INCLUSIONS OF UNITAL C*-ALGEBRAS OF INDEX-FINITE TYPE WITH DEPTH 2 INDUCED BY SATURATED ACTIONS OF FINITE DIMENSIONAL C*-HOPF ALGEBRAS

KAZUNORI KODAKA and TAMOTSU TERUYA

Abstract

Let *B* be a unital *C*^{*}-algebra and *H* a finite dimensional *C*^{*}-Hopf algebra with its dual *C*^{*}-Hopf algebra H^0 . We suppose that there is a saturated action of *H* on *B* and we denote by *A* its fixed point *C*^{*}-subalgebra of *B*. Let *E* be the canonical conditional expectation from *B* onto *A*. In the present paper, we shall give a necessary and sufficient condition that there are a weak action of H^0 on *A* and a unitary cocycle σ of $H^0 \otimes H^0$ to *A* satisfying that there is an isomorphism π of $A \rtimes_{\sigma} H^0$ onto *B*, which is the twisted crossed product of *A* by the weak action of H^0 on *A* and the unitary cocycle σ , such that $F = E \circ \pi$, where *F* is the canonical conditional expectation from $A \rtimes_{\sigma} H^0$ onto *A*.

1. Introduction

Let $A \,\subset B$ be an irreducible and index-finte inclusion of unital C^* -algebras of depth 2. If A and B are factors then B is isomorphic to a crossed product of A by an (outer) action of a finite dimensional Kac (C^* -Hopf) algebra ([8], [13]). Izumi showed in [2] that if A and B are unital simple C^* -algebras then there is an action of a finite dimensional C^* -Hopf algebra H on B such that A is the fixed point C^* -subalgebra B^H . But B is not represented by a crossed product of A by an action of the dual C^* -Hopf algebra H^0 in general ([4], [5]). We give an example as follows: Let θ be an irrational number in (0, 1) and A_{θ} the corresponding irrational rotation C^* -algebra generated by unitary elements $\{u, v\}$ satisfying $uv = e^{2\pi\theta}vu$. For $n \in \mathbb{N}$ we define an outer automorphism σ by $\sigma(u) = e^{\frac{2\pi}{n}i}u$ and $\sigma(v) = v$ and an action α of $\mathbb{Z}/n\mathbb{Z}$ by $\alpha_k = \sigma^k$ for $k = 0, 1, 2, \dots, n-1$. It is easy to see that the fixed point C^* -subalgebra is $A_{n\theta}$ generated by u^n and v. Then the inclusion $A_{n\theta} \subset A_{\theta}$ is irreducible, of depth 2 and of Watatani index n. The dual group of $\mathbb{Z}/n\mathbb{Z}$ is also $\mathbb{Z}/n\mathbb{Z}$. Suppose that A_{θ} is isomorphic to a crossed product $A_{n\theta} \rtimes_{\beta} \mathbb{Z}/n\mathbb{Z}$ of $A_{n\theta}$ by an outer action

Received October 15, 2007.

 β of Z/nZ on $A_{n\theta}$. Let w be a unitary element in $A_{n\theta} \rtimes_{\beta} Z/nZ$ implementing β , i.e., $w^n = 1$ and $w^k x w^{k*} = \beta_k(x)$ for $x \in A_{n\theta}$ (k = 0, 1, 2, ..., n - 1). We can define a trace $\tilde{\tau}$ on $A_{n\theta} \rtimes_{\beta} Z/nZ$ by $\tilde{\tau}(w^k) = 0$ for k = 1, 2, ..., n - 1 and $\tilde{\tau}(x) = \tau(x)$ for $x \in A_{n\theta}$, where τ is the unique tracial state on $A_{n\theta}$. Put $p = \frac{1}{n} \sum_{k=0}^{n-1} w^k$. Then p is a projection in $A_{n\theta} \rtimes_{\beta} Z/nZ$ with $\tilde{\tau}(p) = \frac{1}{n}$. Since A_{θ} has the unique tracial state and its values for projections in A_{θ} is $(\theta Z + Z) \cap [0, 1]$, A_{θ} is not isomorphic to $A_{n\theta} \rtimes_{\beta} Z/nZ$.

In factor cases, Kosaki ([7]) gave a necessary and sufficient condition for B to be characterized by a crossed product by a finite group as follows:

(1.1)
$$A' \cap B = \mathsf{C}1$$
 and $A' \cap B_1$ is commutative,

where B_1 is the C^* -basic construction for $A \subset B$. We can see that the above example $A_{n\theta} \subset A_{\theta}$ satisfies Condition (1.1). So this characterization does not hold in C^* -algebras. However, A_{θ} can be represented by a twisted crossed product $A_{n\theta} \rtimes_{\beta,w} \mathbb{Z}/\mathbb{Z}n$ of $A_{n\theta}$ by a twisted action (β, w) . In the previous paper [6], we showed that *B* is described by a twisted crossed product of *A* by its twisted action of a finite group if and only if the inclusion $A \subset B$ satisfies Condition (1.1) and all the minimal projections in $A' \cap B_1$ are Murray-von Neumann equivalent in B_1 .

In [1], Blattner, Cohen and Montgomery defined a weak action of Hopf algebras, which is a generalization of twisted group actions. Let *H* be a finite dimensional *C**-Hopf algebra. We suppose that there is a saturated action of *H* on *B* defined in Szymański and Peligrad [14]. Let *A* be the fixed point *C**-subalgebra *B*^{*H*} and *E* the canonical conditional expectation from *B* onto *A*. Let $B \rtimes H$ be the crossed product of *B* by the action of *H* on *B*, which is defined in [14]. In [14], they showed that $B \rtimes H$ is isomorphic to B_1 , the *C**basic construction induced by *E*. Let ρ be the coaction of B_1 to $B_1 \otimes H$ defined by $\rho(b \rtimes h) = \sum_{(h)} (b \rtimes h_{(1)}) \otimes h_{(2)}$ for $b \in B$ and $h \in H$, where we identify B_1 with $B \rtimes H$ and $\Delta(h) = \sum_{(h)} h_{(1)} \otimes h_{(2)}$, Δ is the comultiplication of *H*. Our main result, Theorem 6.4, is that *B* can be represented by the twisted crossed product $A \rtimes_{\sigma} H^0$ if and only if $\rho(e_A)$ and $e_A \otimes 1$ are Murray-von Neumann equivalent, written $\rho(e_A) \sim e_A \otimes 1$ in $B_1 \otimes H$, where H^0 is the dual *C**-Hopf algebra of *H* and e_A is the Jones projection for $A \subset B$.

This paper is organized as follows: Section 2 consists of preliminaries containing definitions and fundamental matters of finite dimensional C^* -Hopf algebras and their weak actions. In Section 3 we define a unitary cocycle for a weak action of a finite dimensional C^* -Hopf algebra and discuss about a twisted crossed product. In Section 4 we suppose that $\rho(e_A) \sim e_A \otimes 1$ in $B_1 \otimes H$. We prove that there is a unitary element $u \in B \otimes H$ such that $\rho(e_A) = u^*(e_A \otimes 1)u$ and we give some properties of this unitary element. In Section 5 we construct a weak action of H^0 on A under the condition that $\rho(e_A) \sim e_A \otimes 1$ in $B_1 \otimes H$. In Section 6 we prove the main result, Theorem 6.4. Using this theorem we prove that B can be represented by a crossed product $A \rtimes H^0$ if and only if there is a tunnel construction $P \subset A$ for $A \subset B$ (Proposition 6.8). From this result, we can see that B always can be represented by $A \rtimes H^0$ and that any unitary cocycle is coboundary if $A \subset B$ are factors ([9], [11]).

2. Preliminaries on finite dimensional C*-Hopf algebras

Following [14], we shall state the definition of a finite dimensional C^* -Hopf algebra and its basic properties. Throughout this paper, H denotes a finite dimensional C^* -Hopf algebra.

DEFINITION 2.1. We say that a finite dimensional C^* -algebra H is a C^* -Hopf algebra if H has the following properties.

- (1) There exist linear maps;
 - (a) comultiplication $\Delta : H \longrightarrow H \otimes H$,
 - (b) counit $\epsilon : H \longrightarrow \mathsf{C}$,
 - (c) antipode S : H → H, Δ and ε are C*-algebra homomorphisms and S is a *- preserving antimultiplicative involution. We have Δ(1) = 1 ⊗ 1, ε(1) = 1 and S(1) = 1, where 1 is the unit element in H.
- (2) The following identities hold;
 - (a) $(\Delta \otimes id) \circ \Delta = (id \otimes \Delta) \circ \Delta$,
 - (b) $(\epsilon \otimes id) \circ \Delta = (id \otimes \epsilon) \circ \Delta = id$, where $C \otimes H$ and $H \otimes C$ are identified with H,
 - (c) $(m \circ (S \otimes id))(\Delta(h)) = \epsilon(h) = (m \circ (id \otimes S))(\Delta(h))$ for any $h \in H$, where $m : H \otimes H \longrightarrow H$ denotes the multiplication.

We shall use Sweedler's notation $\Delta(h) = h_{(1)} \otimes h_{(2)}$ for $h \in H$ which suppresses a possible summation when we write the comultiplications. By [14, Theorem 2.2] or Woronowicz [16], there is the Haar trace τ on H such that $(\tau \otimes id)(\Delta(h)) = \tau(h)1 = (id \otimes \tau)(\Delta(h))$ for any $h \in H$.

Let H^0 be the linear space of linear functionals on H. By [14, Proposition 2.3], H^0 has a C^* -Hopf algebra structure. We regard H^0 as a finite dimensional C^* -Hopf algebra by this structure. We denote its comultiplication, counit, antipode and so on by Δ^0 , ϵ^0 , S^0 and so on.

Since *H* is a finite dimensional C^* -algebra, $H \cong \bigoplus_{k=1}^N M_{d_k}(\mathsf{C})$ as C^* -algebras, where for each $n \in \mathsf{N}$, we denote by $M_n(\mathsf{C})$ the $n \times n$ -matrix algebra over C . Let $\{v_{ij}^k\}_{ij=1}^{d_k}$ be a system of matrix units of a C^* -subalgebra of *H* isomorphic to $M_{d_k}(\mathsf{C})$ for k = 1, 2, ..., N. Also, let $\{w_{ij}^k | k = 1, 2, ..., N, i, j = 0\}$

1, 2, ..., d_k } be a basis of H satisfying [14, Theorem 2.2,2]. We call it *a system of comatrix units* of H. By [14, Theorem 2.2] or [16], there is a minimal and central projection e in H, called *the distinguished projection* such that $he = \epsilon(h)e$ for any $h \in H$. By [14, Proposition 2.10] and the discussions below it,

$$\Delta(e) = \sum_{i,j,k} \frac{1}{d_k} v_{ji}^k \otimes S(v_{ij}^k) = \sum_{i,j,k} \frac{1}{d_k} S(v_{ji}^k) \otimes v_{ij}^k.$$

Also, by the above equations and Definition 2.1,

$$e = \sum_{i,j,k} \frac{1}{d_k} \epsilon(v_{ji}^k) v_{ij}^k = \sum_{i,j,k} \frac{1}{d_k} \epsilon(v_{ji}^k) S(v_{ij}^k).$$

Furthermore, we note that the Haar trace τ on *H* is the distinguished projection in H^0 .

