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C∗-ALGEBRAS OF LABELLED GRAPHS II –
SIMPLICITY RESULTS

TERESA BATES and DAVID PASK∗

Abstract
We prove simplicity and pure infiniteness results for a certain class of labelled graph C∗-algebras.
We show, by example, that this class of unital labelled graph C∗-algebras is strictly larger than
the class of unital graph C∗-algebras.

1. Introduction

This paper has two main aims. The first is to continue the development of the
C∗-algebras of labelled graphs begun in [3] and the second is to provide a
tractable example which illustrates why they are worthy of further study.

A labelled graph is a directed graph E in which the edges have been labelled
by symbols coming from a countable alphabet. By considering the sequences
of labels carried by the bi-infinite paths in E one obtains a shift space X; the
labelled graph is then called a presentation of X. A directed graph is a (trivial)
example of a labelled graph, and the shift space it presents is a shift of finite
type (see [13]). In [3] we showed how to associate a C∗-algebra to a labelled
space, which consists of a labelled graph together with a certain collection of
subsets of vertices. By making suitable choices of the labelled spaces it was
shown in [3, Proposition 5.1, Theorem 6.3] that the class of labelled graph
C∗-algebras includes graph C∗-algebras, the ultragraph C∗-algebras of [21],
[22] and the C∗-algebras of shift spaces in the sense of [14], [4].

In this paper we shall work almost exclusively with the labelled spaces
which arise in connection with shift spaces. In particular we shall be interested
in identifying key properties of our labelled spaces which allow us to prove
results about the simplicity and pure infiniteness of the associated C∗-algebra
(see Theorem 6.4 and Theorem 6.9).

Up to now, the examples of labelled spaces that we have considered have
turned out to have C∗-algebras isomorphic to the C∗-algebra of the underlying
directed graph (see [3, Theorem 6.6]). In this paper we turn our attention to
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the question of whether the class of C∗-algebras of labelled spaces that we are
considering is strictly larger than the class of graph C∗-algebras. In section 7.1
we give presentations of the Dyck shifts DN and show that their associated
C∗-algebras cannot be unital graph C∗-algebras. In section 7.2 we present a
labelled graph which presents an irreducible non-sofic shift, whose C∗-algebra
is simple and purely infinite.

There have now been many papers on the C∗-algebras associated to shift
spaces (see [7], [6], [14], [16], [5], [4], [2], [3] for example). A drawback
to some of the approaches is that the canonical C∗-algebra associated to an
irreducible shift space is often not simple (see [3, Remark 6.10]). We believe
that an equally valid way to study the C∗-algebra associated to a shift space
is to study the C∗-algebras of the various labelled graphs which present it.
This belief is founded on the observation that the labelled graph (E1, L1)

of Examples 5.4(i) is a presentation of an irreducible sofic shift (called the
even shift) whose C∗-algebra is simple (see [3, Remark 6.10]) whereas the
C∗-algebra associated to the even shift in [4] is not simple.

The work of Matsumoto on symbolic matrix systems and their associated
λ-graph systems gives us an important method for studying shift spaces using
labelled graphs (see [18], [15], [16], [17] amongst others). However, we feel
that there is an extra facility afforded by our approach. Whilst λ-graph systems
are indeed labelled graphs, they are quite complicated. This makes them diffi-
cult to visualise; for instance the labelled graphs in Examples 5.4(i) give rise
to the same C∗-algebras as the ones for the symbolic matrix systems described
on [16, p. 297]. Furthermore we believe that our presentations of the Dyck
shifts in section 7.1 give us a more tractable way of studying them. Of equal
importance is the fact that our labelled spaces are ideally suited to handle shift
spaces over countably infinite alphabets.

The paper begins with a long section in which we describe many of the
important concepts associated to labelled graphs and labelled spaces. The two
main results of this section are Proposition 2.4 and Proposition 2.6. In Pro-
position 2.4 we give an important embellishment to the treatment of labelled
spaces in [3] by identifying the basic objects in a labelled space, which we
call the generalised vertices. In Proposition 2.6 we establish concrete connec-
tions between our work and that of Matsumoto by showing how to associate a
symbolic matrix system to a labelled graph.

In section 3 we recall the definition of the C∗-algebra of a labelled space
from [3]. In Proposition 3.4 we give a new description of the canonical spanning
set for a labelled graph C∗-algebra in terms of generalised vertices. Then in
Proposition 3.6 we use this new description to show the relationship between
the C∗-algebra of a labelled graph and the λ-graph C∗-algebra of the associated
symbolic matrix system.
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In section 4 we give a description of the AF core of a labelled graph C∗-
algebra before moving on to prove the Cuntz-Krieger uniqueness theorem
(Theorem 5.5) in section 5. The central hypothesis to the Cuntz-Krieger unique-
ness theorem for labelled graphs is the notion of disagreeability, which replaces
the aperiodicity hypothesis in the corresponding theorem for directed graphs
(see, for example [1, Theorem 3.1]).

In section 6 we give the simplicity and pure infiniteness results for labelled
graph C∗-algebras. To prove the simplicity result (Theorem 6.4) we need a
notion of cofinality appropriate for labelled graphs. The notion of cofinality
for labelled graphs is much more subtle than that for directed graphs as many
different infinite paths in the underlying directed graph can have the same
labels. To prove the pure infiniteness result (Theorem 6.9) we need to exam-
ine how periodic paths arise in labelled graphs. The situtation is much more
complicated than for directed graphs since periodic points in the shift space
associated to a labelled graph need not arise from a loop in the underlying
directed graph.

Finally in section 7 we provide two new examples of labelled graphs to
which our main results apply. In section 7.1 we provide a labelled graph
presentation of the Dyck shifts DN . In Proposition 7.2 show that these present-
ations give rise to simple purely infinite labelled graph C∗-algebras. In Re-
mark 7.3 we give a formula for the K-theory of our labelled graph C∗-algebras
which demonstrates that the C∗-algebras we associate to Dyck shifts cannot be
isomorphic to graph C∗-algebras. In section 7.2 we provide a presentation of
an interesting new irreducible non-sofic shift whose labelled graph C∗-algebra
is simple and purely infinite.

Acknowledgements. The authors would like to acknowledge the hospit-
ality given to us by the University of Victoria in Canada, the CRM in Barcelona
and the Fields Institute in Toronto during the preparation of this paper.

2. Collected definitions and notation

Directed graphs

A directed graph E consists of a quadruple (E0, E1, r, s) where E0 and E1

are (not necessarily countable) sets of vertices and edges respectively and
r, s : E1 → E0 are maps giving the direction of each edge. A path λ = e1 . . . en

is a sequence of edges ei ∈ E1 such that r(ei) = s(ei+1) for i = 1, . . . , n − 1,
we define s(λ) = s(e1) and r(λ) = r(en). The collection of paths of length n

in E is denoted En and the collection of all finite paths in E by E∗, so that
E∗ = ⋃

n≥0 En.
A loop in E is a path which begins and ends at the same vertex, that is

λ ∈ E∗ with s(λ) = r(λ). We say that E is row-finite if every vertex emits
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finitely many edges. The graph E is called transitive if given any pair of vertices
u, v ∈ E0 there is a path λ ∈ E∗ with s(λ) = u and r(λ) = v. We denote the
collection of all infinite paths in E by E∞.

Standing assumption 1

We will assume that our directed graphs E are essential: all vertices emit and
receive edges (i.e., E has no sinks or sources).

Labelled graphs

A labelled graph (E, L ) over a countable alphabet A consists of a direc-
ted graph E together with a labelling map L : E1 → A . Without loss of
generality we may assume that the map L is onto.

Let A ∗ be the collection of all words in the symbols of A . The map L

extends naturally to a map L : En → A ∗, where n ≥ 1: for λ = e1 . . . en ∈
En put L (λ) = L (e1) . . . L (en); in this case the path λ ∈ En is said to be
a representative of the labelled path L (e1) . . . L (en). Let L (En) denote the
collection of all labelled paths in (E, L ) of length n where we write |α| = n

if α ∈ L (En). The set L ∗(E) = ⋃
n≥1 L (En) is the collection of all labelled

paths in the labelled graph (E, L ). We may similarly extend L to E∞.
The labelled graph (E, L ) is left-resolving if for all v ∈ E0 the map

L : r−1(v) → A is injective. The left-resolving condition ensures that for
all v ∈ E0 the labels {L (e) : r(e) = v} of all incoming edges to v are all
different. For α in L ∗(E) we put

sL (α) = {s(λ) ∈ E0 : L (λ) = α} and rL (α) = {r(λ) ∈ E0 : L (λ) = α},
so that rL , sL : L ∗(E) → 2E0

. We shall drop the subscript on rL and sL if
the context in which it is being used is clear.

