1. Let X = F(p, q, s) where 2 ≤ p < ∞, 0 < q < ∞,
0 < s < ∞. Then

(i) Every bounded sequence (fn) ⊂ X is uniformly bounded on compact
sets.
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(ii) For any sequence (fn) on X such that ‖fn‖X → 0, fn − fn(0) → 0
uniformly on compact sets.

Proof. In [29] it is shown for α = (q + 2)/p that,

‖f ‖Bα ≤ M(p, q, s)‖f ‖F(p,q,s),

where M(p, q, s) is a constant depending on p, q and s. If z ∈ �(0, r),
0 < r < 1, then we have

|fn − fn(0)| =
∣∣∣∣
∫ 1

0
f ′

n(zt)z dt

∣∣∣∣ ≤ ‖fn‖Bα

∫ 1

0

|z| dt

(1 − |z|2t2)α

≤ ‖fn‖Bα

1

(1 − |r|2)α

≤ ‖fn‖F(p,q,s) M(p, q, s)
1

(1 − |r|2)α .

Hence the result follows.

Lemma 2.2. Let X, Y = F(p, q, s) (2 ≤ p < ∞, 0 < q < ∞, 0 <

s < ∞) or B. Then Cφ : X → Y is a compact operator if and only if for
any bounded sequence (fn) ⊂ X with fn → 0 uniformly on compact sets as
n → ∞, ‖Cφfn‖Y → 0 as n → ∞.

Proof. We will show that (i), (ii), and (iii) of Lemma 1.1 hold for our
spaces. By Lemma 2.1 it is easy to see that (i) and (iii) hold. To show that (ii)
holds, let (fn) be a sequence in the closed unit ball of X. Then by Lemma 2.1,
(fn) is uniformly bounded on compact sets. Therefore, by Montel’s theorem
(see [9]), there is a subsequence (fnk

), n1 < n2 < · · ·, such that fnk
→ h

uniformly on compact sets, for some h ∈ H(�). Thus we only need to show
that h ∈ X.

(a) If X = F(p, q, s), (2 ≤ p < ∞, −2 < q < ∞, 0 < s < ∞), then∫
�

|h′(z)|p(1 − |z|2)qgs(z, a) dA(z)

=
∫

�

lim
k→∞ |f ′

nk
(z)|p(1 − |z|2)qgs(z, a) dA(z)

≤ lim inf
k→∞

∫
�

|f ′
nk

(z)|p(1 − |z|2)qgs(z, a) dA(z),

= lim inf
k→∞ ‖fnk

‖p

F(p,q,s) < ∞,

where we used Fatou’s theorem and our hypothesis.
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(b) If X = B as in [27] we have that

|h′(z)|(1 − |z|2) = lim
k→∞ |f ′

nk
(z)|(1 − |z|2) ≤ lim

k→∞ ‖f ′
nk

‖B < ∞,

this by our hypothesis. Therefore, Lemma 2.1 yields that Cφ : X → Y is a
compact operator if and only if for any bounded sequence (fn) ⊂ X, with
fn → 0 uniformly on compact sets as n → ∞, |fn(φ(0))| + ‖Cφfn‖Y → 0,
as n → ∞, which is clearly equivalent to the statement of this lemma. This
completes the proof of the lemma.

We prove a similar theorem for compact composition operators on F(p,q,s)

spaces.

Theorem 2.3. Let 2 ≤ p < p∗ < ∞, −2 < q < ∞, 0 < s < ∞. Then
the following are equivalent:

(i) Cφ : F(p, q, s) → F(p∗, q, s) is a compact operator.

(ii) Np∗,q,s,φ(w) dA(w) is a vanishing p-Carleson measure.

(iii) ‖Cφϕa‖F(p∗,q,s) → 0 as |a| → 1.

Proof. By (3)

‖Cφϕa‖p∗
F(p∗,q,s) = sup

a∈�

∫
�

|ϕ′
a(w)|p∗

Np∗,q,s,φ(w) dA(w)

Thus Proposition 2.1 yields (ii)⇔(iii). Next we show that (i)⇒(iii).
We assume that Cφ : F(p, q, s) → F(p∗, q, s) is a compact operator. Note

that {ϕa : a ∈ �} is a bounded set in F(p, q, s). Since

‖ϕa‖F(p,q,s) = ‖z ◦ ϕa‖F(p,q,s),

the norm of ϕa in F(p, q, s) is

|ϕa(0)| + ‖ϕa‖F(p,q,s) < 1 + ‖ϕa‖F(p,q,s) < ∞.