Next, following Blattner, Cohen and Montgomery [1, Definitions 1.1 and 2.1] and [14, Definition 2.4], we shall define an action and a coaction of a finite dimensional C^* -Hopf algebra H on a unital C^* -algebra A.

DEFINITION 2.2. By *a weak action* of *H* on *A*, we mean a bilinear map $(h, x) \mapsto h \cdot x$ of $H \times A$ to *A* such that for $h \in H, x, y \in A$

(1) $h \cdot xy = (h_{(1)} \cdot x)(h_{(2)} \cdot y),$

(2)
$$h \cdot 1 = \epsilon(h)1$$
,

(3) $1 \cdot x = x$,

(4)
$$(h \cdot x)^* = S(h^*) \cdot x^*$$

By *an action* of *H* on *A*, we mean a weak action such that $h \cdot (l \cdot x) = (hl) \cdot x$ for $h, l \in H, x \in A$.

Let Hom(*H*, *A*) be the linear space of all linear maps from *H* to *A*. Then by Sweedler [12, pp. 69-70] it becomes a unital *-algebra as follows: For any $f, g \in \text{Hom}(H, A)$ $(fg)(h) = f(h_{(1)})g(h_{(2)}), f^*(h) = f(S(h^*))^*$, where ϵ , the counit in *H* is the unit element in Hom(*H*, *A*). We call it *a unital convolution* *- *algebra*. Then as mentioned in [1, pp. 163], there is an isomorphism *i* of $A \otimes H^0$ onto Hom(*H*, *A*) defined by $\iota(x \otimes \phi)(h) = \phi(h)x$ for any $x \in A$, $h \in H$ and $\phi \in H^0$ since *H* is finite dimensional.

DEFINITION 2.3. A weak action of H on A is *inner* if there is a unitary element $U \in \text{Hom}(H, A)$ such that for any $h \in H$ and $x \in A$, $h \cdot x = U(h_{(1)})xU^*(h_{(2)})$. We say that U *implements* the weak action.

DEFINITION 2.4. By *a weak coaction* of *H* on *A*, we mean a linear map $\rho : A \rightarrow A \otimes H$ such that for $x, y \in A$,

- (1) $\rho(xy) = \rho(x)\rho(y)$,
- (2) $\rho(1) = 1 \otimes 1$,
- (3) $(\operatorname{id} \otimes \epsilon)(\rho(x)) = x$,

(4)
$$\rho(x^*) = \rho(x)^*$$
.

By a coaction of H on A, we mean a weak coaction such that

$$(\rho \otimes \mathrm{id}) \circ \rho = (\mathrm{id} \otimes \Delta) \circ \rho.$$

If *H* acts on *A* in the saturated fashion defined in [14], then its fixed point C^* -subalgebra A^H of *A* is defined by

$$A^{H} = \{ x \in A \mid h \cdot x = \epsilon(h)x \text{ for any } h \in H \}.$$

Also, we can define a conditional expectation E from A onto A^H with $\operatorname{Index}(E) = \dim(H)$ by $E(x) = e \cdot x$ for $x \in A$ by [14], where $\operatorname{Index}(E)$ is the Watatani index of E. We call E the canonical conditional expectation of A onto A^H .

3. A twisted crossed product of a unital C^* -algebra by a finite dimensional C^* -Hopf algebra

Modifying [14] and [1], we shall define a twisted crossed product of a unital C^* -algebra by a finite dimensional C^* -Hopf algebra. Let H be a finite dimensional C^* -Hopf algebra and A a unital C^* -algebra. In the same way as in Section 2, Hom $(H \otimes H, A)$ becomes a unital convolution *-algebra as follows: For any $f, g \in \text{Hom}(H \otimes H, A)$ $(fg)(h, l) = f(h_{(1)}, l_{(1)})g(h_{(2)}, l_{(2)}), f^*(h, l) = f(S(h^*), S(l^*))^*$, where $\epsilon \otimes \epsilon$ is the unit element in Hom $(H \otimes H, A)$. We suppose that there is a weak action of H on A.

DEFINITION 3.1. Let $\sigma : H \otimes H \longrightarrow A$ be a bilinear map. The bilinear map σ is *a unitary cocycle* for the weak action of *H* on *A* if σ satisfies the following:

- (1) In the unital convolution *- algebra $\operatorname{Hom}(H \otimes H, A)$, σ is a unitary element,
- (2) σ is normal, that is, for any $h \in H$, $\sigma(h, 1) = \sigma(1, h) = \epsilon(h)1$,
- (3) (cocycle condition) For any $h, l, m \in H$

 $[h_{(1)} \cdot \sigma(l_{(1)}, m_{(1)})]\sigma(h_{(2)}, l_{(2)}m_{(2)}) = \sigma(h_{(1)}, l_{(1)})\sigma(h_{(2)}l_{(2)}, m),$

(4) (twisted modular condition) For any $h, l \in H, x \in A$,

$$[h_{(1)} \cdot (l_{(1)} \cdot x)]\sigma(h_{(2)}, l_{(2)}) = \sigma(h_{(1)}, l_{(1)})(h_{(2)}l_{(2)} \cdot x).$$

We suppose that σ is a unitary cocycle for the weak action of H on A. Let $A \rtimes_{\sigma} H$ be a unital *-algebra, called *a twisted crossed product* of A by H, where underlying space is $A \otimes H$. We denote by $x \rtimes h$ the element induced by $x \in A$ and $h \in H$. Its multiplication and *-operation are given by

$$(x \rtimes h)(y \rtimes l) = x(h_{(1)} \cdot y)\sigma(h_{(2)}, l_{(1)}) \rtimes h_{(3)}l_{(2)}$$
$$(x \rtimes h)^* = \sigma(S(h_{(2)}), h_{(1)})^*(h_{(3)}^* \cdot x^*) \rtimes h_{(4)}^*$$

for any $x, y \in A$ and $h, l \in H$. By [1, Corollary 4.6], $A \rtimes_{\sigma} H$ is a unital algebra. It is necessary to show that $A \rtimes_{\sigma} H$ is a *-algebra. We shall show it. Before doing it, we note the following:

REMARK 3.2. We identify A with the C*-subalgebra $A \rtimes 1$ of $A \rtimes_{\sigma} H$. Also, if σ is trivial, that is, for any $h, l \in H \sigma(h, l) = \epsilon(h)\epsilon(l)1$, then $A \rtimes_{\sigma} H$ is the ordinary crossed product, $A \rtimes H$ which is defined in [14]. Furthermore, in the ordinary crossed product, we can also identify H with the C*-subalgebra $1 \rtimes H$ of $A \rtimes H$.

LEMMA 3.3. For any $h, l \in H$,

(1)
$$h \cdot \sigma(S(l_{(2)}), l_{(1)}) = \sigma(h_{(1)}, S(l_{(3)}))\sigma(h_{(2)}S(l_{(2)}), l_{(1)})$$

(2)
$$h \cdot \sigma(l_{(1)}, S(l_{(2)})) = \sigma(h_{(1)}, l_{(1)})\sigma(h_{(2)}l_{(2)}, S(l_{(3)}))$$

PROOF. For any $h, l \in H$,

$$\begin{aligned} h \cdot \sigma(S(l_{(2)}), l_{(1)}) &= (\epsilon(h_{(2)})h_{(1)}) \cdot \sigma(S(l_{(2)}), l_{(1)}) \\ &= [h_{(1)} \cdot \sigma(S(l_{(2)}), l_{(1)})]\sigma(h_{(2)}, 1) \\ &= [h_{(1)} \cdot \sigma(S(l_{(3)}), l_{(1)})]\sigma(h_{(2)}, \epsilon(l_{(2)})) \\ &= [h_{(1)} \cdot \sigma(S(l_{(4)}), l_{(1)})]\sigma(h_{(2)}, S(l_{(3)})l_{(2)}) \\ &= \sigma(h_{(1)}, S(l_{(3)}))\sigma(h_{(2)}S(l_{(2)}), l_{(1)}) \end{aligned}$$

by Definition 3.1(3). In the same way, we obtain Equation (2).

LEMMA 3.4. For any $x, y \in A$ and $h \in H$, $((x \rtimes 1)(y \rtimes h))^* = (y \rtimes h)^*(x \rtimes 1)^*$.

PROOF. By routine computations,

$$(y \rtimes h)^* (x \rtimes 1)^* = \sigma(S(h_{(2)}), h_{(1)})^* (h_{(3)}^* \cdot y^*) (h_{(4)}^* \cdot x^*) \sigma(h_{(5)}^*, 1) \rtimes h_{(6)}^*$$
$$= \sigma(S(h_{(2)}), h_{(1)})^* (h_{(3)}^* \cdot y^* x^*) \rtimes h_{(4)}^*$$
$$= ((x \rtimes 1)(y \rtimes h))^*.$$

LEMMA 3.5. For any $x \in A$ and $h \in H$, $((1 \rtimes h)(x \rtimes 1))^* = (x \rtimes 1)^*(1 \rtimes h)^*$. PROOF. By Definition 3.1(4),

$$\begin{aligned} ((1 \rtimes h)(x \rtimes 1))^* &= [(S(h_{(4)}) \cdot (h_{(1)} \cdot x))\sigma(S(h_{(3)}), h_{(2)})]^* \rtimes h_{(5)}^* \\ &= [\sigma(S(h_{(4)}), h_{(1)})(S(h_{(3)})h_{(2)} \cdot x)]^* \rtimes h_{(5)}^* \\ &= (\sigma(S(h_{(2)}), h_{(1)})x)^* \rtimes h_{(3)}^* = (x \rtimes 1)^* (1 \rtimes h)^*. \end{aligned}$$

LEMMA 3.6. For any $h, l \in H$, $((1 \rtimes h)(1 \rtimes l))^* = (1 \rtimes l)^*(1 \rtimes h)^*$.

PROOF. By routine calculations,

$$((1 \rtimes h)(1 \rtimes l))^* = [(S(h_{(4)}l_{(4)}) \cdot \sigma(h_{(1)}, l_{(1)}))\sigma(S(h_{(3)}l_{(3)}), h_{(2)}l_{(2)})]^* \rtimes (h_{(5)}l_{(5)})^*.$$

Using Definition 3.1(3),

$$\begin{split} ((1 \rtimes h)(1 \rtimes l))^* &= [\sigma(S(h_{(4)}l_{(3)}), h_{(1)})\sigma(S(h_{(3)}l_{(2)})h_{(2)}, l_{(1)})]^* \rtimes (h_{(5)}l_{(4)})^* \\ &= \sigma(S(l_{(2)}), l_{(1)})^*\sigma(S(l_{(3)})S(h_{(2)}), h_{(1)})^* \rtimes l_{(4)}^* h_{(3)}^*. \end{split}$$

On the other hand,

$$(1 \rtimes l)^* (1 \rtimes h)^* = \sigma(S(l_{(2)}), l_{(1)})^* [S(l_{(3)}) \cdot \sigma(S(h_{(2)}), h_{(1)})]^* \sigma(l_{(4)}^*, h_{(3)}^*) \rtimes l_{(5)}^* h_{(4)}^*.$$

Using Lemma 3.3(1) and that $\sigma^* \sigma = \epsilon \otimes \epsilon$,

$$\begin{aligned} (1 \rtimes l)^* (1 \rtimes h)^* \\ &= \sigma(S(l_{(2)}), l_{(1)})^* \\ &\times [\sigma(S(l_{(4)}), S(h_{(3)}))\sigma(S(l_{(3)})S(h_{(2)}), h_{(1)})]^* \sigma(l_{(5)}^*, h_{(4)}^*) \rtimes l_{(6)}^* h_{(5)}^* \\ &= \sigma(S(l_{(2)}), l_{(1)})^* \sigma(S(l_{(3)})S(h_{(2)}), h_{(1)})^* \rtimes l_{(4)}^* h_{(3)}^*. \end{aligned}$$

Therefore we obtain the conclusion.