Let (E, L ) be a labelled graph. For A ⊆ E0 and α ∈ L ∗(E) the relative
range of α with respect to A is defined to be

rL (A, α) = {r(λ) : λ ∈ E∗, L (λ) = α, s(λ) ∈ A}.
A collection B ⊆ 2E0

of subsets of E0 is said to be closed under relative
ranges for (E, L ) if for all A ∈ B and α ∈ L ∗(E) we have r(A, α) ∈ B. If
B is closed under relative ranges for (E, L ), contains r(α) for all α ∈ L ∗(E)

and is also closed under finite intersections and unions, then we say that B is
accommodating for (E, L ).

Let E 0,− denote the smallest subset of 2E0
which is accommodating for

(E, L ). Since E 0,− is generated by a countable family of subsets of E0, under
countable operations, it follows that E 0,− is countable, even though E0 itself
may be uncountable. Of course, 2E0

is the largest accommodating collection
of subsets for (E, L ).
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Labelled spaces

A labelled space consists of a triple (E, L , B), where (E, L ) is a labelled
graph and B is accommodating for (E, L ).

A labelled space (E, L , B) is weakly left-resolving if for every A, B ∈ B

and every α ∈ L ∗(E) we have r(A, α) ∩ r(B, α) = r(A ∩ B, α).

Remarks 2.1. (i) If (E, L , E 0,−) is weakly left-resolving then E 0,− is the
closure of {r(α) : α ∈ L ∗(E)} under finite unions and intersections (cf. [3,
Remark 3.9]). Moreover, if α ∈ L ∗(E) and A = ⋃m

k=1

⋂n
i=1 r(βi,k) ∈ E 0,−

where βi,k ∈ L ∗(E) for i = 1, . . . , n and k = 1, . . . , m then we have

r(A, α) =
m⋃

k=1

n⋂
i=1

r(βi,kα).

(ii) If (E, L ) is left-resolving then the labelled space (E, L , B) is weakly
left-resolving for any B.

For � ≥ 1 and A ⊆ E0 let E�A = {λ ∈ E� : r(λ) ∈ A} and AE� = {λ ∈
E� : s(λ) ∈ A}. The labelled space (E, L , B) is receiver set-finite if for all
A ∈ B and all � ≥ 1 the set L (E�A) := {L (λ) : λ ∈ E�A} is finite. In
particular, the labelled space (E, L , B) is receiver set-finite if each A ∈ B

receives only finitely labelled paths of length � (even though A may receive
infinitely many paths of each length �). More generally, for � ≥ 1 and A ⊆ E0

let

L (E≤�) =
�⋃

j=1

L (Ej ) and L (E≤�A) =
�⋃

j=1

L (EjA).

We say that the labelled space (E, L , B) is set-finite if for all A ∈ B the set
L (AE1) := {L (λ) : λ ∈ AE1} is finite. One may similarly define L (AEn)

(note that L (AEn) was denoted Ln
A in [3]).

In this paper we shall focus exclusively on the (minimal) accommodating
labelled space (E, L , E 0,−) associated to a labelled graph (E, L ). We do this
in order to relate our work to that of Matsumoto (see [14], [15], [16], [17],
[18]). One may extend the results in this paper to include more general labelled
spaces, but since we have no examples in mind, we choose not to.

Standing assumption 2

We will assume that (E, L , E 0,−) is receiver set-finite, set-finite and weakly
left-resolving.

Remark 2.2. The conditions of set-finiteness and receiver set-finiteness
are trivially satisfied by labelled spaces over finite alphabets. The condition
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of set-finiteness for labelled spaces is the analogue of row-finiteness for dir-
ected graphs. Taken together the conditions of set-finiteness and receiver set-
finiteness give us the analogue of local finiteness for directed graphs.

Generalised vertices

For v ∈ E0 and � ≥ 1 let

��(v) = {λ ∈ L (E≤�) : v ∈ r(λ)} = L (E≤�v).

The relation ∼� on E0 is defined by v ∼� w if and only if ��(v) = ��(w);
hence v ∼� w if v and w receive exactly the same labelled paths of length at
most �. Evidently ∼� is an equivalence relation and we use [v]� to denote the
equivalence class of v ∈ E0. We call the [v]� generalised vertices as they play
the same role in labelled spaces as vertices in a directed graph.

Set �� = E0/ ∼� and � be the disjoint union of the �� for � ≥ 1. If the
alphabet A is finite, then �� is finite. If there is L ≥ 1 such that �� = �L

for all � ≥ L, then the underlying shift XE,L is a sofic shift (see [4], [13]).
Conversely, if X is a sofic shift then every presentation (E, L ) of the shift X
has this property (see [13, Exercise 3.2.6]).

For � ≥ 1 let E
0,−
� ⊆ E 0,− be the smallest subset of 2E0

which contains
r(λ) for all λ ∈ L (E≤�) and is closed under finite intersections and unions.
Evidently E

0,−
� ⊆ E

0,−
�+1 . Following Remark 2.1(i) we have E 0,− = ⋃∞

�=1 E
0,−
� .

For v ∈ E0 and � ≥ 1, the equivalence class [v]� does not necessarily
belong to E

0,−
� ; however, as we shall see in Proposition 2.4 (i), [v]� may be

expressed as a difference of elements of E
0,−
� . First we need the following

technical lemma.

Lemma 2.3. Let (E, L , E 0,−) be a labelled space, v ∈ E0 and � ≥ 1.

(i) The set ��(v) is finite and X�(v) := ⋂
λ∈��(v) r(λ) ∈ E

0,−
� . Moreover

[v]� ⊆ X�(v).

(ii) The set of labels Y�(v) := ⋃
w∈X�(v) ��(w)\��(v) is finite, and

r(Y�(v)) ∈ E
0,−
� .

Proof. For the first statement let A ∈ E 0,− be such that v ∈ A. Since
(E, L , E 0,−) is receiver set-finite L (Ejv) ⊆ L (EjA) is finite for all j ≥ 1
and hence ��(v) = ⋃�

j=1 L (Ejv) is finite for all � ≥ 1. It now follows that

X�(v) is a finite intersection of elements of E
0,−
� and hence X�(v) ∈ E

0,−
� .

Since X�(v) is the set of vertices which receive at least the same labelled paths
as v up to length � we certainly have [v]� ⊆ X�(v).

For the second statement observe thatY�(v) = L (E≤�X�(v))\��(v). Since
(E, L , E 0,−) is receiver set-finite and X�(v) ∈ E 0,− the sets L (E≤�X�(v))
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and Y�(v) must be finite. Note that r(Y�(v)) = ⋃
μ∈Y�(v) r(μ) belongs to E

0,−
�

as it is a finite union of elements of E
0,−
� .

The set Y�(v) denotes the additional labelled paths of length at most �

received by those vertices which receive at least the same labelled paths as v

up to length �.

Proposition 2.4. Let (E, L , E 0,−) be a labelled space, v ∈ E0 and � ≥ 1.

(i) We have [v]� = X�(v)\r(Y�(v)).

(ii) For every set A ∈ E
0,−
� we can find vertices v1, . . . , vm ∈ A such that

A = ⋃m
i=1[vi]�.

(iii) There are w1, . . . , wn ∈ [v]� such that [v]� = ⋃n
i=1[wi]�+1.