Also (ϕa − a) → 0 as |a| → 1, uniformly on compact sets, since

|ϕa − a| = |z| 1 − |a|2
|1 − āz| , where |z| = r < 1.

Hence by Lemma 2.2, we obtain that

‖Cφ(ϕa − a)‖F(p∗,q,s) → 0, as |a| → 1.
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Finally, let us show that (ii)⇒(i). Let (fn) be a bounded sequence in F(p, q, s)

that converges to 0 uniformly on compact sets. Then the mean value property
for the analytic function f ′

n yields that

(5) f ′
n(w) = 4

π(1 − |w|)2

∫
|w−z|< 1−|w|

2

|f ′
n(z)| dA(z).

Therefore by Jensen’s inequality (see [20], Theorem 3.3) and (5), where

E1(w) =
{
z : |w − z| <

1 − |w|
2

}
,

(6) |f ′
n(w)|p∗ ≤ 4

π(1 − |w|)2

∫
E1(w)

|f ′
n(z)|p

∗
dA(z).

Then by (6) and Fubini’s Theorem (see [20], Theorem 8.8),

‖Cφfn‖p∗
F(p∗,q,s)

= sup
a∈�

∫
�

|f ′
n(w)|p∗

Np∗,q,s,φ(w) dA(w)

≤ sup
a∈�

∫
�

4

π(1 − |w|)2

(∫
E1(w)

|f ′
n(z)|p

∗
dA(z)

)
Np∗,q,s,φ(w) dA(w).

Then,

(7) ‖Cφfn‖p∗
F(p∗,q,s)

≤ 4

π
sup
a∈�

∫
�

|f ′
n(z)|p

∗
(∫

�

1

(1 − |w|)2
χE1(w)(z)Np∗,q,s,φ(w) dA(w)

)
dA(z),

Note that if |w − z| <
1−|w|

2 , then w ∈ S(2(1 − |z|), θ), where z = |z|eiθ ,
since

|w − eiθ | ≤ |z − w| + |eiθ − z| <
1 − |w|

2
+

∣∣∣∣ z

|z| − z

∣∣∣∣ < 2(1 − |z|).

Moreover, if |w − z| <
1−|w|

2 , then 1
(1−|w|)2 < const. 1

(1−|z|)2 . Therefore, (5)
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yields

‖Cφfn‖p∗
F(p∗,q,s)

≤ const. sup
a∈�

∫
�

|f ′
n(z)|p∗

(1 − |z|)2

(∫
S(2(1−|z|),θ)

Np∗,q,s,φ(w) dA(w)

)
dA(z)

= const. sup
a∈�

(∫
|z|>1− δ

2

+
∫

|z|≤1− δ
2

|f ′
n(z)|p∗

(1 − |z|)2

(∫
S(2(1−|z|),θ)

Np∗,q,s,φ(w) dA(w)

)
dA(z)

)

= const. sup
a∈�

(I + II),

for any 0 < δ < 1. Fix ε > 0 and let δ > 0 be such that for any θ ∈ [0, 2π ]
and any h < δ,

(8) sup
a∈�

∫
S(h,θ)

Np∗,q,s,φ(w) dA(w) ≤ εhp∗
.

By (8) we have

I ≤ ε2p∗
∫

|z|>1− δ
2

|f ′
n(z)|p∗

(1 − |z|)2
(1 − |z|)p∗

dA(z)

≤ ε2p∗
∫

|z|>1− δ
2

|f ′
n(z)|p

∗
(1 − |z|)p∗−2 dA(z)

≤ ε const. ‖fn‖p∗
Bp∗ < ε const.,

and

II ≤ const. sup
a∈�

∫
|z|≤1− δ

2

|f ′
n(z)|p∗

(1 − |z|)2

(∫
S(2(1−|z|),θ)

Np∗,q,s,φ(w) dA(w)

)
dA(z)

= const. sup
a∈�

(∫
�

Np∗,q,s,φ(w) dA(w)

)∫
|z|≤1− δ

2

|f ′
n(z)|p

∗
dA(z) < const.,

for n large enough, since f ′
n → 0 uniformly on compact sets. We obtain that

‖Cφfn‖p∗
F(p∗,q,s) < const. sup

a∈�

(I + II ) < ε const.,
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for n large enough. Therefore, ‖Cφfn‖p∗
F(p∗,q,s) → 0, as n → ∞ and Lem-

ma 3.2 yields that Cφ : F(p, q, s) → F(p∗, q, s) is a compact operator. This
finishes the proof of the theorem.