LEMMA 3.7. For any $h \in H$, $(1 \rtimes h)^{**} = 1 \rtimes h$.

PROOF. Using Lemma 3.3(1) and that $\sigma^* \sigma = \epsilon \otimes \epsilon$, by routine computations,

$$\begin{split} (1 \rtimes h)^{**} &= \sigma(S(h_{(4)})^*, h_{(3)}^*)^* [h_{(5)} \cdot \sigma(S(h_{(2)}), h_{(1)})] \rtimes h_{(6)} \\ &= \sigma(S(h_{(5)}^*), h_{(4)}^*)^* \sigma(h_{(6)}, S(h_{(3)})) \sigma(h_{(7)}S(h_{(2)}), h_{(1)}) \rtimes h_{(8)} \\ &= \epsilon(h_{(4)}) \epsilon(S(h_{(3)})) \sigma(h_{(5)}S(h_{(2)}), h_{(1)}) \rtimes h_{(6)} = 1 \rtimes h. \end{split}$$

PROPOSITION 3.8. The unital algebra $A \rtimes_{\sigma} H$ is a *-algebra.

PROOF. We have only to show that for any $x, y \in A$ and $h, l \in H$,

$$((x \rtimes h)(y \rtimes l))^* = (y \rtimes l)^* (x \rtimes h)^*, \quad (x \rtimes h)^{**} = x \rtimes h.$$

Since $(1 \rtimes h)(y \rtimes l)$ is a finite sum of elements in the form $z \rtimes k$, where $z \in A$, $k \in H$, by Lemma 3.4

$$((x \rtimes h)(y \rtimes l))^* = ((x \rtimes 1)(1 \rtimes h)(y \rtimes l))^*$$
$$= ((1 \rtimes h)(y \rtimes 1)(1 \rtimes l))^*(x \rtimes 1)^*.$$

Also, we can write that $(1 \rtimes h)(y \rtimes 1) = \sum_i z_i \rtimes k_i$, where $z_i \in A, k_i \in H$ for any *i*. Hence

$$((1 \rtimes h)(y \rtimes 1)(1 \rtimes l))^* = \sum_i ((z_i \rtimes 1)(1 \rtimes k_i)(1 \rtimes l))^*.$$

Since $(1 \rtimes k_i)(1 \rtimes l)$ is also a finite sum of elements in the form $z \rtimes k$, where $z \in A, k \in H$, by Lemmas 3.4, 3.5 and 3.6,

$$((1 \rtimes h)(y \rtimes 1)(1 \rtimes l))^* = \sum_i (1 \rtimes l)^* (1 \rtimes k_i)^* (z_i \rtimes 1)^*$$
$$= \sum_i (1 \rtimes l)^* ((z_i \rtimes 1)(1 \rtimes k_i))^*$$
$$= (1 \rtimes l)^* (y \rtimes 1)^* (1 \rtimes h)^*.$$

Thus by Lemma 3.4,

$$((x \rtimes h)(y \rtimes l))^* = (1 \rtimes l)^* (y \rtimes 1)^* (1 \rtimes h)^* (x \rtimes 1)^* = (y \rtimes l)^* (x \rtimes h)^*.$$

Furthermore, by the above discussion and Lemma 3.7,

$$(x \rtimes h)^{**} = (x \rtimes 1)^{**} (1 \rtimes h)^{**} = x \rtimes h.$$

Modifying [14], we shall define a C^* -norm in $A \rtimes_{\sigma} H$. We suppose that A acts on a Hilbert space \mathcal{H} faithfully and non-degenerately. Let $l^2(\tau, H)$ be a Hilbert space induced by the Haar trace τ on H and **B** the C^* -algebra of all bounded linear operatros on a Hibert space $\mathcal{H} \otimes l^2(\tau, H)$. Let θ be a map from $A \rtimes_{\sigma} H$ to **B** defined by for any $x \in A, h, l \in H$ and $\xi \in \mathcal{H}$,

$$\theta(x \rtimes h)(\xi \otimes l) = (S(h_{(3)}l_{(2)}) \cdot x)\sigma(S(h_{(2)}l_{(1)}), h_{(1)})\xi \otimes h_{(4)}l_{(3)}.$$

We shall show that θ is a faithful representation of the *-algebra $A \rtimes_{\sigma} H$ to **B**.

LEMMA 3.9. For any $x, y \in A$ and $h \in H$, $\theta((x \rtimes 1)(y \rtimes h)) = \theta(x \rtimes 1)\theta(y \rtimes h)$.

PROOF. By routine calculations, for any $\xi \in \mathcal{H}$ and $l \in l^2(\tau, H)$,

$$\begin{aligned} \theta(x \rtimes 1)\theta(y \rtimes h)(\xi \otimes l) \\ &= [S(h_{(4)}l_{(3)}) \cdot x][S(h_{(3)}l_{(2)}) \cdot y]\sigma(S(h_{(2)}l_{(1)}), h_{(1)})\xi \otimes h_{(5)}l_{(4)} \\ &= [S(h_{(3)}l_{(2)}) \cdot xy]\sigma(S(h_{(2)}l_{(1)}), h_{(1)})\xi \otimes h_{(4)}l_{(3)} \\ &= \theta((x \rtimes 1)(y \rtimes h))(\xi \otimes l). \end{aligned}$$

LEMMA 3.10. For any $x \in A$ and $h, k \in H$, $\theta((1 \rtimes h)(x \rtimes k)) = \theta(1 \rtimes h)\theta(x \rtimes k)$.

PROOF. By Definition 3.1(3) and (4) for any $\xi \in \mathcal{H}$ and $l \in l^2(\tau, H)$,

$$\begin{aligned} \theta((1 \rtimes h)(x \rtimes k))(\xi \otimes l) \\ &= [S(h_{(6)}k_{(5)}l_{(3)}) \cdot (h_{(1)} \cdot x)][S(h_{(5)}k_{(4)}l_{(2)}) \cdot \sigma(h_{(2)}, k_{(1)})] \\ &\times \sigma(S(h_{(4)}k_{(3)}l_{(1)}), h_{(3)}k_{(2)})\xi \otimes h_{(7)}k_{(6)}l_{(4)} \\ &= [S(h_{(4)}k_{(4)}l_{(3)}) \cdot (h_{(1)} \cdot x)]\sigma(S(h_{(3)}k_{(3)}l_{(2)}), h_{(2)})\sigma(S(k_{(2)}l_{(1)}), k_{(1)})\xi \\ &\otimes h_{(5)}k_{(5)}l_{(4)} \\ &= \sigma(S(h_{(4)}k_{(4)}l_{(3)}), h_{(1)})[S(h_{(3)}k_{(3)}l_{(2)})h_{(2)} \cdot x]\sigma(S(k_{(2)}l_{(1)}), k_{(1)})\xi \\ &\otimes h_{(5)}k_{(5)}l_{(4)} \\ &= \sigma(S(h_{(2)}k_{(4)}l_{(3)}), h_{(1)})[S(k_{(3)}l_{(2)}) \cdot x]\sigma(S(k_{(2)}l_{(1)}), k_{(1)})\xi \otimes h_{(3)}k_{(5)}l_{(4)} \\ &= \theta(1 \rtimes h)\theta(x \rtimes k)(\xi \otimes l). \end{aligned}$$

LEMMA 3.11. For any $x \in A$ and $h \in H$, $\theta((x \rtimes 1)^*) = \theta(x \rtimes 1)^*$, $\theta((1 \rtimes h)^*) = \theta(1 \rtimes h)^*$.

PROOF. For any $\xi, \eta \in \mathcal{H}$ and $l, k \in H$,

$$(\theta((x \rtimes 1)^*)(\xi \otimes l)|\eta \otimes k) = ([S(l_{(1)}) \cdot x^*]\xi|\eta)\tau(l_{(2)}k^*).$$

Also, by [14, Theorem 2.2],

$$\begin{aligned} &(\theta(x \rtimes 1)^* (\xi \otimes l) | \eta \otimes k) \\ &= (\xi \otimes l | \theta(x \rtimes 1) (\eta \otimes k)) = (\xi | [S(k_{(1)}) \cdot x] \eta) \tau(lk_{(2)}^*) \\ &= (\xi | [S(k_{(1)}) \cdot x] \eta) \tau(\epsilon(l_{(1)}) l_{(2)} k_{(2)}^*) = (\xi | [S(k_{(1)}) S(l_{(2)}^*) l_{(1)}^* \tau(k_{(2)} l_{(3)}^*) \cdot x] \eta) \\ &= (\xi | [\tau(S(l_{(3)}^* k_{(2)})) S(l_{(2)}^* k_{(1)}) l_{(1)}^* \cdot x] \eta) = (\xi | [\tau(l_{(2)}^* k) l_{(1)}^* \cdot x] \eta) \\ &= ([S(l_{(1)}) \cdot x^*] \xi | \eta) \tau(l_{(2)} k^*). \end{aligned}$$

Thus we obtain the first equation in the above. Furthermore, using Lemma 3.3(1) and that $\sigma^* \sigma = \epsilon \otimes \epsilon$, by routine computations,

$$\begin{split} (\theta((1 \rtimes h)^*)(\xi \otimes l)|\eta \otimes k) \\ &= ([S(h^*_{(5)}l_{(2)}) \cdot \sigma(S(h_{(2)}), h_{(1)})^*]\sigma(S(h^*_{(4)}l_{(1)}), h_{(3)})\xi|\eta)\tau(h^*_{(6)}l_{(3)}k^*) \\ &= (\xi|\sigma^*(l^*_{(1)}h_{(5)}, S(h_{(4)}))\sigma(l^*_{(2)}h_{(6)}, S(h_{(3)})) \\ &\qquad \times \sigma(l^*_{(3)}h_{(7)}S(h_{(2)}), h_{(1)})\eta)\tau(h^*_{(8)}l_{(4)}k^*) \\ &= (\xi|\sigma(\tau(kl^*_{(2)}h_{(2)})l^*_{(1)}, h_{(1)})\eta) \\ &= (\xi|\sigma(\tau(kl^*_{(2)}\epsilon(k_{(1)})l^*_{(2)}h_{(3)}\epsilon(h_{(2)}))l^*_{(1)}, h_{(1)})\eta) \\ &= (\xi|\sigma(S(k_{(1)})S(h_{(2)})\tau(h_{(4)}k_{(3)}l^*_{(2)})h_{(3)}k_{(2)}l^*_{(1)}, h_{(1)})\eta). \end{split}$$