Proof. For the first statement observe that [v]� consists of those vertices
which receive exactly the labelled paths from ��(v) whereas other vertices in
X�(v) may receive more labelled paths. Hence, to form [v]� we remove those
vertices from X�(v) which receive different labelled paths of length � from v

– these are precisely the vertices in r(Y�(v)).
For the second statement note that by Remark 2.1(i) any A ∈ E

0,−
� can

be written as a finite union of elements of the form Bk = ⋂n
i=1 r(βi) where

βi ∈ L (E≤�). If v1 ∈ Bk then [v1]� ⊆ Bk as v1, and hence every vertex in
[v1]�, must receive β1, . . . , βn and so lie in Bk . If Bk �= [v1]�, there is v2 ∈ Bk

with ��(v1) �= ��(v2). Again we have [v2]� ⊆ Bk . Since (E, L , E 0,−) is
receiver set-finite Bk ∈ E

0,−
� receives only finitely many different labelled

paths of length at most �. Hence there are vertices {vi : 1 ≤ i ≤ m} in Bk such
that Bk = ⋃m

i=1[vi]� and our result is established.
For the final statement we observe that since E

0,−
� ⊆ E

0,−
�+1 the first statement

shows that [v]� may be written as a difference A\B of elements of E
0,−
�+1 . The

result then follows by applying the second statement to A, B ∈ E
0,−
�+1 and noting

that the [wi]�+1’s are disjoint.

Shift spaces

Let (E, L ) be a labelled graph. The subshift XE is defined by XE = {x ∈
(E1)Z : s(xi+1) = r(xi) for all i ∈ Z}. The subshift (XE,L , σ ) is defined by

XE,L = {y ∈ A Z : there exists x ∈ XE such that yi = L (xi) for all i ∈ Z},
where σ is the shift map σ(y)i = yi+1 for i ∈ Z. The labelled graph (E, L )

is said to be a presentation of the shift space XE,L with language L ∗(E).
We are primarily interested in one-sided shift spaces, namely

X+
E,L

= {y ∈ A N : there exists x ∈ E∞ such that yi = L (xi) for all i ∈ N}
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and we restrict the shift map to X+
E,L

. For an infinite labelled path x ∈ X+
E,L

we define sL (x) to be the set of all v ∈ E0 for which there is an infinite path
x̂ ∈ E∞ with s(̂x) = v and L (̂x) = x. The infinite path x̂ is said to be a
representative of x.

An infinite labelled path x ∈ X+
E,L

is periodic if σnx = x for some n ≥ 1.
A path which is not periodic is called aperiodic.

Example 2.5. If E is a directed graph then we may consider it as a labelled
graph when endowed with the trivial labelling Lt . In this case E 0,− consists of
all finite subsets of E0 (see [3, Examples 4.3(i)]) and [v]� = {v} for all � ≥ 1.
We shall identify L ∗

t (E) with E∗ and X+
E,Lt

with E∞.

Symbolic Matrix Systems

Essential symbolic matrix systems are defined in [16, §2]. To a left-resolving
labelled graph (E, L ) over a finite alphabet we associate matrices (M(E)�,�+1,

I (E)�,�+1)�≥1 as follows: For � ≥ 1, write �� = {[vi]� : i = 1, . . . , m(�)},
then I (E)�,�+1 is a m(�) × m(� + 1) matrix with entries 0, 1 determined by

(1) I (E)�,�+1([vi]�, [wj ]�+1) =
{

1 if [wj ]�+1 ⊂ [vi]�

0 otherwise.

The symbolic matrix M(E)�,�+1 is the same size as I (E)�,�+1 with entries
determined as follows: For v ∈ E0 let 〈v〉� denote the collection of labelled
paths of length exactly � which arrive at v. Since (E, L ) is left-resolving we
may partition the set of labelled paths of length � + 1 arriving at w to write
〈w〉�+1 as the disjoint union

〈w〉�+1 =
⋃

e∈r−1(w)

〈s(e)〉�L (e),

where 〈s(e)〉�L (e) denotes the set of labelled paths of length � + 1 formed
by the juxtaposition of the symbol L (e) at the end of each labelled path in
〈s(e)〉�. Since all vertices in [vi]� and [wj ]�+1 receive the same labelled paths
of length � and � + 1 respectively we may unambiguously define

(2) M(E)�,�+1([vi]�, [wj ]�+1) =
∑

e∈s−1(vi )∩r−1(wj )

L (e)

where the right hand-side is treated as a formal sum.

Proposition 2.6. Let (E, L ) be a left-resolving labelled graph over a
finite alphabet. Then the matrices (M(E)�,�+1, I (E)�,�+1)�≥1 defined above
form an essential symbolic matrix system.
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Proof. If suffices to check that the matrices (M(E)�,�+1, I (E)�,�+1)�≥1

satisfy the conditions on [16, p .290]: Since E is essential it is straightforward
to check from the definition of I (E)�,�+1 and M(E)�,�+1 that conditions (1),
(2), (2-a), (2-b), (3), (5-i) and (5-ii) are satisfied. It remains to check that for
� ≥ 1 we have M(E)�,�+1I (E)�+1,�+2 = I (E)�,�+1M(E)�+1,�+2.

For � ≥ 1 we form the entry M(E)�,�+1I (E)�+1,�+2([ui]�, [wk]�+1) as
follows: For each [vj ]�+1 which receives an edge from [ui]�, the entry is the
formal sum of the labels received by the unique [vj ]�+1 of which [wk]�+2 is a
subset. In which case

M(E)�,�+1I (E)�+1,�+2([ui]�, [wk]�+2) =
∑

e∈s−1(ui )∩r−1(wk)

L (e).

On the other hand, to form the entry I (E)�,�+1M(E)�+1,�+2([ui]�, [wk]�+2) we
take each [vj ]�+1 which is a subset of [ui]� and then formally sum the labels
of the edges to [wk]�+1. In which case

I (E)�,�+1M(E)�+1,�+2([ui]�, [wk]�+2) =
∑

[vj ]�+1⊆[ui ]�

∑
e∈s−1(vj )∩r−1(wk)

L (e)

=
∑

e∈s−1(ui )∩r−1(wk)

L (e).

Hence for � ≥ 1 we have M(E)�,�+1I (E)�+1,�+2 = I (E)�,�+1M(E)�+1,�+2 as
required.

3. C∗-algebras of labelled spaces

We recall from [3] the definition of the C∗-algebra associated to the labelled
space (E, L , E 0,−).

Definition 3.1. Let (E, L , E 0,−) be a labelled space. A representation of
(E, L , E 0,−) consists of projections {pA : A ∈ E 0,−} and partial isometries
{sa : a ∈ A } with the properties that

(i) If A, B ∈ E 0,− then pApB = pA∩B and pA∪B = pA + pB − pA∩B ,
where p∅ = 0.

(ii) If a ∈ A and A ∈ E 0,− then pAsa = sapr(A,a).

(iii) If a, b ∈ A then s∗
a sa = pr(a) and s∗

a sb = 0 unless a = b.

(iv) For A ∈ E 0,− we have

(3) pA =
∑

a∈L (AE1)

sapr(A,a)s
∗
a .
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Remark 3.2. If the directed graph E contains sinks then we need to modify
condition (iv) above (note that E 0,− is different in this case (see [3, Defini-
tion 3.8])). The original definition [3, Definition 4.1] was in error since it would
lead to degeneracy of the vertex projections for sinks. We thank Toke Carlsen
for pointing this out to us. If A contains a finite number of sinks and B = E 0,−
or E 0, then we obtain the relation

pA =
∑

a∈L (AE1)

sapr(A,a)s
∗
a +

∑
v∈A : v is a sink

pv.

Definition 3.3. Let (E, L , E 0,−) be a labelled space, then C∗(E, L ,

E 0,−) is the universal C∗-algebra generated by a representation of (E,L ,E 0,−).

The universal property of C∗(E, L , E 0,−) allows us to define a strongly
continuous action γ of T on C∗(E, L , E 0,−) called the gauge action (see
[3, Section 5]). As in [20, Proposition 3.2] we denote by 
 the conditional
expectation of C∗(E, L , E 0,−) onto the fixed point algebra C∗(E, L , E 0,−)γ .
If (E, L , E 0,−) is a labelled space then by [3, Lemma 4.4] we have

C∗(E, L , E 0,−) = span{sαpAs∗
β : α, β ∈ L ∗(E), A ∈ E 0,−}.

Indeed, we can write down a more informative spanning set forC∗(E,L ,E 0,−).

Proposition 3.4. Let (E, L , E 0,−) be a labelled space. Then

C∗(E, L , E 0,−) = span{sαp[v]� s
∗
β : α, β ∈ L ∗(E), [v]� ∈ ��}

where

(4) p[v]� := pX�(v) − pr(Y�(v))pX�(v) =
∑

a∈L ([v]�E1)

sapr([v]�,a)s
∗
a .