3. F(p, q, s) compactness of Cφ versus Bloch compactness of Cφ

Several authors have obtained some characterizations of composition operators
(see e.g. [7], [10], [11], [12], [16], [19], [21], [28] and others). Recall the
characterization of compact composition operators on the Bloch space that
Madigan and Matheson obtained in [15], Theorem 2.

Theorem 3.1 (see [15]). Let φ be a analytic function on �. Then Cφ is a
compact operator on Bloch space if and only if

lim|z|→1

|φ′(z)|(1 − |z|2)
1 − |φ(z)|2 = 0.

Tjani gave another characterization of compact composition operators on
Besov spaces and Bloch spaces in [27].

Theorem 3.2 (see [27]). Let φ be an analytic self-map of �. Let X = Bp,
1 < p < ∞, or B. Then Cφ : X → B is a compact operator if and only if

‖Cφϕa‖B → 0 as |a| → 1.

Now we give another characterization of compact composition operators
on the F(p, q, s) spaces and the Bloch space.

Theorem 3.3. Let 2 ≤ p < ∞, −2 < q < ∞ and 0 < s < ∞ and let
X = F(p, q, s) or B. Let φ be an analytic self-map of �. Then Cφ : X → B

is a compact operator if and only if

‖Cφϕa‖B → 0 as |a| → 1.

Proof. First, we suppose that Cφ : X → B is a compact operator. Then
{ϕa(z) : a ∈ �} is a bounded set in F(p, q, s) or B, and ϕa −a → 0 uniformly
on compact sets as |a| → 1. Thus by Lemma 2.2,

lim|a|→1
‖Cφϕa‖B = 0.

Conversely, as in [27], we suppose that

lim|a|→1
‖Cφϕa‖B = 0 as |a| → 1.
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Let (fn) be a bounded sequence in F(p, q, s) or B such that fn → 0 uniformly
on compact sets, as n → ∞. We will show that

lim
n→0

‖Cφfn‖B = 0.

Let ε > 0 be given and fix 0 < δ < 1 such that if |a| > δ, then ‖Cφϕa‖B < ε.
Hence for any z0 ∈ � such that |φ(z0)| > δ, ‖Cφϕφ(z0)‖B < ε. In particular,

|ϕ′
φ(z0)

(φ(z0))||φ′(z0)|(1 − |z0|2) < ε,

that is,

(9)
|φ′(z0)|

1 − |φ(z0)|2 (1 − |z0|2) < ε.

Then (9) yields that for any n ∈ N and z0 ∈ � such that |φ(z0)| > δ,

|(fn ◦ φ)′(z0)|(1 − |z0|2) = |f ′
n(φ(z0))||φ′(z0)|(1 − |z0|2)

< ε|f ′
n(φ(z0))|(1 − |φ(z0)|2)

≤ ε‖fn‖B ≤ ε const.

we obtain that

(10) |(fn ◦ φ)′(z0)|(1 − |z0|2) ≤ ε const.

Since the set A = {w : |w| ≤ δ} is a compact subset of � and f ′
n → 0

uniformly on compact sets,

sup
w∈A

|f ′
n(w)| → 0 as n → ∞.

Therefore we may choose n0 large enough so that |f ′
n(φ(z))| < ε, for any

n > n0 and any z ∈ � such that |φ(z)| ≤ δ. Then, for all such z,

|(fn ◦ φ)′(z)|(1 − |z|2) = |(f ′
n(φ(z))||φ′(z)|(1 − |z|2)

< ε|φ′(z)|(1 − |z|2)
≤ ε‖φ‖B < ε const.,

then, where n ≥ n0

(11) |(fn ◦ φ)′(z)|(1 − |z|2) < ε const.

Thus (10) and (11) yield

(12) ‖fn ◦ φ‖B = ‖Cφfn‖B < ε const. for n ≥ n0.
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Thus (12) yield that ‖Cφfn‖B → 0 as n → ∞. Hence by Lemma 2.2, Cφ :
F(p, q, s) → B is a compact operator.