By [14, Theorem 2.2],

$$\begin{aligned} (\theta((1 \rtimes h)^*)(\xi \otimes l) | \eta \otimes k) &= (\xi | \sigma(S(h_{(2)}k_{(1)}), h_{(1)})\eta)\tau(lk_{(2)}^*h_{(3)}^*) \\ &= (\theta(1 \rtimes h)^*(\xi \otimes l) | \eta \otimes k). \end{aligned}$$

Let *V* be a linear map from *H* to $A \rtimes_{\sigma} H$ defined by $V(h) = 1 \rtimes h$ for any $h \in H$. By easy computations $V \in \text{Hom}(H, A \rtimes_{\sigma} H)$. Moreover, we have the following properties:

LEMMA 3.12. (i) The element V is a unitary one in Hom $(H, A \rtimes_{\sigma} H)$. (ii) For any $x \in A$ and $h, l \in H$,

$$(h \cdot x) \rtimes 1 = V(h_{(1)})(x \rtimes 1)V^*(h_{(2)}),$$

$$\sigma(h, l) \rtimes 1 = V(h_{(1)})V(l_{(1)})V^*(h_{(2)}l_{(2)}).$$

PROOF. Since σ is a unitary element in Hom $(H \otimes H, A \rtimes_{\sigma} H)$,

$$(V^*V)(h) = \sigma(h^*_{(3)}, S(h_{(4)}))^* \sigma(S(h_{(2)}), h_{(5)}) \rtimes S(h_{(1)})h_{(6)} = \epsilon(h) \rtimes 1.$$

Furthermore, by Lemma 3.3(2),

$$(VV^*)(h) = (S(h^*_{(1)}) \cdot \sigma(h^*_{(4)}, S(h_{(5)})))^* \sigma(h_{(2)}, S(h_{(3)})) \rtimes 1$$

= $\sigma(S(h^*_{(1)})h^*_{(6)}, S(h^*_{(7)}))^* \sigma(S(h^*_{(2)}), h^*_{(5)})^* \sigma(h_{(3)}, S(h_{(4)})) \rtimes 1$
= $\epsilon(h) \rtimes 1$.

Hence V is a unitary element in Hom $(H, A \rtimes_{\sigma} H)$. Also, since $\sigma^* \sigma = \epsilon \otimes \epsilon$,

by Lemma 3.3(1)

$$\begin{split} V(h_{(1)})(x \rtimes 1)V^*(h_{(2)}) \\ &= (h_{(1)} \cdot x)[S(h_{(2)}^*) \cdot \sigma(h_{(5)}^*, S(h_{(6)}^*))]^* \sigma(h_{(3)}, S(h_{(4)})) \rtimes 1 \\ &= (h_{(1)} \cdot x)[\sigma(S(h_{(3)}^*), h_{(6)})\sigma(S(h_{(2)}^*)h_{(7)}^*, S(h_{(8)}^*))]^* \sigma(h_{(4)}, S(h_{(5)})) \rtimes 1 \\ &= (h \cdot x) \rtimes 1. \end{split}$$

Furthermore, since $\sigma^* \sigma = \epsilon \otimes \epsilon$, by Lemma 3.3(2)

$$\begin{split} V(h_{(1)})V(l_{(1)})V^*(h_{(2)}l_{(2)}) \\ &= \sigma(h_{(1)}, l_{(1)})[\sigma(S(h_{(3)}l_{(3)})^*, (h_{(6)}l_{(6)})^*)] \\ &\times \sigma(S(h_{(2)}l_{(2)})^*(h_{(7)}l_{(7)})^*, S(h_{(8)}l_{(8)})^*)]^*\sigma(h_{(4)}l_{(4)}, S(h_{(5)}l_{(5)})) \rtimes 1 \\ &= \sigma(h_{(1)}, l_{(1)})\sigma(S(h_{(2)}l_{(2)})^*(h_{(5)}l_{(5)})^*, S(h_{(6)}l_{(6)})^*)^* \\ &\times (\sigma^*\sigma)(h_{(3)}l_{(3)}, S(h_{(4)}l_{(4)})) \rtimes 1 \\ &= \sigma(h, l) \rtimes 1. \end{split}$$

This lemma means that the action of *H* on *A* is inner in $A \rtimes_{\sigma} H$. Using the above lemmas we shall show the following proposition:

PROPOSITION 3.13. The map θ is an injective representation of $A \rtimes_{\sigma} H$ to **B**.

PROOF. It is immediate by Lemmas 3.9, 3.10 and 3.11 that θ is a representation of $A \rtimes_{\sigma} H$ to B. We have only to show that θ is injective. Let $\{w_{ij}^k\}$ be a system of comatrix units of H and let $x = \sum_{i,j,k} x_{ijk} \rtimes w_{ij}^k$, where $x_{ijk} \in A$. We suppose that $\theta(x) = 0$. Then for any $\xi \in \mathcal{H}$,

$$0 = \theta(x)(\xi \otimes 1) = \sum_{i,j,k,t_1,t_2,t_3} [S(w_{t_2t_3}^k) \cdot x_{ijk}] \sigma(S(w_{t_1t_2}^k), w_{it_1}^k) \xi \otimes w_{t_3j}^k$$

by [14, Theorem 2.2,2]. Since $\{w_{ij}^k\}$ is a basis of H and A acts on \mathscr{H} faithfully and non-degenerately, $\sum_{i,t_1,t_2} [S(w_{t_2t_3}^k) \cdot x_{ijk}] \sigma(S(w_{t_1t_2}^k), w_{it_1}^k) = 0$ for k, t_3, j . Thus $\sum_{i,t_1,t_2} [S(w_{t_2s}^k) \cdot x_{ijk}] \sigma(S(w_{t_1t_2}^k), w_{it_1}^k) \rtimes 1 = 0$ for any j, k, s. By Lemma 3.12

$$0 = \sum_{i,t_1,t_2,t_3,t_4} V(S(w_{t_4s}^k))(x_{ijk} \rtimes 1) V^*(S(w_{t_3t_4}^k)) V(S(w_{t_2t_3}^k)) V(w_{it_1}^k) \times V^*(\epsilon(w_{t_1t_2}^k))$$

= $\sum_{i,t_1} V(S(w_{t_1s}^k))(x_{ijk} \rtimes 1) V(w_{it_1}^k).$

Since *s* is arbitrary and $V^*V = \epsilon$, for any *r*

$$0 = \sum_{i,t_1,s} V^*(S(w_{sr}^k))V(S(w_{t_1s}^k))(x_{ijk} \rtimes 1)V(w_{it_1}^k) = \sum_i (x_{ijk} \rtimes 1)V(w_{ir}^k).$$

Since *r* is arbitrary and $VV^* = \epsilon$, for any *p*

$$0 = \sum_{i,r} (x_{ijk} \rtimes 1) V(w_{ir}^k) V^*(w_{rp}^k) = \sum_i (x_{ijk} \rtimes 1) \epsilon(w_{ip}^k).$$

Since $\epsilon(w_{ip}^k) = \delta_{ip}$ by [14, Theorem 2.2,2], $x_{pjk} \rtimes 1 = 0$ for any p, j, k, where δ_{ip} is the Kronecker delta. Hence θ is injective.

Let *F* be a linear map from $A \rtimes_{\sigma} H$ to *A* defined by $F(x \rtimes h) = \tau(h)x$ for any $x \in A$ and $h \in H$. In the same way as in [14, Proposition 2.8], we can see that *F* is a conditional expectation from $A \rtimes_{\sigma} H$ onto *A*.

LEMMA 3.14. The conditional expectation F is faithful.

PROOF. We show this lemma in the same way as in [14, Proposition 2.8]. Let $\{h_j\}$ be a basis of H such that $\tau(h_i h_j^*) = \delta_{ij}$, where δ_{ij} is the Kronecker delta. Let $x = \sum_i x_i \rtimes h_i$ in $A \rtimes_{\sigma} H$, where $x_i \in A$ for any i. We suppose that $F(xx^*) = 0$. Then by Definition 3.1(4) and [14, Theorem 2.2,1]

$$\begin{aligned} 0 &= \sum_{i,j} F((x_i \rtimes h_i)(x_j \rtimes h_j)^*) \\ &= \sum_{i,j,(h_i),(h_j)} x_i \tau(h_{i(4)} h_{j(5)}^*) [h_{i(1)} \cdot \sigma(S(h_{j(2)}), h_{j(1)})^*] \\ &\times [h_{i(2)} \cdot (h_{j(3)}^* \cdot x_j)] \sigma(h_{i(3)}, h_{j(4)}) \\ &= \sum_{i,j,(h_i),(h_j)} x_i \tau(h_{i(4)} h_{j(5)}^*) [S(h_{i(1)}^*) \cdot \sigma(S(h_{j(2)}), h_{j(1)})]^* \sigma(h_{i(2)}, h_{j(3)}^*) \\ &\times (h_{i(3)} h_{j(4)}^* \cdot x_j) \\ &= \sum_{i,j,(h_i),(h_j)} x_i \tau(h_{i(3)} h_{j(4)}^*) [S(h_{i(1)}^*) \cdot \sigma(S(h_{j(2)}), h_{j(1)})]^* \sigma(h_{i(2)}, h_{j(3)}^*) x_j^*. \end{aligned}$$

Since $\sigma^* \sigma = \epsilon \otimes \epsilon$, by Lemma 3.3(1) $0 = \sum_{i,j} \tau(h_i h_j^*) x_i x_j^* = \sum_i x_i x_i^*$. Hence $x_i = 0$ for any *i*. Thus *F* is faithful.

PROPOSITION 3.15. The unital *-algebra $\theta(A \rtimes_{\sigma} H)$ is closed in **B**.

PROOF. We note that for any $x \in A \rtimes_{\sigma} H$, $||F(x)|| \le ||\theta(x)||$. Indeed, we can write $x = \sum_{i} x_i \rtimes h_i$, where $x_i \in A$, $h_i \in H$ for any *i*. Since id $\otimes \tau$ can be

regarded as a contractive linear map from $\mathscr{H} \otimes l^2(\tau, H)$ to \mathscr{H} , for any $\xi \in \mathscr{H}$,

$$\begin{aligned} \|\theta(x)(\xi \otimes 1)\| &= \left\| \sum_{i,(h_i)} [S(h_{i(3)}) \cdot x_i] \sigma(S(h_{i(2)}), h_{i(1)}) \xi \otimes h_{i(4)} \right\| \\ &\geq \left\| \sum_{i,(h_i)} [S(h_{i(3)}) \cdot x_i] \sigma(S(h_{i(2)}), h_{i(1)}) \xi \otimes \tau(h_{i(4)}) \right\| \\ &= \left\| \sum_i (\tau(h_i) x_i \xi) \otimes 1 \right\| = \|F(x) \xi\| \end{aligned}$$

by [14, Theorem 2.2]. Hence $||F(x)|| \le ||\theta(x)||$ for any $x \in A \rtimes_{\sigma} H$. Thus we can obtain this proposition in the same way as in [14, Proposition 2.15].

By Proposition 3.15, we can regard $A \rtimes_{\sigma} H$ as a C^* -subalgebra of **B** and $A \rtimes_{\sigma} H$ is independent of the choice of a Hilbert space \mathcal{H} . We call it *the twisted crossed product* of a unital C^* -algebra A by a weak action H on A and a unitary cocycle σ . Following [14, Definition 2.7], we define the dual action of H^0 on $A \rtimes_{\sigma} H$.