Proof. The first assertion holds from repeated applications of Proposi-
tion 2.4. Applying (3) of Definition 3.1 we have

p[v]� = pX�(v) − pX�(v)∩r(Y�(v))

=
∑

a∈L (X�(v)E1)

sapr(X�(v),a)s
∗
a −

∑
b∈L (X�(v)∩r(Y�(v))E1)

sbpr(X�(v)∩r(Y�(v)),b)s
∗
b .

In order to eliminate double counting of labels that are emitted by both X�(v)

and r(Y�(v)) we need to split L (X�(v)E1) into two disjoint parts (the labels
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that come only out ofX�(v) and those that come out of bothX�(v) and r(Y�(v)))
to obtain

p[v]� =
∑

a∈L (X�(v)E1)\L (X�(v)\r(Y�(v))E1)

sapr(X�(v),a)s
∗
a

+
∑

b∈L (X�(v)∩r(Y�(v))E1)

sb

(
pr(X�(v),b) − pr(X�(v)∩r(Y�(v)),b)

)
s∗
b .

We may replace X�(v) in the first sum by [v]� as the labels a are emitted only
by the vertices in [v]� and not by the vertices in X�(v)∩r(Y�(v)). In the second
sum the labels b are emitted by both [v]� and X�(v)∩r(Y�(v)), but we subtract
the projections corresponding to the copies emitted by X�(v) ∩ r(Y�(v)) and
so we have equation (4) as required.

Remark 3.5. Note that while proving Proposition 3.4 we have shown that
for [v]� ∈ �� and a ∈ A

r([v]�, a) = r(X�(v), a)\r(r(Y�(v)), a)

which is a difference of two elements of E
0,−
�+1 .

Recall from Proposition 2.6 that to a labelled graph (E, L ) over a finite al-
phabet A we may associate an essential symbolic matrix system (M(E)�,�+1,

I (E)�,�+1)�≥1. By [16, Proposition 2.1] there is a unique (up to isomorphism)
λ-graph system �E,L associated to (M(E)�,�+1, I (E)�,�+1)�≥1. By [17, The-
orem 3.6] one may associate a C∗-algebra O�E,L

to the λ-graph system �E,L

which is the universal C∗-algebra generated by partial isometries {ta : a ∈ A }
and projections {E�

i : i = 1, . . . , m(�)} satisfying relations

(5)
∑
a∈A

tat
∗
a = 1

(6)

m(�)∑
i=1

E�
i = 1, E�

i =
m(�+1)∑

j=1

I (E)�,�+1(i, j)E�+1
j for i = 1, . . . , m(�)

(7) tat
∗
a E�

i = E�
i tat

∗
a for a ∈ A and i = 1, . . . , m(�)

(8) t∗a E�
i ta =

m(�+1)∑
j=1

A�,�+1(i, a, j)E�+1
j for a ∈ A and i = 1, . . . , m(�)

where A�,�+1(i, a, j) = 1 if a occurs in the formal sum M(E)�,�+1([vi]�,
[vj ]�+1) and is 0 otherwise.
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Proposition 3.6. Let (E, L ) be a left-resolving labelled graph over a finite
alphabet. Then we have C∗(E, L , E 0,−) ∼= O�E,L

where �E,L is the λ-graph
system associated to the symbolic matrix system (M(E)�,�+1, I (E)�,�+1)�≥1.

Proof. By Proposition 3.4 the elements {sa : a ∈ A } and {p[vi ]� : i =
1, . . . , m(�)} form a generating set for C∗(E, L , E 0,−). Let Ta = sa and
F�

i = p[vi ]� then {Ta, F
�
i } satisfy relations (5) – (8) above. Hence by the

universal property of O�E,L
there is a map πT,F : O�E,L

→ C∗(E, L , E 0,−)

characterised by πT,F (ta) = Ta and πT,F (E�
i ) = F�

i .
Let {ta : a ∈ A } and {E�

i : i = 1, . . . , m(�)} be generators for O�E,L
.

For A ∈ E
0,−
� and a ∈ A let PA = ∑

i:[vi ]�⊆A E�
i and Sa = ta . One checks

that {Sa, PA} is a representation of the labelled space (E, L , E 0,−). By uni-
versality of C∗(E, L , E 0,−) there is a map πS,P : C∗(E, L , E 0,−) → O�E,L

characterised by πS,P (sa) = Sa and πS,P (pA) = PA. In particular, we have
πS,P (p[vi ]� ) = P[vi ]� for all i ∈ 1, . . . , m(�). Our result follows since πT,F and
πS,P are inverses of one another.

4. AF core

In this section we perform a detailed analysis of theAF core of C∗(E, L , E 0,−)

which we will need to prove the main result of the following section.

Definition 4.1. For 1 ≤ k ≤ � let

F k(�) = span
{
sαpAs∗

β : α, β ∈ L (Ek), A ∈ E
0,−
�

}
.

For � ≥ 1 and [v]� ∈ �� we have p[v]� ∈ F k(�) as X�(v), r(Y�(v)) ∈ E
0,−
�

by Lemma 2.3(ii).

Definition 4.2. For 1 ≤ k ≤ � and [v]� ∈ �� let

F k([v]�) = span
{
sαp[v]� s

∗
β : α, β ∈ L (Ek)

}
.

Proposition 4.3. For 1 ≤ k ≤ � we have

(i) F k(�) ∼= ⊕
[v]� F k([v]�), where each F k([v]�) is a finite-dimensional

matrix algebra.

(ii) For each v ∈ E0 there are w1, . . . , wn ∈ [v]� such that F k([v]�) =⊕n
i=1 F k([wi]�+1). Hence F k(�) ⊆ F k(� + 1).

(iii) There is an embedding of F k(�) into F k+1(� + 1).

Proof. For the first statement of (i), applying Proposition 2.4(ii) shows
that every element sαpAs∗

β ∈ F k(�) can be written as a finite sum of ele-
ments of the form sαp[v]� s

∗
β ∈ F k([v]�). The result follows as the summands
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in the decomposition are mutually orthogonal since |α| = |β| = k and the
equivalence classes [v]� are disjoint. For the second statement of (i) note that
since [v]� can be written as the difference of two elements of E 0,− it re-
ceives only finitely many different labelled paths of length k and hence the
set {sαp[v]� s

∗
β : |α| = |β| = k} is finite. It is straightforward to show that the

elements sαp[v]� s
∗
β form a system of matrix units in F k([v]�) and the result

follows.
Part (ii) follows by Proposition 2.4(iii). Part (iii) follows from Defini-

tion 3.1(iv).

Theorem 4.4. Let (E, L , E 0,−) be a labelled space, then F = ⋃
k,� F k(�)

is an AF algebra with F ∼= C∗(E, L , E 0,−)γ .

Proof. The first statement follows from Proposition 4.3. The second state-
ment follows by an argument similar to that of [1, Lemma 2.2].

5. Cuntz-Krieger Uniqueness Theorem

Recall from [11, §3] that the directed graph E satisfies condition (L) if every
loop has an exit; that is if λ ∈ En is a loop, then there is some 1 ≤ i ≤ n

such that the vertex r(λi) emits more than one edge. Condition (L) is the key
hypothesis for the Cuntz-Krieger uniqueness theorem for directed graphs (see
[11, Theorem 3.7], [1, Theorem 3.1]). Since periodic paths in E∞ arise from
loops in E, condition (L) guarantees that there are lots of paths in E∞ which
are aperiodic.

In this section we seek an analogue for condition (L) in the context of
labelled graphs which will allow us to prove a Cuntz-Krieger uniqueness the-
orem for labelled graph C∗-algebras. The correct analogue for condition (L)
must ensure the existence of aperiodic paths in X+

E,L
. The two key difficulties

to overcome in the context of labelled graphs are that we must accommodate
the generalised vertices [v]� in a labelled graph and deal with the fact that a
periodic path x ∈ X+

E,L
need not arise from a loop in E.

The following definition is inspired by [20, Lemma 3.7].

Definitions 5.1. Let (E, L , E 0,−) be a labelled space, [v]� ∈ �� and
α ∈ L ∗(E) be such that |α| > 1 and s(α) ∩ [v]� �= ∅. We say that α is
agreeable for [v]� if there are α′, β, γ ∈ L ∗(E) with |β| = |γ | ≤ � and
α = βα′ = α′γ . Otherwise we say that α is disagreeable for [v]�.