Remark 3.1. Theorem 2.1 and Theorem 3.3 show that the compactness of
Cφ on F(p, q, s) spaces, and its upper limit the Bloch space, depend on the
behavior of the norm of the image under Cφ of the conformal automorphisms
ϕa , for |a| → 1. An immediate corollary of the two theorems is that if Cφ is
compact on F(p, q, s) spaces, then it is compact on some F(p, q, s) space
with a larger index, and it is compact on the Bloch space. The converse holds
if we suppose that Cφ is bounded on some F(p, q, s) space with a smaller
index (see Proposition 3.3).

Remark 3.2. The proof of Theorem 3.3 yields that

lim|a|→1
‖Cφϕa‖B = 0 if and only if lim

|φ(z)|→1

|φ′(z)|(1 − |z|2)
1 − |φ(z)|2 = 0.

An immediate consequence of Theorem 2.1 and Theorem 3.3 is the follow-
ing proposition:

Proposition 3.1. Let 2 ≤ p < p∗ < ∞, −2 < q < ∞ and 0 < s < ∞.
Then Cφ : F(p, q, s) → F(p∗, q, s) is a compact operator, and so is Cφ :
B → B.

Recently Rättyä (see Proposition 3 in [19]) gave a characterization of com-
position operators acting from the weighted Bergman or Dirichlet space into
the BMOA space, the space of analytic functions of bounded mean oscillation.
For F(p, q, s) spaces we give the following result:

Proposition 3.2. Let 2 ≤ p < p∗ < ∞, −2 < q < ∞ and 0 < s < ∞. If

lim|w|→1
sup
a∈�

Np∗,q,s,φ(w)

(1 − |w|2)qgs(φ−1(w), a)
= 0,

then Cφ : F(p, q, s) → F(p∗, q, s) is a compact operator.

Proof. Let (fn) be a bounded sequence in F(p, q, s) such that fn → 0
uniformly on compact sets as n → ∞. Let ε > 0 be given and fix δ > 0 such
that if 1 − δ < |w| < 1, then

(13) Np∗,q,s,φ(w) < ε(1 − |w|2)q gs(φ−1(w), a).
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By (3) we have

‖Cφfn‖p∗
F(p∗,q,s) = sup

a∈�

∫
�

|f ′
n(w)|p∗

Np∗,q,s,φ(w) dA(w)

= sup
a∈�

∫
1−δ<|w|<1

+
∫

|w|≤1−δ

|f ′
n(w)|p∗Np∗,q,s,φ(w) dA(w),

which implies that,

(14) ‖Cφfn‖p∗
F(p∗,q,s) = sup

a∈�

(I + II).

As in ([29] page 33) we determine b ∈ C such that φ−1(w) = eiθϕb(w). Then
it is easy to check that ϕa(φ

−1(w)) = eiγ ϕã(w), where eiγ = ab̄−eiθ

1−ābeiθ and
ã = ϕb(ae−iθ ). So, g(φ−1(w), a) = g(w, ã), hence

(15) sup
a∈�

∫
�

|f ′
n(w)|p∗

(1 − |w|2)qgs(φ−1(w), a) dA(w)

= sup
ã∈�

∫
�

|f ′
n(w)|p∗

(1 − |w|2)qgs(w, ã) dA(w).

By (14) and (15), we obtain that

I ≤ ε sup
a∈�

∫
1−δ<|w|<1

|f ′
n(w)|p∗

Np∗,q,s,φ(w) dA(w)

< ε sup
a∈�

∫
1−δ<|w|<1

|f ′
n(w)|p∗

(1 − |w|2)qgs(φ−1(w), a) dA(w)

= ε sup
ã∈�

∫
1−δ<|w|<1

|f ′
n(w)|p∗

(1 − |w|2)qgs(φ(w), ã) dA(w).

Now fn is bounded in F(p∗, q, s), and then

(16) I < ε‖fn‖p∗
F(p∗,q,s) < ε const.

Since |f ′
n|p∗ → 0 uniformly on {w ∈ � : |w| < 1 − δ}, we can find a positive

integer n0 such that

(17) II ≤ ε sup
a∈�

∫
|w|≤1−δ

Np∗,q,s,φ(w) dA(w) < ε const.

for n ≥ n0, since

sup
a∈�

∫
|w|≤1−δ

Np∗,q,s,φ(w) dA(w) ≤ ‖φ‖F(p∗,q,s) < ∞.
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By (14), (16) and (17)

‖Cφ fn‖p∗
F(p∗,q,s) < ε const. for n ≥ n0.