DEFINITION 3.16. There is the dual action of H^0 on $A \rtimes_{\sigma} H$ defined by

$$\phi \cdot (x \rtimes h) = x \rtimes (\phi \rightharpoonup h)$$

for $x \in A$, $h \in H$, $\phi \in H^0$, where \rightarrow is the Sweedler's arrow which is the action of H^0 on H defined in [14, Example 2.5].

It is necessary to check that the above is an action. But we can easily do it. Also, we have the following lemma:

LEMMA 3.17. The following statements hold.

- (1) $F(x \rtimes h) = \tau \cdot (x \rtimes h)$ for any $x \in A$ and $h \in H$,
- (2) $A = (A \rtimes_{\sigma} H)^{H^0}$, where $(A \rtimes_{\sigma} H)^{H^0}$ is the fixed point C*-subalgebra of $A \rtimes_{\sigma} H$ for the action of H^0 on $A \rtimes_{\sigma} H$.

PROOF. This is immediate by routine computations.

By Lemma 3.17(1), we can see that $1 \rtimes \tau$ is the Jones projection induced by *F*.

PROPOSITION 3.18. Let $\{w_{ii}^k\}$ be a system of comatrix units of H. Then

$$\left\{\left(\left(\sqrt{d_k}\rtimes w_{ij}^k\right)^*,\,\sqrt{d_k}\rtimes w_{ij}^k\right)
ight\}_{i,\,j,k}$$

is a quasi-basis for F and Index(F) = dim(H).

PROOF. For any $x \in A \rtimes_{\sigma} H$, we can write that $x = \sum_{i,j,k} x_{ijk} \rtimes w_{ij}^k$, where $x_{ijk} \in A$ for any i, j, k. Since F is an A-A-bimodule map, in order to prove the first statement, we have only to show that for any i_0, j_0, k_0 ,

$$\sum_{i,j,k} F((1 \rtimes w_{i_0 j_0}^{k_0})(1 \rtimes w_{i_j}^k)^*)(1 \rtimes w_{i_j}^k) = \frac{1}{d_{k_0}} \rtimes w_{i_0 j_0}^{k_0}.$$

By routine computations and [14, Theorem 2.2,2],

$$\sum_{i,j,k} F((1 \rtimes w_{i_0j_0}^{k_0})(1 \rtimes w_{i_j}^k)^*)(1 \rtimes w_{i_j}^k)$$

=
$$\sum_{i,t_1,t_2,s_1,s_2} \frac{1}{d_{k_0}} [S(w_{i_0s_1}^{k_0})^* \cdot \sigma(w_{t_2t_1}^{k_0*}, S(w_{t_1i}^{k_0})^*)]^* \sigma(w_{s_1s_2}^{k_0}, S(w_{s_2t_2}^{k_0})) \rtimes w_{i_j_0}^{k_0}.$$

We change the sufixes as follows: We change t_2 , t_1 and i to s_3 , s_4 and s_5 , respectively. Then since $\sigma^* \sigma = \epsilon \otimes \epsilon$, by Lemma 3.3(2) and routine computations,

$$\begin{split} \sum_{i,j,k} F((1 \rtimes w_{i_0j_0}^{k_0})(1 \rtimes w_{i_j}^k)^*)(1 \rtimes w_{i_j}^k) \\ &= \sum_{s_1,\dots,s_5} \frac{1}{d_{k_0}} [S(w_{i_0s_1}^{k_0})^* \cdot \sigma(w_{s_3s_4}^{k_0*}, S(w_{s_4s_5}^{k_0})^*)]^* \sigma(w_{s_1s_2}^{k_0}, S(w_{s_2s_3}^{k_0})) \rtimes w_{s_5j_0}^{k_0} \\ &= \sum_{s_1,\dots,s_7} \frac{1}{d_{k_0}} \sigma(S(w_{i_0s_1}^{k_0})^* w_{s_5s_6}^{k_0*}, S(w_{s_6s_7}^{k_0*}))^* \sigma(S(w_{s_1s_2}^{k_0})^*, w_{s_4s_5}^{k_0*})^* \\ &\quad \times \sigma(w_{s_2s_3}^{k_0}, S(w_{s_3s_4}^{k_0})) \rtimes w_{s_7j_0}^{k_0} \\ &= \frac{1}{d_{k_0}} \rtimes w_{i_0j_0}^{k_0}. \end{split}$$

Furthermore, since $1 \rtimes w_{ij}^k = V(w_{ij}^k)$ for any *i*, *j*, *k*, by [14, Theorem 2.2] and Lemma 3.12,

Index(F) =
$$\sum_{i,j,k} d_k V(w_{ij}^k)^* V(w_{ij}^k) = \sum_{ij,k} d_k V^*(w_{ji}^k) V(w_{ij}^k) = \sum_{j,k} d_k \epsilon(w_{jj}^k)$$

= dim(H).

We denote by *B* the twisted crossed product $A \rtimes_{\sigma} H$. Then we can define the dual action of H^0 on *B* in the same way as in Definition 3.16. Also, we can define a coaction ρ of H^0 on $B \rtimes H^0$ by $\rho(x \rtimes \phi) = (x \rtimes \phi_{(1)}) \otimes \phi_{(2)}$ for any $x \in B$ and $\phi \in H^0$. We can easily check that ρ is a coaction of H^0 on $B \rtimes H^0$. **PROPOSITION 3.19.** We have that $\rho(1_B \rtimes \tau) \sim (1_B \rtimes \tau) \otimes 1^0$ in $(B \rtimes H^0) \otimes H^0$, where 1_B and 1^0 are the unit elements in B and H^0 , respectively.

PROOF. Let *V* be a unitary element in Hom(*H*, *B*) defined by $V(h) = 1 \rtimes h$ for any $h \in H$. We regard it as an element in Hom(*H*, $B \rtimes H^0$). Also, there is an isomorphism ι of $(B \rtimes H^0) \otimes H^0$ onto Hom(*H*, $B \rtimes H^0$) defined after Definition 2.2. Hence we regard $\rho(1 \rtimes \tau)$ and $(1 \rtimes \tau) \otimes 1^0$ as elements in Hom(*H*, $B \rtimes H^0$). We denote them by $\rho(1 \rtimes \tau)^{\wedge}$ and $((1 \rtimes \tau) \otimes 1^0)^{\wedge}$, respectively. Then by direct computations, for any $h \in H$,

$$(((1 \rtimes \tau) \otimes 1^{0})^{\wedge} V)(h) = (1 \rtimes \tau)\epsilon(h_{(1)})(V(h_{(2)}) \rtimes 1^{0})$$
$$= (1 \rtimes h_{(1)}) \rtimes \tau_{(1)}(h_{(2)})\tau_{(2)}.$$

On the other hand,

$$\begin{aligned} (V\rho(1 \rtimes \tau)^{\wedge})(h) &= (V(h_{(1)}) \rtimes 1^0)(1 \rtimes \tau_{(2)}(h_{(2)})\tau_{(1)}) \\ &= (1 \rtimes h_{(1)}) \rtimes \tau_{(2)}(h_{(2)})\tau_{(1)}. \end{aligned}$$

Furthermore, for any $h, l \in H$,

$$\begin{aligned} (\tau_{(2)}\tau_{(1)}(h))(l) &= \tau_{(1)}(h)\tau_{(2)}(l) = \tau(hl) = \tau(lh) \\ &= \tau_{(1)}(l)\tau_{(2)}(h) = (\tau_{(2)}(h)\tau_{(1)})(l). \end{aligned}$$

Since H^0 can be identified with $1_B \rtimes H^0$, a C^* -subalgebra of $B \rtimes H^0$,

$$V\rho(1 \rtimes \tau)^{\wedge} = ((1 \rtimes \tau) \otimes 1^0)^{\wedge} V.$$

Since *V* is a unitary element in Hom(*H*, *B*) by Lemma 3.12(i), so is *V* in Hom(*H*, $B \rtimes H^0$). Therefore, $\rho(1 \rtimes \tau) \sim (1 \rtimes \tau) \otimes 1^0$ in $(B \rtimes H^0) \otimes H^0$.

4. Construction of a unitary element and its properties

As mentioned in Introduction, let *B* be a unital C^* -algebra and *H* a finite dimensional C^* -Hopf algebra. We suppose that there is a saturated action of *H* on *B* defined in [14]. Let *A* be its fixed point C^* -subalgebra of *B* and *E* the canonical conditional expectation from *B* onto *A*. Let $B \rtimes H$ be the crossed product of *B* by the action of *H* on *B* and we denote it by B_1 . In the same way as in Section 3, we can define a coaction ρ of *H* on B_1 by for any $x \in B$ and $h \in H$

$$\rho(x \rtimes h) = (x \rtimes h_{(1)}) \otimes h_{(2)}.$$

We suppose that $\rho(1 \rtimes e) \sim (1 \rtimes e) \otimes 1$ in $B_1 \otimes H$, where *e* is the distinguished projection in *H*. We note that $1 \rtimes e$ is the Jones projection induced by *E*. We shall show that the above condition is a necessary and sufficient one we stated

in Introduction. Since $\rho(1 \rtimes e) \sim (1 \rtimes e) \otimes 1$ in $B_1 \otimes H$, there is a partial isometry $w \in B_1 \otimes H$ such that $w^*w = \rho(1 \rtimes e)$, $ww^* = (1 \rtimes e) \otimes 1$. Let $\{v_{ij}^k\}_{i,j,k}$ be a system of matrix units of H. We write $w = \sum_{i,j,k} x_{ij}^k \otimes v_{ij}^k$, where $x_{ij}^k \in B_1$ for any i, j, k. Moreover, we write $x_{ij}^k = \sum_{i_1,j_1,k_1} (b_{ij}^k)_{i_1j_1}^{k_1} \rtimes v_{i_1j_1}^{k_1}$ for any i, j, k, where $(b_{ij}^k)_{i_1j_1}^{k_1} \in B$ for any i, j, k, i_1, j_1, k_1 . Then $((1 \rtimes e) \otimes 1)w = \sum_{i,j,k} (1 \rtimes e) x_{ij}^k \otimes v_{ij}^k$. Also, since $\{v_{ij}^k\}$ is a system of matrix units of H, by Equation (5) in [14]

$$(1 \rtimes e)x_{ij}^{k} = \sum_{i_{1}, j_{1}, k_{1}, i_{2}} \frac{1}{d_{k_{1}}} S(v_{i_{1}i_{2}}^{k_{1}}) \cdot (b_{ij}^{k})_{i_{1}j_{1}}^{k_{1}} \rtimes v_{i_{2}j_{1}}^{k_{1}}.$$

Let $u_{ij}^k = \sum_{i_1, j_1, k_1} S(v_{i_1 j_1}^{k_1}) \cdot (b_{ij}^k)_{i_1 j_1}^{k_1} \in B$ for any i, j, k. Then by routine calculations, for any i, j, k,

$$(1 \rtimes e)(u_{ij}^k \rtimes 1) = \sum_{i_1, j_1, k_1, i_2} \frac{1}{d_{k_1}} S(v_{j_1 i_2}^{k_1}) S(v_{i_1 j_1}^{k_1}) \cdot (b_{ij}^k)_{i_1 j_1}^{k_1} \rtimes v_{i_2 j_1}^{k_1} = (1 \rtimes e) x_{ij}^k.$$