We say that [v]� is disagreeable if there is an N > 0 such that for all n > N

there is an α ∈ L ∗(E) with |α| ≥ n that is disagreeable for [v]�.
The labelled space (E, L , E 0,−) is disagreeable if for every v ∈ E0 there

is an Lv > 0 such that [v]� is disagreeable for all � > Lv .
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Remark 5.2. Suppose that [v]p = ⋃m
i=1[wi]q , where q > p. Then Lv ≥

Lwi
for all i ∈ {1, . . . , m} since each wi ∈ [v]p.

The following Lemma shows that the notion of disagreeability reduces to
condition (L) for directed graphs and so is the appropriate condition for us to
use in our Cuntz-Krieger uniqueness theorem and simplicity results.

Lemma 5.3. The directed graph E satisfies condition (L) if and only if the
labelled space (E, Lt , E 0,−) is disagreeable.

Proof. Suppose that E satisfies condition (L). Observe that for all � ≥ 1
and all v ∈ E0, [v]� = {v}. We show that every v ∈ E0 is disagreeable.
Let Lv = 1, N = 1, fix n > N and � > Lv . If v does not lie on a loop,
then any path α with |α| ≥ n is disagreeable for [v]� = {v}. If v does lie
on a loop α = α1 . . . αm, without loss of generality we may assume that
s(α) = v. Since E satisfies condition (L) there is a path β with s(β) = v and
β|β| �∈ {α1, . . . , αm}. The path αnβ has length ≥ n and is disagreeable for [v]�.

Suppose E does not satisfy condition (L). Then there is a v ∈ E0 and a
simple loop α with s(α) = v that has no exit. Let N > 0. Then there is an n

such that |αn| > N . Suppose n ≥ 2. We claim that λ = αn is agreeable for
every � > |α|. Set β = γ = α and λ′ = αn−1. Since λ = βλ′ = λ′γ where
|β| = |γ | ≤ � it follows that [v]� = {v} is agreeable for �. Since αn is the only
path of length n|α| emitted by v, it follows that v is not disagreeable. Thus the
labelled space (E, L , E 0,−) is not disagreeable.

Examples 5.4. (i) Recall from [3, Examples 3.3 (iii)] the labelled graphs

(E1, L1) := 1

0

0

u v

0
1

0

u v

w

(E2, L2) := 1

are set-finite, receiver set-finite, left-resolving presentations of the even shift.
Consider (E1, L1). We claim that (E1, L1, E

0,−
1 ) is disagreeable. Now for

all � ≥ 1 we have [u]� = {u}. Let Lu = 1 and N = 3. Then for n > N the
labelled path αn = 11n0 satisfies |αn| = n + 2 ≥ N and αn is disagreeable
for [u]� as its first and last symbols disagree. Also for all � ≥ 1 we have
[v]� = {v}. If we let N = 4 and Lv = 1, then for each n > N the path
αn = 02n+11 satisfies |αn| = 2n + 2 ≥ n and αn is disagreeable for [v]� as



C∗-algebras of labelled graphs ii – simplicity results 263

its first and last symbols disagree. Thus the labelled space (E1, L1, E
0,−
1 ) is

disagreeable and our claim is established.
Consider (E2, L2). We claim that [w]� is agreeable for all � ≥ 2. Now

[w]� = {w} for all � ≥ 2, and any labelled path α satisfying s(α) ∩ [w]� �= ∅
must have the form α = 0n for some n. But α = 0n is agreeable for [w]� for all
� ≥ 2 whenever n ≥ � + 1: set α′ = 0n−�, β = γ = 0. Thus (E2, L2, E

0,−
2 )

is not disagreeable.
(ii) Let G be a group with a finite set of generators S = {g1, . . . , gm},

such that gi �= gj for i �= j . The (right) Cayley graph of G with respect to
S is the essential row-finite directed graph EG,S where E0

G,S = G, E1
G,S =

G × S with range and source maps given by r(h, gi) = hgi and s(h, gi) = h

for i = 1, . . . , m. The map LG,S(h, gi) = gi gives us a set-finite, receiver
set-finite, labelled graph (EG,S, LG,S). Since G is cancelative it follows that
(EG,S, LG,S) is left resolving. As each vertex inEG,S receives the same labelled
paths it follows that [g]� = G for all g ∈ G and � ≥ 1 and so E

0,−
G,S = {∅, G}.

Each g ∈ G emits the same m� labelled paths of length �. So if m = |S| > 1,
it follows that for all [g]� = G there is a disagreeable labelled path of length
n > 1 beginning at [g]� = G. Hence (EG,S, LG,S, E

0,−
G,S ) is disagreeable.

Theorem 5.5. Let (E, L , E 0,−) be a disagreeable labelled space. If
{Tα, QA} and {Sα, PA} are two representations of (E, L , E 0,−) in which all the
projections pA, PA are nonzero, then there is an isomorphism φ of C∗(Tα, QA)

onto C∗(Sα, PA) such that φ(Tα) = Sα and φ(QA) = PA.

To prove this theorem we show that the representations πT,Q and πS,P

of C∗(E, L , E 0,−) are faithful. The required isomorphism will then be φ =
πS,P ◦ π−1

T ,Q. The usual approach is to invoke symmetry and prove that

(a) πS,P is faithful on C∗(E, L , E 0,−)γ and

(b) ‖πS,P (
(a)) ‖ ≤ ‖πS,P (a)‖ for all a ∈ C∗(E, L , E 0,−).

Part (a) is proved in [3, Theorem 5.3]. To prove (b) we must do a little more
work than is needed for graph C∗-algebras because of the more complicated
structure of C∗(E, L , E 0,−)γ as is discussed in section 4.

Proof. By Proposition 3.4 every element of C∗(E, L , E 0,−) may be ap-
proximated by elements of the form

a =
∑

(α,[w]�,β)∈F

cα,[w]�,βsαp[w]� s
∗
β

where F is finite, and so it is enough to prove (b) for such elements a.
Let k = max{|α|, |β| : (α, [w]�, β) ∈ F }. By Proposition 3.4 we may

suppose (changing F if necessary), that every (α, [w]�, β) ∈ F is such that
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min{|α|, |β| : (α, [w]�, β) ∈ F } = k. Let M = max{|α|, |β| : (α, [w]�, β) ∈
F } and L = max{Lw : (α, [w]�, β) ∈ F }. By Remark 5.2 and Proposi-
tion 2.4(iii) we may suppose (again changing F if necessary, but not M or k)
that � ≥ max{L, M − k}.

Since |α| = |β| implies that |α| = k we have


(a) =
∑

(α,[w]�,β)∈F,|α|=|β|
cα,[w]�,βsαp[w]� s

∗
β ∈ F k(�)

where 
 is the conditional expectation of C∗(E, L , E 0,−) onto C∗(E, L ,

E 0,−)γ . By Proposition 4.3(i) F k(�) decomposes as the C∗-algebraic direct
sum

⊕
[w]� F k([w]�), so does its image under πS,P , and there is a [v]� ∈ ��

such that ‖πS,P (
(a))‖ is attained on F k([v]�). Let F[v]� denote the elements
of F of the form (α, [v]�, β), then we have

‖πS,P (
(a))‖ =
∥∥∥∥ ∑

(α,[v]�,β)∈F[v]� ,|α|=|β|
cα,[v]�,βSαP[v]�S

∗
β

∥∥∥∥.

We write
bv =

∑
(α,[v]�,β)∈F[v]� ,|α|=|β|

cα,[v]�,βSαP[v]�S
∗
β

and let G = {α : either (α, [v]�, β) ∈ F[v]� or (β, [v]�, α) ∈ F[v]� with |α| =
|β|}. Then span{SαP[v]�S

∗
β : α, β ∈ G} is a finite dimensional matrix algebra

containing bv .
Since � > L, [v]� is disagreeable. Hence there is an n > M and a λ with

|λ| ≥ n and [v]� ∩ s(λ) �= ∅ which has no factorisation λ = λ′λ′′ = λ′′γ for
λ′, γ ∈ L ≤(M−k)(E) (as M − k ≤ �). We claim that

Q =
∑
ν∈G

SνλPr([v]�,λ)S
∗
νλ

is such that

(9) ‖QπS,P (
(a))Q‖ = ‖πS,P (
(a))‖,
and

(10) QSαP[v]�S
∗
βQ = 0 when (α, [v]�, β) ∈ F and |α| �= |β|.