Therefore,
‖Cφfn‖p∗

F(p∗,q,s) → 0, as n → ∞.

Hence Lemma 2.2 yields that Cφ : F(p, q, s) → F(p∗, q, s) is a compact
operator. This finishes the proof of the proposition.

Theorem 3.4. Let φ be a univalent analytic self-map of �. Then for 2 ≤
p < ∞, 0 < q < ∞ and 0 < s < ∞, Cφ : F(p, q, s) → F(p, q, s) is
a compact operator if and only if Cφ : B → B is a compact operator with
lim|φ(z)|→1 |φ′(z)| = K , where K is a constant.

Proof. First we suppose that Cφ is a compact operator on the Bloch space.
Then a sufficient condition for F(p, q, s) compactness in Theorem 3.4 for a
univalent function is

lim|w|→1

|φ′(φ−1(w))|p−2(1 − |φ−1(w))|2)qgs(φ−1(w), a)

(1 − |w|2)qgs(φ−1(w), a)
= 0.

Then

lim
|φ(z)|→1

{ |φ′(z)|p−2(1 − |z|2)q
(1 − |φ(z)|2)q

}

= lim
|φ(z)|→1

{ |φ′(z)|(1 − |z|2)
1 − |φ(z)|2

}q(
|φ′(z)|( p−2

q
)

)
= 0,

or, equivalently,

lim
|φ(z)|→1

{ |φ′(z)|(1 − |z|2)
1 − |φ(z)|2

}
= 0,

by Theorem 3.1 which is a compactness condition for the composition operator
on the Bloch space. Hence, by our assumption, F(p, q, s) is a compact op-
erator. For the converse suppose that Cφ is a compact operator on F(p, q, s).
By Proposition 3.1, then Cφ : B → B is a compact operator too.

MacCluer and Shapiro showed that if Cφ is bounded on some weighted
Dirichlet space Dα , then the compactness of Cφ on larger weighted Dirichlet
spaces is equivalent to φ having no angular derivative at each point of ∂�

(see [14]). Tjani showed that if Cφ is bounded on some Besov space, then the
compactness of Cφ on larger Besov spaces is equivalent to compactness of Cφ

on the Bloch space (see [27], Proposition 4.5). We show that if Cφ is bounded



composition operators on some holomorphic banach . . . 293

on some F(p, q, s) space, then the compactness of Cφ on larger F(p, q, s)

spaces is equivalent to the compactness of Cφ on the Bloch space.
The theorem above is a special case of the following proposition.

Proposition 3.3. Let 2 ≤ r < p∗ < ∞, 2 ≤ p < p∗ < ∞, −2 <

q < ∞ and 0 < s < ∞. Suppose that Cφ : F(r, q1, s) → F(r, q1, s) for
q1 = q/(p∗ − r) is a bounded operator. Then Cφ : F(p, q, s) → F(p∗, q, s)

is a compact operator if and only if Cφ : B → B is a compact operator.

Proof. First, suppose that Cφ is a compact operator on the Bloch space.
For any a ∈ �

‖Cφϕa‖p∗
F(p∗,q,s) = sup

a∈�

∫
�

|ϕ′
a(φ(z))|p∗ |φ′(z)|p∗

(1 − |z|2)qgs(z, a) dA(z)

= sup
a∈�

∫
�

(
|ϕ′

a(φ(z))|r |φ′(z)|r (1 − |z|2)q1gs(z, a)

)

×
(

|ϕ′
a(φ(z))|(|φ′(z)|(1 − |z|2))

)p∗−r

dA(z)

≤ ‖Cφϕa‖r
F (r,q1,s)

‖Cφϕa‖p∗−r

B

for q1 = q/(p∗ − r) by Theorem 2.2 and since Cφ : F(r, q1, s) → F(r, q1, s)

is bounded, then

(18) ‖Cφϕa‖p∗
F(p∗,q,s) ≤ const. ‖Cφϕa‖p∗−r

B .

Therefore (18) and Theorem 3.3 yield that ‖Cφ ϕa‖F(p∗,q,s) → 0 as |a| →
1. The converse follows from Proposition 3.2. This finishes the proof of the
proposition.
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