Thus

$$((1 \rtimes e) \otimes 1)w = \sum_{i,j,k} (1 \rtimes e)(u_{ij}^k \rtimes 1) \otimes v_{ij}^k$$
$$= ((1 \rtimes e) \otimes 1) \left(\sum_{i,j,k} (u_{ij}^k \rtimes 1) \otimes v_{ij}^k \right)$$

Let $u = \sum_{i,j,k} u_{ij}^k \otimes v_{ij}^k \in B \otimes H$. Since we identify *B* with $B \rtimes 1$, a *C**-subalgebra of *B*₁, we identify $B \otimes H$ with $(B \rtimes 1) \otimes H$. If we do so, $u = \sum_{i,j,k} (u_{ij}^k \rtimes 1) \otimes v_{ij}^k$. Hence by the above equation, we obtain that

$$((1 \rtimes e) \otimes 1)w = ((1 \rtimes e) \otimes 1)u,$$
$$u^*((1 \rtimes e) \otimes 1)u = w^*((1 \rtimes e) \otimes 1)w = \rho(1 \rtimes e).$$

On the other hand, $u^*((1 \rtimes e) \otimes 1)u = \sum_{i,j,k,j_1} (u_{ij}^{k*} \rtimes e)(u_{ij_1}^k \rtimes 1) \otimes v_{jj_1}^k$. Since $\rho(1 \rtimes e) = \sum_{i,j,k} \frac{1}{d_k} ((1 \rtimes S(v_{ji}^k)) \otimes v_{ij}^k)$, we can see that for any j, j_1, k ,

(4.1)
$$\frac{1}{d_k}(1 \rtimes S(v_{j_1 j}^k)) = \sum_i (u_{ij}^{k*} \rtimes e)(u_{ij_1}^k \rtimes 1).$$

Now, we shall show that *u* is a unitary element in $B \otimes H$. By [14, Proposition 2.8], we can define the canonical faithful conditional expectation E_1 from B_1 onto B by $E_1(x \rtimes h) = \tau(h)x$ for any $x \in B$ and $h \in H$, where we identify B with $B \rtimes 1$ and τ is the Haar trace on H.

LEMMA 4.1. We have that $u^*u = 1 \otimes 1$ in $B \otimes H$.

PROOF. Since we regard $B \otimes H$ as a C^* -subalgebra of $B_1 \otimes H$, we shall show that $u^*u = (1 \times 1) \otimes 1$. By Equation (4.1) and the definition of E_1 , for any j, j_1, k ,

$$\sum_{i} u_{ij}^{k*} u_{ij_1}^k = \frac{1}{\tau(e)d_k} \tau(S(v_{j_1j}^k)).$$

Using the the above equation,

$$u^*u = \sum_{j,k,j_1} \frac{1}{\tau(e)d_k} (\tau(S(v_{j_1j}^k)) \rtimes 1) \otimes v_{jj_1}^k$$

= $(1 \rtimes 1) \otimes \sum_{j,k,j_1} \frac{1}{\tau(e)d_k} \tau(S(v_{j_1j}^k)) v_{jj_1}^k$
= $(1 \rtimes 1) \otimes \frac{1}{\tau(e)} (\tau \otimes \mathrm{id}) \left(\sum_{j,k,j_1} \frac{1}{d_k} S(v_{j_1j}^k) \otimes v_{jj_1}^k \right)$
= $(1 \rtimes 1) \otimes \frac{1}{\tau(e)} (\tau \otimes \mathrm{id}) (\Delta(e)) = (1 \rtimes 1) \otimes 1.$

Therefore we obtain the conclusion.

PROPOSITION 4.2. The element u is a unitary one in $B \otimes H$.

PROOF. By Lemma 4.1, it suffices to show that $uu^* = 1 \otimes 1$. First,

$$((1 \rtimes e) \otimes 1)uu^*((1 \rtimes e) \otimes 1) = (1 \rtimes e) \otimes 1 = \sum_{i,k} (1 \rtimes e) \otimes v_{ii}^k.$$

On the other hand,

$$((1 \rtimes e) \otimes 1)uu^{*}((1 \rtimes e) \otimes 1) = \sum_{i,j,k,i_{1}} (1 \rtimes e)(u_{ij}^{k}u_{i_{1}j}^{k*} \rtimes 1)(1 \rtimes e) \otimes v_{ii_{1}}^{k}$$
$$= \sum_{i,j,k,i_{1}} (e \cdot (u_{ij}^{k}u_{i_{1}j}^{k*}) \rtimes e) \otimes v_{ii_{1}}^{k}$$
$$= \sum_{i,j,k,i_{1}} (E(u_{ij}^{k}u_{i_{1}j}^{k*}) \rtimes e) \otimes v_{ii_{1}}^{k}$$

by [14, Proposition 2.12]. Thus

$$\sum_{j} E(u_{ij}^{k} u_{i_{1}j}^{k*}) \rtimes e = \begin{cases} 0 & \text{if } i \neq i_{1} \\ 1 \rtimes e & \text{if } i = i_{1} \end{cases}$$

for any k. Hence using E_1 ,

$$\sum_{j} E(u_{ij}^{k} u_{i_{1}j}^{k*}) = \begin{cases} 0 & \text{if } i \neq i_{1} \\ 1 & \text{if } i = i_{1} \end{cases}$$

for any k. It follows by the above equation that

$$(E \otimes \mathrm{id})(uu^*) = \sum_{i,j,k,i_1} E(u_{ij}^k u_{i_1j}^{k*}) \otimes v_{ii_1}^k = \sum_{i,k} 1 \otimes v_{ii}^k = 1 \otimes 1.$$

Since $E \otimes id$ is faithful, $uu^* = 1 \otimes 1$.

Also, we have the following proposition:

PROPOSITION 4.3. The set $\{(\sqrt{d_k}u_{ij}^{k*}, \sqrt{d_k}u_{ij}^k)\}_{i,j,k}$ is a quasi-basis for *E*.

PROOF. We note that if $j = j_1$ in Equation (4.1), we obtain that for any j, k, - 1

$$\frac{1}{d_k}(1 \rtimes S(v_{jj}^k)) = \sum_i (u_{ij}^{k*} \rtimes e)(u_{ij}^k \rtimes 1).$$

Since $1 \rtimes e$ is the Jones projection in B_1 induced by E, for any $x \in B$,

$$(1 \rtimes e) \left\{ \sum_{i,j,k} d_k E(x u_{ij}^{k*}) u_{ij}^k \rtimes 1 \right\} = \sum_{i,j,k} d_k (1 \rtimes e) (E(x u_{ij}^{k*}) u_{ij}^k \rtimes 1)$$
$$= \sum_{i,j,k} d_k (1 \rtimes e) (x u_{ij}^{k*} \rtimes 1) (1 \rtimes e) (u_{ij}^k \rtimes 1)$$
$$= \sum_{i,j,k} d_k (1 \rtimes e) (x \rtimes 1) (u_{ij}^{k*} \rtimes e) (u_{ij}^k \rtimes 1)$$
$$= \sum_{j,k} (1 \rtimes e) (x \rtimes 1) (1 \rtimes S(v_{jj}^k))$$
$$= (1 \rtimes e) (x \rtimes 1).$$

Therefore we obtain the conclusion.

Moreover, we have the following:

LEMMA 4.4. For any $h \in H$, $\sum_{i,j,k} (h \cdot u_{ij}^k) \otimes v_{ij}^k = \sum_{i,j,k} u_{ij}^k \otimes v_{ij}^k h$. PROOF. Let $\{w_{ij}^k\}$ be a system of comatrix units of H. We note that

$$((1 \rtimes e) \otimes 1)u = u\rho(1 \rtimes e).$$

Then by [14, Theorem 2.2],

$$((1 \rtimes e) \otimes 1)u = \sum_{i,j,k,i_1,j_1,k_1} \frac{d_{k_1}}{\dim(H)} ((w_{i_1j_1}^{k_1} \cdot u_{i_j}^k) \rtimes w_{j_1i_1}^{k_1}) \otimes v_{i_j}^k.$$

Also,

$$u\rho(1 \rtimes e) = \sum_{i,j,k,i_1,j_1,k_1} \frac{d_{k_1}}{\dim(H)} ((u_{ij}^k \rtimes w_{i_1j_1}^{k_1}) \otimes v_{ij}^k w_{j_1i_1}^{k_1}).$$

Thus since $\{w_{ij}^k\}$ is a basis of *H*, we obtain that for any i_1, j_1, k_1 ,

$$\sum_{i,j,k} (w_{j_1 i_1}^{k_1} \cdot u_{ij}^k) \otimes v_{ij}^k = \sum_{i,j,k} u_{ij}^k \otimes v_{ij}^k w_{j_1 i_1}^{k_1}.$$

Therefore we obtain the conclusion.

In the rest of this section, we are devoted to the properties of u.

LEMMA 4.5. Let $x \in (B \rtimes 1) \otimes H$. If $x((1 \rtimes e) \otimes 1) = ((1 \rtimes e) \otimes 1)x$, then $x \in (A \rtimes 1) \otimes H$.

PROOF. This is immediate by routine computations.

LEMMA 4.6. For any $a \in A$,

$$u((a \rtimes 1) \otimes 1)u^*((1 \rtimes e) \otimes 1) = ((1 \rtimes e) \otimes 1)u((a \rtimes 1) \otimes 1)u^*.$$

PROOF. Since *u* is a unitary element in $(B \rtimes 1) \otimes H$ by Proposition 4.2, we have only to show that for any $a \in A$,

$$((a \rtimes 1) \otimes 1)u^*((1 \rtimes e) \otimes 1)u = u^*((1 \rtimes e) \otimes 1)u((a \rtimes 1) \otimes 1)u^*((a \land 1) \otimes$$

Since $u^*((1 \rtimes e) \otimes 1)u = \rho(1 \rtimes e)$, for any $a \in A$,

$$\begin{aligned} ((a \rtimes 1) \otimes 1)u^*((1 \rtimes e) \otimes 1)u &= ((a \rtimes 1) \otimes 1)\rho(1 \rtimes e) \\ &= \rho((a \rtimes 1)(1 \rtimes e)) \\ &= \rho((1 \rtimes e)(a \rtimes 1)) \\ &= \rho(1 \rtimes e)((a \rtimes 1) \otimes 1) \\ &= u^*((1 \rtimes e) \otimes 1)u((a \rtimes 1) \otimes 1). \end{aligned}$$

PROPOSITION 4.7. For any $a \in A$, $u(a \otimes 1)u^* \in A \otimes H$.

PROOF. This is immediate by Lemmas 4.5 and 4.6.

Let $z = \sum_{i,j,k} \epsilon(v_{ij}^k) u_{ij}^k \in B$.

LEMMA 4.8. The element z is a unitary one in A.

PROOF. We note that id $\otimes \epsilon$ is a homomorphihsm of $B \otimes H$ onto B. Since u is a unitary element in $B \otimes H$, so is $z = (id \otimes \epsilon)(u)$ in B. Also, we have that $((1 \rtimes e) \otimes 1)u = u\rho(1 \rtimes e)$. Since $(id \otimes \epsilon) \circ \rho = id$,

$$(1 \rtimes e)z = (\mathrm{id} \otimes \epsilon)(((1 \rtimes e) \otimes 1)u) = (\mathrm{id} \otimes \epsilon)(u\rho(1 \rtimes e)) = z(1 \rtimes e).$$

Thus z is in A.