The formula for Q can be made sense of by a calculation similar to the one in
Remark 3.4. A routine calculation verifies (9).
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Now suppose that (α, [v]�, β) ∈ F satisfies |α| �= |β|. Either α or β has
length k, say |α| = k. As before, S∗

νλSα is non-zero if and only if ν = α. Thus

QSαP[v]�S
∗
βQ =

∑
ν∈G

SαλPr([v]�,λ)S
∗
αλSαP[v]�S

∗
βSνλPr([v]�,λ)S

∗
νλ

=
∑
ν∈G

SαλPr([v]�,λ)S
∗
βλSνλPr([v]�,λ)S

∗
νλ.

For Pr([v]�,λ)S
∗
βλSνλPr([v]�,λ) to be non-zero βλ must extend νλ, which implies

that βλ = νλγ for some γ . But then we have β = νλ′ for some initial segment
λ′ of λ as |β| > |ν|. Hence λ = λ′λ′′ which then implies that λ = λ′′γ as

βλ = νλ′λ′′ = νλγ = νλ′λ′′γ

and that |λ′| = |γ |. Since |β| ≤ M and |ν| = k it follows that |λ′| ≤ M−k ≤ �.
Thus λ is agreeable for [v]�, a contradiction. Thus QSαP[v]�S

∗
βQ = 0, and we

have verified (10).
The rest of the proof is now standard (see, for example, [20, p. 31]).

6. Simplicity and Pure Infiniteness

Recall from [10, Corollary 6.8] that a directed graph E is cofinal if for all
x ∈ E∞ and v ∈ E0 there is a path λ ∈ E∗ and N ≥ 1 such that s(λ) = v

and r(λ) = r(xN). Along with condition (L), cofinality is the key hypothesis
in the simplicity results for directed graphs (see [10, Corollary 6.8], [1, Pro-
position 5.1]).

In this section we seek an analogue for cofinality in the context of labelled
graphs which will allow us to prove a simplicity theorem for labelled graph
C∗-algebras. The two key difficulties to overcome in the context of labelled
graphs are that we must accommodate the generalised vertices [v]� in a labelled
graph and the fact that there may be many representatives of a given infinite
labelled path x ∈ X+

E,L
.

Definitions 6.1. Let (E, L , E 0,−) be a labelled space and � ≥ 1. We
say that (E, L , E 0,−) is �-cofinal if for all x ∈ X+

E,L
, [v]� ∈ ��, and

w ∈ s(x) there is an R(w) ≥ �, an N ≥ 1 and a finite number of labelled
paths λ1, . . . , λm such that for all d ≥ R(w) we have

⋃m
i=1 r([v]�, λi) ⊇

r([w]d , x1 . . . xN).
We say that (E, L , E 0,−) is cofinal if there is an L > 0 such that (E, L ,

E 0,−) is �-cofinal for all � > L.

Examples 6.2. (i) Recall from Example 2.5 that a directed graph E may
be considered to be a labelled graph with the trivial labelling Lt . Let E be a
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cofinal directed graph and fix v ∈ E0, x ∈ E∞. Since w = s(x) is the only
vertex with r(w, x1 . . . xn) �= ∅ for all n, we may put R(w) = 1 and invoke
cofinality of E to get the required N and λ so that (E, Lt , E 0,−) is cofinal
with L = 1. Thus the definition of cofinality for labelled graphs reduces to the
usual definition of cofinality for directed graphs.

(ii) The labelled space (E2, L2, E
0,−
2 ) of Example 5.4(i) is not �-cofinal

for � ≥ 2, and so not cofinal. To see this, observe that [w]� = {w} for � ≥ 2
and there is no labelled path joining w to the infinite path (100)∞.

The following result will allow us to prove cofinality for many interesting
examples.

Lemma 6.3. Let (E, L , E 0,−) be a labelled space. If E is row-finite, trans-
itive and E 0,− contains {v} for all v ∈ E0 then (E, L , E 0,−) is cofinal with
L = 1.

Proof. Let w ∈ E0. Since {w} ∈ E 0,− there must be an R(w) ≥ 1 such
that [w]d = {w} for all d ≥ R(w).

Let � ≥ 1 and choose [v]� ∈ ��. Let w ∈ E0, and choose R(w) as in the
first paragraph. Let x ∈ X+

E,L
be such that w ∈ s(x). Let N ≥ 1. Then as E is

row-finite there are only finitely many paths μ1, . . . , μm in E with s(μi) = w

and L (μi) = x1 . . . xN . By transitivity of E there are paths λ1, . . . , λm ∈ E∗
with s(λi) = v and r(λi) = r(μi). Then

m⋃
i=1

r([v]�, L (λi)) ⊇ r([w]d , x1 . . . xN)

as required. Thus (E, L , E 0,−) is cofinal with L = 1.

Theorem 6.4. Let (E, L , E 0,−) be cofinal and disagreeable. Then C∗(E,

L , E 0,−) is simple.

Proof. Since every ideal in a C∗-algebra is the kernel of a representation,
it suffices to prove that every non-zero representation πS,P of C∗(E, L , E 0,−)

is faithful. Suppose πS,P is a non-zero representation of C∗(E, L , E 0,−). If
we have P[v]� = 0 for all v ∈ E0 and � ≥ 1 then πS,P = 0. Thus there is a
w ∈ E0 and a d ≥ 1 with P[w]d �= 0. Fix [v]� ∈ ��. We aim to prove that
P[v]� �= 0. Since [w]d is the disjoint union of finitely many equivalence classes
[wi]k whenever k ≥ d, for each k there is an i such that P[wi ]k �= 0. So without
loss of generality, for a given [v]� ∈ ��, we may assume that d ≥ R(w).

Since (E, L , E 0,−) is set-finite we apply (4) of Proposition 3.4 to obtain

P[w]d =
∑

x1∈L ([w]dE1)

Sx1Pr([w]d ,x1)S
∗
x1

.
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Since the left-hand side is nonzero it follows that Sx1Pr([w]d ,x1)S
∗
x1

�= 0 for
some x1 ∈ L ([w]dE1) which implies that Pr([w]d ,x1) �= 0. Arguing as in the
proof of Proposition 3.4 we have

Pr([w]d ,x1) =
∑

x2∈L (r([w]d ,x1)E1)

Sx2Pr(r([w]d ,x1),x2)S
∗
x2

and so we may deduce that there is an x2 with Pr(r([w]d ,x1),x2) = Pr([w]d ,x1x2) �= 0.
Continuing in this way we produce x = x1x2 . . . ∈ X+

E,L
such that Pr([w]d ,x1...xn)

�= 0 for all n ≥ 1.
Let � ≥ 1 and [v]� ∈ ��. Since d > R(w), by cofinality, there are finitely

many labelled paths λ1, . . . , λm and an N ≥ 1 such that
⋃m

i=1 r([v]�, λi) ⊇
r([w]d , x1 . . . xN). Since Pr([w]d ,x1,...,xN ) �= 0 we must have Pr([v]�,λi ) �= 0 for
some i ∈ {1, . . . , m}. Since r([v]�, λi) ⊆ r(λi) it then follows that Pr(λi ) �= 0
and hence Sλi

�= 0. Since P[v]� = ∑
λ∈L ([v]�E|λi |) SλPr([v]�,λ)S

∗
λ it then follows

that P[v]� �= 0 as required.
Thus all the projections P[v]� are non-zero and Theorem 5.5 implies that

πS,P is faithful, completing our proof.

Examples 6.5. (i) The labelled space (E1, L1, E
0,−
1 ), shown to be dis-

agreeable in Examples 5.4(i) is cofinal with L = 1. This follows by Lemma
6.3(i) since E1 is row-finite, transitive and {v} ∈ E

0,−
1 for all v ∈ E0

1 . Hence
C∗(E1, L1, E

0,−
1 ) is simple by Theorem 6.4.

(ii) The labelled space (EG,S, LG,S, E
0,−
G,S ) of Examples 5.4(ii) is cofinal

with L = 1. To see this recall that [g]� = E0
G,S = G for all � ≥ 1. Fix

[g]� ∈ �� and x ∈ X+
EG,S ,LG,S

. For h ∈ G, d ≥ R(h) = 1 and n = 1 we
have r([h]d , x1) = G. Let λ1 be any element of S, then r([g]�, λ1) = G =
r([h]d , x1). Hence C∗(EG,S, LG,S, E

0,−
G,S ) is simple by Theorem 6.4.

We now turn our attention to the question of pure infiniteness for simple
labelled graph C∗-algebras. For graph C∗-algebras the key hypotheses are
condition (L) and every vertex connects to a loop (see [11, Theorem 3.9],
[1, Proposition 5.4]). As we already have an analogue of condition (L), we
must now seek to find a suitable replacement for the requirement that every
vertex connects to a loop in the context of labelled graphs. Again, there are
two difficulties to overcome: we must accommodate the generalised vertices
[v]� in a labelled graph and find the correct analogue of a loop.

Definitions 6.6. The labelled path α is repeatable if αn ∈ L ∗(E) for
all n ≥ 1. We say that every vertex connects to a repeatable labelled path
if for every [v]m ∈ �m there is a w ∈ E0, L(w) ≥ 1 and labelled paths
α, δ ∈ L ∗(E) with w ∈ r([v]m, δα) such that [w]� ⊆ r([w]�, α) for all
� ≥ L(w).
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Remark 6.7. The requirement that [w]� ⊆ r([w]�, α) for all � ≥ L(w)

ensures that α is repeatable, δαi ∈ L ∗(E) for all i ≥ 1 and that r([w]�, αi) �=
∅ for all sufficiently large �.

Our proof of the pure infiniteness result requires the following lemma whose
proof follows along similar lines to that of [1, Lemma 5.4].

Lemma 6.8. Let (E, L , E 0,−) be a labelled space, v ∈ E0 and � ≥ 1.
Let t be a positive element of F k([v]�). Then there is a projection r in the
C∗-subalgebra of F k([v]�) generated by t such that rtr = ‖t‖r .

Theorem 6.9. Let (E, L , E 0,−) be cofinal and disagreeable. If every ver-
tex connects to a repeatable labelled path then C∗(E, L , E 0,−) is simple and
purely infinite.

Proof. We know that C∗(E, L , E 0,−) is simple by Theorem 6.4. We show
that every hereditary subalgebra A of C∗(E, L , E 0,−) contains an infinite
projection; indeed we shall produce one which is dominated by a fixed positive
element a ∈ A with ‖
(a)‖ = 1.

By Proposition 3.4 we may choose a positive element b ∈ span{sαp[v]� s
∗
β :

α, β ∈ L ∗(E), [v]� ∈ ��} such that ‖a − b‖ < 1
4 . Suppose

b = ∑
(α,[w]�,β)∈F cα,[w]�,βsαp[w]� s

∗
β where F is a finite subset of L ∗(E) ×

� × L ∗(E). The element b0 := 
(b) is positive and satisfies ‖b0‖ ≥ 3
4 .

Let k = max{|α|, |β| : (α, [w]�, β) ∈ F }. By repeatedly applying (4) we
may suppose (changingF if necessary) that min{|α|, |β| : (α, [w]�, β) ∈ F } =
k. Let M = max{|α|, |β| : (α, [w]�, β) ∈ F }, LF = max{Lw : (α, [w]�, β) ∈
F } and let L be the smallest number such that (E, L , E 0,−) is �-cofinal for
all � ≥ L. Then from Proposition 2.4 and Remark 5.2 we may assume that
b0 ∈ ⊕

w:(α,[w]�,β)∈F F k([w]m) for some m ≥ max{L, LF , M}. In fact, ‖b0‖
must be attained in some summand F k([v]m). Let b1 be the component of b0

in F k([v]m), and note that b1 ≥ 0 and ‖b1‖ = ‖b0‖. By Lemma 6.8 there is
a projection r ∈ C∗(b1) ⊆ F k([v]m) such that rb1r = ‖b1‖r . Since b1 is a
finite sum of sαp[v]ms∗

β we can write r as a sum
∑

cαβsαp[v]ms∗
β over all pairs

of paths in

S = {α ∈ L (Ek) : either (α, [w]�, β) ∈ F

or (β, [w]�, α) ∈ F and [w]� ⊆ r(α)}.
As m ≥ Lv , [v]m is disagreeable and there is an n > M and a λ ∈ L ∗(E)

with |λ| ≥ n which is disagreeable for [v]m. Since m ≥ M ≥ M − k as well
we may employ the same argument as in the proof of Theorem 5.5 to produce
a projection Q := ∑

γ∈S sγλpr([v]m,λ)s
∗
γ λ such that Qsαp[v]ms∗

βQ = 0 unless
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|α| = |β| = k and [v]m ⊆ r(α) ∩ r(β). Since r ∈ C∗(b1) we have

r =
∑

cαβsαp[v]ms∗
β =

∑
cαβsα(sλpr([v]m,λ)s

∗
λ + (p[v]m − sλpr([v]m,λ)s

∗
λ))s∗

β

≥ Q

so that

QbQ = Qb0Q = Qrb1rQ = ‖b1‖rQ = ‖b0‖Q ≥ 3

4
Q.

Since ‖a − b‖ ≤ 1
4 we have QaQ ≥ QbQ − 1

4Q ≥ 1
2Q and so QaQ

is invertible in QC∗(E, L , E 0,−)Q. Let c denote its inverse and put v =
c1/2Qa1/2. Then vv∗ = c1/2QaQc1/2 = Q, and v∗v = a1/2QcQa1/2 ≤ ‖c‖a
and so v∗v belongs to the hereditary subalgebra A. To finish, we must show
that v∗v is an infinite projection.

We wish to find a labelled path β with r([v]m, β) �= ∅ whose initial segment
is λ and whose terminal segment is a repeatable labelled path. We choose x ∈
r([v]m, λ). Then [x]m+|λ| ⊆ r([v]m, λ) and by hypothesis [x]m+|λ| connects to a
repeatable path: That is, there is a w ∈ E0, L(w) ≥ 1 and paths α, δ ∈ L ∗(E)

such that w ∈ r([x]m+|λ|, δα), and [w]n ⊆ r([w]n, α) for all n ≥ L(w). The
required path is β = λδα. Let N = max{Lw, L(w)}. We claim that p[w]n is an
infinite projection for all n ≥ N . As n ≥ L(w), we know from Remark 6.7 that
we have r([w]n, αi) �= ∅, for i ≥ 1. Moreover, as n ≥ Lw we know that [w]n
is disagreeable. Hence there must be a labelled path γ with [w]n ∩ s(γ ) �= ∅
and i ≥ 1 with |γ | = |αi |, and γ �= αi . We compute

p[w]n ≤ sαi pr([w]n,αi )s
∗
αi < sαi pr([w]n,αi )s

∗
αi + sγ pr([w]n,γ )s

∗
γ ≤ p[w]n

and our claim is established.
We now demonstrate the existence of an infinite subprojection of Q. If μ

is any labelled path with |μ| = k ≤ M ≤ m and r(μ) ∩ s(λ) ∩ [v]m �= ∅
then for n ≥ N such that [w]n ⊆ r([v]m, λδα) (note that such an n exists as
[w]n ⊆ r([v]m, λδα) for all sufficiently large n) we have

p[w]n = p[w]n s
∗
μλδαsμλδα ∼ sμλδαp[w]n s

∗
μλδα ≤ sμλpr([v]m,λ)s

∗
μλ.

Because the projection sμλpr([v]m,λ)s
∗
μλ is a minimal projection in the matrix

algebra span{sμλpr([v]m,λ)s
∗
νλ : μ, ν ∈ S}, it is equivalent to a subprojection of

Q. It follows that Q is infinite, and, since Q = vv∗ ∼ v∗v this completes the
proof.

Examples 6.10. (i) In the labelled space (E1, L1, E
0,−
1 )of Examples 5.4(i)

every vertex connects to the repeatable path 0. Since (E1, L1, E
0,−
1 ) is cofi-
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nal and disagreeable, C∗(E1, L1, E
0,−
1 ) is simple and purely infinite by The-

orem 6.9.
(ii) Suppose that, for a group G, the set S contains (not necessarily dis-

tinct) elements g1, . . . , gn such that g1 . . . gn = 1G. Then every vertex in the
labelled graph (EG,S, LG,S) of Examples 5.4(ii) connects to the repeatable la-
belled path g1 . . . gn. If in addition we have |S| > 1, then by Examples 5.4(ii)
and Examples 6.5(ii) (EG,S, LG,S, E

0,−
G,S ) is cofinal and disagreeable and so

C∗(EG,S, LG,S, E
0,−
G,S ) is simple and purely infinite by Theorem 6.9.