REMARK 4.9. For any unitary element $a \in A$, we can see that

$$\left\{\left(\sqrt{d_k}au_{ij}^{k*},\sqrt{d_k}u_{ij}^ka^*\right)\right\}_{i,j,k}$$

is a quasi-basis for *E* by the above proposition and easy computations. Especially $\{(\sqrt{d_k}zu_{ij}^{k*}, \sqrt{d_k}u_{ij}^{k}z^*)\}_{i,i,k}$ is a quasi-basis for *E*.

Let $U = u(z^* \otimes 1)$ which is used in the next section. Clearly U is a unitary element in $B \otimes H$.

5. A weak action of the dual C^* -Hopf algebra and a unitary cocycle

As mentioned in Section 2, there is an isomorphism ι of $B \otimes H$ onto the unital convolution *-algebra Hom (H^0, B) defined by for any $x \in B$, $h \in H$ and $\phi \in H^0$,

$$\iota(x \otimes h)(\phi) = \phi(h)x.$$

For any $x \in B \otimes H$, we denote by x^{\wedge} an element $\iota(x) \in \text{Hom}(H^0, B)$. We constructed a unitary element $U \in B \otimes H$ in the previous section. Then U^{\wedge} is a unitary element in $\text{Hom}(H^0, B)$. Let $\{\phi_{mn}^r\}$ be the dual basis of H^0 corresponding to a system of matrix units $\{v_{ij}^k\}$ of H. Then it is a system of comatrix units of H^0 . By [14, Theorem 2.2], $\Delta^0(\phi_{mn}^r) = \sum_t \phi_{mt}^r \otimes \phi_{tn}^r$ for any m, n, r. Hence we can see that $U^{\wedge}(\phi_{mn}^r) = u_{mn}^r z^*$ and $U^{\wedge*}(\phi_{mn}^r) = z u_{nm}^{r*}$ for any m, n, r.

LEMMA 5.1. We define $\phi \cdot x = U^{\wedge}(\phi_{(1)})xU^{\wedge*}(\phi_{(2)})$ for any $x \in B$ and $\phi \in H^0$. Then $(\phi, x) \mapsto \phi \cdot x$ is a weak inner action of H^0 on B.

PROOF. Since $U^{\wedge}(1^0) = 1$, by [1, Lemma 1.4], it suffices to show that $(\phi \cdot x)^* = S^0(\phi^*) \cdot x^*$ for any $x \in B$, $\phi \in H^0$. Thus we have only to show that $(\phi_{mn}^r \cdot x)^* = S^0(\phi_{mn}^{r*}) \cdot x^*$ for any $x \in B$ and m, n, r. Indeed

$$(\phi_{mn}^r \cdot x)^* = \sum_t (u_{mt}^r z^* x z u_{nt}^{r*})^* = \phi_{nm}^r \cdot x^* = (S^0 \circ S^0)(\phi_{nm}^r) \cdot x^* = S^0(\phi_{mn}^{r*}) \cdot x^*.$$

240

LEMMA 5.2. For any $a \in A$ and $\phi \in H^0$, $\phi \cdot a \in A$.

PROOF. For any $a \in A$, $u(a \otimes 1)u^* = \sum_{i,j,k,i_1} u_{ij}^k a u_{i_1j}^{k*} \otimes v_{i_1}^k$. Thus by Proposition 4.7, $\sum_j u_{ij}^k a u_{i_1j}^{k*} \in A$ for any $a \in A$ and i, i_1, k . Hence for any r, m, n and $a \in A$

$$\phi_{mn}^r \cdot a = \sum_t u_{mt}^r z^* a z u_{nt}^{r*} \in A.$$

Therefore we obtain the conclusion.

COROLLARY 5.3. The map $H^0 \times A \longrightarrow A : (\phi, a) \mapsto \phi \cdot a$ is a weak action of H^0 on A, where $a \in A$ and $\phi \in H^0$.

PROOF. This is immediate by Lemmas 5.1 and 5.2.

Following [1, Example 4.11], we shall construct a unitary cocycle of $H^0 \otimes H^0$ to *B*. Let σ be a bilinear map from $H^0 \otimes H^0$ to *B* defind by for any $\phi, \psi \in H^0$,

$$\sigma(\phi,\psi) = U^{\wedge}(\phi_{(1)})U^{\wedge}(\psi_{(1)})U^{\wedge*}(\phi_{(2)}\psi_{(2)}).$$

By [1, Example 4.11], σ satisfies Conditions (2), (3) and (4) of Definition 3.1 of a unitary cocyle for the weak inner action of H^0 on B.

LEMMA 5.4. For any $\phi, \psi \in H^0$, $\sigma(\phi, \psi) \in A$.

PROOF. For any $\phi \in H^0$,

$$(U^*((1 \rtimes e) \otimes 1))^{\wedge}(\phi) = U^{\wedge *}(\phi_{(1)})\epsilon^0(\phi_{(2)})(1 \rtimes e) = U^{\wedge *}(\phi)(1 \rtimes e),$$

$$(\rho(1 \rtimes e)U^*)^{\wedge}(\phi) = ((1 \rtimes e_{(1)}) \otimes e_{(2)})^{\wedge}(\phi_{(1)})U^{\wedge *}(\phi_{(2)})$$

$$= (\mathrm{id} \otimes \phi_{(1)})\rho(1 \rtimes e)U^{\wedge *}(\phi_{(2)}).$$

Since $U^*((1 \rtimes e) \otimes 1) = \rho(1 \rtimes e)U^*$, we obtain that

(5.1)
$$U^{\wedge *}(\phi)(1 \rtimes e) = (\mathrm{id} \otimes \phi_{(1)})\rho(1 \rtimes e)U^{\wedge *}(\phi_{(2)}).$$

Also, for any $\phi \in H^0$,

$$(U\rho(1 \rtimes e))^{\wedge}(\phi) = U^{\wedge}(\phi_{(1)})(1 \rtimes e_{(1)})\phi_{(2)}(e_{(2)}),$$
$$(((1 \rtimes e) \otimes 1)U)^{\wedge}(\phi) = (1 \rtimes e)\epsilon^{0}(\phi_{(1)})U^{\wedge}(\phi_{(2)}) = (1 \rtimes e)U^{\wedge}(\phi).$$

Since $((1 \rtimes e) \otimes 1)U = U\rho(1 \rtimes e)$, we obtain that

(5.2)
$$(1 \rtimes e)U^{\wedge}(\phi) = U^{\wedge}(\phi_{(1)})(1 \rtimes e_{(1)})\phi_{(2)}(e_{(2)}).$$

Furthermore, by Equation (5.2)

$$\rho((1 \rtimes e)U^{\wedge}(\phi)) = \rho(U^{\wedge}(\phi_{(1)})(1 \rtimes e_{(1)})\phi_{(2)}(e_{(2)})).$$

Since $U^{\wedge}(\phi) \in B$ and $\rho(U^{\wedge}(\phi)) = U^{\wedge}(\phi) \otimes 1$, we see that

$$(5.3) (1 \rtimes e_{(1)})U^{\wedge}(\phi) \otimes e_{(2)} = U^{\wedge}(\phi_{(1)})(1 \rtimes e_{(1)})\phi_{(2)}(e_{(3)}) \otimes e_{(2)},$$

where we identify B with $B \rtimes 1$. Now, we shall show that any $\phi, \psi \in H^0$,

$$(1 \rtimes e)(\sigma(\phi, \psi) \rtimes 1) = (\sigma(\phi, \psi) \rtimes 1)(1 \rtimes e).$$

First, by Equation (5.2)

$$(1 \rtimes e)(\sigma(\phi, \psi) \rtimes 1) = U^{\wedge}(\phi_{(1)})(1 \rtimes e_{(1)})\phi_{(2)}(e_{(2)})U^{\wedge}(\psi_{(1)})U^{\wedge*}(\phi_{(3)}\psi_{(2)}).$$

Moreover, by Equation (5.3),

$$(1 \rtimes e)(\sigma(\phi, \psi) \rtimes 1) = U^{\wedge}(\phi_{(1)})\phi_{(2)}(e_{(2)})U^{\wedge}(\psi_{(1)})(1 \rtimes e_{(1)})\psi_{(2)}(e_{(3)})U^{\wedge*}(\phi_{(3)}\psi_{(3)}).$$

On the other hand, by Equation (5.1)

$$\begin{aligned} (\sigma(\phi,\psi) \rtimes 1)(1 \rtimes e) \\ &= U^{\wedge}(\phi_{(1)})U^{\wedge}(\psi_{(1)})(\mathrm{id} \otimes \phi_{(2)}\psi_{(2)})\rho(1 \rtimes e)U^{\wedge*}(\phi_{(3)}\psi_{(3)}) \\ &= U^{\wedge}(\phi_{(1)})U^{\wedge}(\psi_{(1)})(1 \rtimes e_{(1)})\phi_{(2)}(e_{(2)})\psi_{(2)}(e_{(3)})U^{\wedge*}(\phi_{(3)}\psi_{(3)}). \end{aligned}$$

It follows that for any ϕ , $\psi \in H^0$, $(1 \rtimes e)(\sigma(\phi, \psi) \rtimes 1) = (\sigma(\phi, \psi) \rtimes 1)(1 \rtimes e)$. Therefore we obtain the conclusion.

LEMMA 5.5. The element σ is a unitary one in Hom $(H^0 \otimes H^0, A)$.

PROOF. By Lemma 5.4, it suffices to show that $\sigma^* \sigma = \sigma \sigma^* = \epsilon^0 \otimes \epsilon^0$. For any $\phi, \psi \in H^0$, we see that $(\sigma^* \sigma)(\phi, \psi) = (\sigma \sigma^*)(\phi, \psi) = \epsilon^0(\phi)\epsilon^0(\psi)$ by routine computations. Therefore we obtain the conclusion.

PROPOSITION 5.6. The element σ is a unitary cocycle for the weak action of H^0 on A.

PROOF. This is immediate by Lemma 5.5 and [1, Example 4.11].

6. A twisted crossed product induced by an inclusion of unital C^* -algebras of depth 2

In this section we suppose that there is a saturated action of a finite dimensional C^* -Hopf algebra H on a unital C^* -algebra B. Also, we suppose that A is the

fixed point C^* -subalgebra of B for the action of H and that $\rho(1 \rtimes e) \sim (1 \rtimes e) \otimes 1$ in $B_1 \otimes H$, where $B_1 = B \rtimes H$. Furthermore, we suppose that ρ is the coaction of H on B_1 induced by the action of H on B. By the previous section, we can construct the weak action of the dual C^* -Hopf algebra H^0 on A and the unitary cocycle $\sigma \in \text{Hom}(H^0 \otimes H^0, A)$ using the unitary element $U \in B \otimes H$ defined at the end of Section 4. By Section 3 we can construct the twisted crossed product $A \rtimes_{\sigma} H^0$ of A by the weak action of H^0 . Also, we can define the dual action of H on $A \rtimes_{\sigma} H^0$. Let π be a map from $A \rtimes_{\sigma} H^0$ to B defined by $\pi(a \rtimes \phi) = aU^{\wedge}(\phi)$ for any $a \in A$ and $\phi \in H^0$. Then the following proposition holds:

PROPOSITION 6.1. With the above notations, π is an epimorphism of $A \rtimes_{\sigma} H^0$ onto *B* satisfying that $h \cdot \pi(x) = \pi(h \cdot x)$ for any $x \in A \rtimes_{\sigma} H^0$ and $h \in H$.