7. Some labelled graph presentations of non-sofic shift spaces

7.1. Dyck Shifts

In this section we associate a labelled graph to a Dyck shift in such a way that
the resulting labelled space C∗-algebra is simple and purely infinite.

First we recall the definition of the Dyck shift (see, for example, [19],
[18]). Let N ≥ 1 be a fixed positive integer. The Dyck shift DN has alphabet
A = {α1, . . . , αN, β1, . . . , βN } where the symbols αi correspond to opening
brackets of type i and the symbols βi are their respective closing brackets. We
say that a word γ1 . . . γn ∈ A ∗ is admissible if γ1 . . . γn does not contain any
substring αiβj with i �= j . Thus the language of the Dyck shift consists of all
strings of properly matched brackets of types α1, . . . αN .

The following algorithm gives a labelled graph presentation of a Dyck shift.

(1) Fix N ≥ 1 and an alphabet {α1, . . . , αN, β1, . . . , βN }.
(2) Draw an unrooted, infinite, directed tree in which every vertex receives

one edge and emits N edges (i.e. an N -ary tree). Label the N branches
from each node, working from left to right, by α1, . . . , αN .

(3) For each i ∈ {1, . . . , N} and each edge e labelled αi , draw an edge from
r(e) to s(e) with label βi .

The resulting labelled graph (EN, LN) is a left-resolving labelled graph which
presents the Dyck shift DN .

Examples 7.1. (1) Let N = 1 and A = { ( , ) }. The above algorithm
gives the following labelled graph presentation of D1.

… …

)

(

)

(

)

(

)

(

)

(

)

(

Of course, the above labelled graph is not the optimal presentation of D1, as
D1 has no constraints and so is the full shift on the symbols ( and ).
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(2) Let N = 2 and let A = { (, [, ), ] }. The above algorithm gives the
following labelled graph presentation of D2.

(

(

(

[

[

[

)

)

)

]

]

]

[ ]

[ ]

()

()() ()][ ][

We thank W. Krieger for pointing out that the above labelled graph is an a-
synchronizing Shannon graph of the Dyck shift (see [8]).

Proposition 7.2. Let N ≥ 1 and A = {α1, . . . , αN, β1, . . . , βN }. Then
C∗(EN, LN, E

0,−
N ) is simple and purely infinite.

Proof. Let �� = {λ�
1, . . . , λ

�
N�} be the labelled paths of length � which

consist of only αi’s (opening braces), and let �� = {μ�
1, . . . , μ

�
N�} be the

labelled paths of length � which consist of only βi’s (closing braces), organised
in such a way that for all i the word λ�

i μ
�
i belongs to the language of DN . Since

every vertex v ∈ E0
N receives one opening brace and N closing braces, it

follows that v receives a unique λ�
i ∈ �� one sees that �� = {[v�

i ]� : i =
1, . . . , N�} where v�

i is some vertex in r(λ�
i ). Moreover, every vertex v ∈ E0

N

emits exactly one closing brace (the closing version of the one it receives) and
N opening braces, so every v which receives λ�

i also emits μ�
i .

For 1 ≤ i, j ≤ N� let μ�
ij = μ�

i λ
�
j then s(μ�

ij ) = [v�
i ]� as the only ver-

tices which emit μ�
i are those which receive λ�

i . Moreover, we have r(μ�
ij ) =

r(λ�
j ) = [v�

j ]� since every vertex in E0
N (emits the labelled path λ�

i and hence)
receives a labelled path μ�

i which originates from a vertex in [v�
i ]�, that it

r([v�
i ]�, μ�

i ) = E0
N .

Fix � ≥ 1, [v]� ∈ �� and x ∈ X+
EN ,LN

. Without loss of generality suppose
that [v]� = [v�

1]�. Then by definition of the μ�
ij we have

N�⋃
j=1

r([v�
1]�, μ

�
1j ) = E0

N

and hence the labelled space (EN, LN, E
0,−
N ) is cofinal with L = 1.

We now show that (EN, LN, E
0,−
N ) is disagreeable. For n ≥ 1, every vertex

v emits the labelled path αn
1β1, which is disagreeable for [v]�. Hence [v]� is
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disagreeable for all � ≥ 1. It follows that C∗(EN, LN, E
0,−
N ) is simple by

Theorem 6.4.
Since every vertex v ∈ E0

N emits the repeatable labelled path α1β1 it fol-
lows that every generalised vertex in (EN, LN, E

0,−
N ) connects to a repeatable

labelled path. Thus C∗(EN, LN, E
0,−
N ) is purely infinite by Theorem 6.9.

Remark 7.3. The essential symbolic matrix system (M(EN)�,�+1,

I (EN)�,�+1)�≥1 associated to (EN, LN, E
0,−
N ) gives rise to the λ-graph sys-

tem �Ch(DN ) described on [18, p. 5] (for example). Hence by Proposition 3.6 it
follows that C∗(EN, LN, E

0,−
N ) ∼= O�Ch(DN ) . Moreover by [18, Proposition 5.1]

we know that

K0(C
∗(EN, LN, E

0,−
N )) ∼= Z/NZ⊕C(�, Z) and K1(C

∗(EN, LN, E
0,−
N )) ∼= 0

where C(�, Z) denotes the abelian group of all Z-valued continuous functions
on the Cantor set �. Since the K-theory of C∗(EN, LN, E

0,−
N ) is not finitely

generated it follows that C∗(EN, LN, E
0,−
N ) cannot be isomorphic to a unital

graph algebra (indeed C∗(EN, LN, E
0,−
N ) is not semiprojective).

Note that the essential symbolic matrix system (M(EN)�,�+1,

I (EN)�,�+1)�≥1 associated to (EN, LN, E
0,−
N ) is not the same as the one de-

scribed in [9, Proposition 2.1]. In [9] the λ-graphs associated to symbolic
matrix systems are “upward directed” whereas in [16] they are “downward dir-
ected”. This results from the change of time direction mentioned on [9, p. 81].
Hence to form the appropriate “upward directed” versions for (EN, LN, E

0,−
N ),

it would seem natural to reverse the arrows in EN .

7.2. A Further Example

Consider the shift space X over the alphabet A = {a, b, c} whose language
consists of all words in {a, b, c} such that the numbers of b’s and c’s occurring
between any pair of consecutive a’s are equal.

Note that the shift X is not sofic: suppose otherwise. Then there is a finite
labelled graph (EX, LX) with |E0

X| = n which presents X. Let α be a path in
(EX, LX) which presents ab2nc2na. Then since the number of c’s in LX(α)

is greater than n, α must contain a cycle τ such that LX(τ) = cm for some
m ≤ n. Write α = α′τα′′. Then β = α′τ 2α′′ is a path in E∗

X which presents
the forbidden word ab2nc2n+ma.

The shift X has the following labelled graph presentation (EX, LX):

… …

c

b

c

b

c
v0

b

a

c

b

c

b

c

b
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Since the graph EX is transitive, it is straightforward to check from the above
presentation that X is irreducible.

Since each vertex in EX to the right (resp. left) of v0 receives a unique
labelled path of the form abn (resp. acn) it follows that {v} ∈ E 0,− for all
v ∈ E0

X. Since EX is row-finite it follows that (EX, LX, E
0,−
X ) is cofinal by

Lemma 6.3.
For n ≥ 1 every v ∈ E0

X emits the labelled path bnc, which is disagreeable
for [v]�. Hence [v]� is disagreeable for all � ≥ 1 and so C∗(EX, LX, E

0,−
X ) is

simple by Theorem 6.4.
Every v ∈ E0

X emits the repeatable path bc and since EX is transitive,
it follows that every generalised vertex connects to a repeatable path. Thus
C∗(EX, LX, E

0,−
X ) is purely infinite by Theorem 6.9.

REFERENCES

1. Bates, T., Pask, D., Raeburn, I., and Szymański, W., The C∗-algebras of row-finite graphs,
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