PROOF. Clearly π is a linear map from $A \rtimes_{\sigma} H^0$ to B. For any $a, b \in A$ and $\phi, \psi \in H^0$,

$$\begin{aligned} \pi((a \rtimes \phi)(b \rtimes \psi)) &= a(\phi_{(1)} \cdot b)\sigma(\phi_{(2)}, \psi_{(1)})U^{\wedge}(\phi_{(3)}\psi_{(2)}) \\ &= aU^{\wedge}(\phi_{(1)})b\epsilon^{0}(\phi_{(2)})U^{\wedge}(\psi_{(1)})\epsilon^{0}(\phi_{(3)}\psi_{(2)}) \\ &= aU^{\wedge}(\phi)bU^{\wedge}(\psi) = \pi(a \rtimes \phi)\pi(b \rtimes \psi). \end{aligned}$$

Also,

$$\begin{aligned} \pi((a \rtimes \phi)^*) &= \pi[\sigma(S(\phi_{(2)}), \phi_{(1)})^*(\phi^*_{(3)} \cdot a^*) \rtimes \phi^*_{(4)}] \\ &= U^{\wedge *}(\epsilon^0(\phi_{(2)}))^* U^{\wedge}(\phi_{(1)})^* U^{\wedge *}(\phi^*_{(4)}) U^{\wedge}(\phi^*_{(5)}) a^* \epsilon^0(\phi^*_{(6)}) \\ &= U^{\wedge}(\phi)^* a^* = \pi(a \rtimes \phi)^*. \end{aligned}$$

Thus π is a homomorphism of $A \rtimes_{\sigma} H^0$ to B. For any $x \in B$, we can write

$$x = \sum_{i,j,k} d_k E(xzu_{ij}^{k*})u_{ij}^k z^*$$

by Proposition 4.3 and Remark 4.9. Put $y = \sum_{i,j,k} d_k E(xzu_{ij}^{k*}) \rtimes \phi_{ij}^k$. Then $y \in A \rtimes_{\sigma} H^0$ and $\pi(y) = \sum_{i,j,k} d_k E(xzu_{ij}^{k*})U^{\wedge}(\phi_{ij}^k) = x$ since $U^{\wedge}(\phi_{ij}^k) = u_{ij}^k z^*$ for any i, j, k. Hence π is surjective. Furthermore, for any $a \in A, h \in H$, $\phi \in H^0$,

$$\pi(h \cdot (a \rtimes \phi)) = \phi_{(2)}(h) a U^{\wedge}(\phi_{(1)}) = \sum_{i,j,k,(\phi)} \phi_{(1)}(v_{ij}^{k}) \phi_{(2)}(h) a u_{ij}^{k} z^{*}$$
$$= \sum_{i,j,k} \phi(v_{ij}^{k}h) a u_{ij}^{k} z^{*}$$

since $U = \sum_{i,j,k} u_{ij}^k z^* \otimes v_{ij}^k$. On the other hand,

$$h \cdot \pi (a \rtimes \phi) = \sum_{i,j,k} a(h \cdot u_{ij}^k \phi(v_{ij}^k) z^*) = \sum_{i,j,k} a(\operatorname{id} \otimes \phi)((h \cdot u_{ij}^k) \otimes v_{ij}^k) z^*$$
$$= \sum_{i,j,k} a(\operatorname{id} \otimes \phi)(u_{ij}^k \otimes v_{ij}^k h) z^* = \sum_{i,j,k} \phi(v_{ij}^k h) a u_{ij}^k z^*$$

by Lemma 4.4. Therefore $\pi(h \cdot (a \rtimes \phi)) = h \cdot \pi(a \rtimes \phi)$ for any $a \in A, h \in H$, $\phi \in H^0$.

COROLLARY 6.2. With the same notations as above, $F = E \circ \pi$, where F is the canonical conditional expectation from $A \rtimes_{\sigma} H^0$ onto A.

PROOF. For any $a \in A$, $\pi(a \rtimes 1^0) = aU^{\wedge}(1^0) = a$. Hence for any $a \in A$, $\phi \in H^0$,

 $(E \circ \pi)(a \rtimes \phi) = e \cdot \pi(a \rtimes \phi) = \pi(e \cdot (a \rtimes \phi)) = F(a \rtimes \phi)$

by Proposition 6.1, where we identify A with $A \times 1^0$.

PROPOSITION 6.3. With the same notations as above, π is an isomorphism of $A \rtimes_{\sigma} H^0$ onto B.

PROOF. By Proposition 6.1, we have only to show that π is injective. We suppose that $\pi(x) = 0$ for an element $x \in A \rtimes_{\sigma} H^0$. Then $F(x^*x) = E(\pi(x^*)\pi(x)) = 0$ by Corollary 6.2. Since *F* is faithful by Lemma 3.14, x = 0.

The following theorem is the main result:

THEOREM 6.4. Let B be a unital C*-algebra and H a finite dimensional C*-Hopf algebra acting on B in the saturated fashion. Let A be the fixed point C*-subalgebra of B for the action of H on B and E the canonical conditional expectation from B onto A. Let e be a minimal and central projection in H, which is called the distinguished projection and ρ the coaction of H on B × H, the crossed product of B by the action of H on B, which is induced by the action of H on B. Then the following are equivalent:

- (1) We have that $\rho(1 \rtimes e) \sim (1 \rtimes e) \otimes 1$ in $(B \rtimes H) \otimes H$,
- (2) There are a weak action of H^0 on A and a unitary cocycle σ of $H^0 \otimes H^0$ to A satisfying that there is an isomorphism π of $A \rtimes_{\sigma} H^0$ onto B such that $F = E \circ \pi$,

where H^0 is the dual C^* -Hopf algebra of H and F is the canonical conditional expectation from $A \rtimes_{\sigma} H^0$ onto A.

PROOF. This is immediate by Propositions 3.19, 6.3 and Corollary 6.2.

Let $A \subset B$ be an irreducible inclusion of unital C^* -algebras and E a conditional expectation from B onto A which is index-finite and of depth 2. Then in [2] Izumi pointed the following: There is a finite dimensional C^* -Hopf algebra H acting on B such that $A = B^H$ and $E(x) = e \cdot x$ for any $x \in B$. We note that the action of H on B is saturated by [14]. Let ρ be the coaction of H on $B \rtimes H$ defined in the same way as in Section 3. We call ρ the *coaction of* H on $B \rtimes H$ induced by the inclusion $A \subset B$.

COROLLARY 6.5. Let $A \subset B$ be an irreducible inclusion of unital C^* algebras and E a conditional expectation from B onto A which is index-finite and of depth 2. Let H be a finite dimensional C^* -Hopf algebra acting on B in the saturated fashion such that the inclusion $A \subset B$ can be identified with the inclusion $B^H \subset B$. Let ρ be the coaction of H on $B \rtimes H$ induced by $A \subset B$. Furthermore, let e be the distinguished projection in H. Then the following are equivalent:

- (1) We have that $\rho(1 \rtimes e) \sim (1 \rtimes e) \otimes 1$ in $(B \rtimes H) \otimes H$,
- (2) There are a weak action of H^0 on A and a unitary cocycle σ of $H^0 \otimes H^0$ to A satisfying that there is an isomorphism π of $A \rtimes_{\sigma} H^0$ onto B such that $F = E \circ \pi$,

where H^0 is the dual C^* -Hopf algebra of H and F is the canonical conditional expectation from $A \rtimes_{\sigma} H^0$ onto A.

PROOF. This is immediate by Theorem 6.4.

We shall give another application of Theorem 6.4. Let A be a unital C^* algebra. We suppose that A has cancellation and the unique tracial state τ_A . Let τ_{A*} be the homomorphism of $K_0(A)$ to R induced by τ_A . Also, we suppose that τ_{A*} is injective. Irrational rotation C^* -algebras, UHF-algebras and AFD II_1 -factors have the above properties.

LEMMA 6.6. Let A be as above and let B be a unital C^* -algebra which is strongly Morita equivalent to A. Then B has the following properties:

- (1) *B* has cancellation,
- (2) *B* has the unique tracial state τ_B ,
- (3) Let τ_{B*} be the homomorphism of $K_0(B)$ to **R**. Then τ_{B*} is injective.

PROOF. Since unital C^* -algebras *A* and *B* are strongly Morita equivalent, *B* is isomorphic to a full corner of some full matrix algebra over *A* by Rieffel [10, Proposition 2.1]. By this fact and [10, Proposition 2.2], we can obtain the conclusion.

COROLLARY 6.7. With the same notations and assumptions as Theorem 6.4, we suppose that A has cancellation and the unique tracial state τ_A and that the homomorphism τ_{A*} of $K_0(A)$ to **R** induced by τ_A is injective. Then there are a weak action of H^0 on A and a unitary cocycle σ of $H^0 \otimes H^0$ to A satisfying that there is an isomorphism π of $A \rtimes_{\sigma} H^0$ onto B such that $F = E \circ \pi$, where H^0 is the dual C*-Hopf algebra and F is the canonical conditional expectation from $A \rtimes_{\sigma} H^0$ onto A.

PROOF. Let ρ be the coaction of H on $B_1 = B \rtimes H$ induced by the action of H on B and e the distinguished projection in H. Then by [14, Definition 4.2], B_1 is strongly Morita equivalent to A. Thus by Lemma 6.6(2), B_1 has the unique tracial state τ_{B_1} . Recall that $H \cong \bigoplus_{k=1}^N M_{d_k}(\mathbb{C})$ as C^* -algebras. We identify H with $\bigoplus_{k=1}^N M_{d_k}(\mathbb{C})$. For k = 1, 2, ..., N, let p_k be a minimal central projection in H and π_k a homomorphism of $B_1 \otimes H$ onto $B_1 \otimes M_{d_k}(\mathbb{C})$ defined by $\pi_k(x) = x((1 \rtimes 1) \otimes p_k)$ for any $x \in B_1 \otimes H$. Let Tr_k be the unique tracial state on $M_{d_k}(\mathbb{C})$ and let $\tau_k = \tau_{B_1} \otimes Tr_k$ for k = 1, 2, ..., N. Let τ_{k*} be the homomorphism of $K_0(B_1 \otimes M_{d_k}(\mathbb{C}))$ to \mathbb{R} induced by τ_k for k = 1, 2, ..., N. Since $\tau_k \circ \pi_k \circ \rho$ is a tracial state on $B_1, \tau_{B_1} = \tau_k \circ \pi_k \circ \rho$. Thus for k = 1, 2, ..., N,

$$\tau_{k*}([\rho(1 \rtimes e)((1 \rtimes 1) \otimes p_k)]) = (\tau_k \circ \pi_k \circ \rho)(1 \rtimes e) = \tau_{B_1}(1 \rtimes e)$$
$$= \tau_k((1 \rtimes e) \otimes p_k)$$
$$= \tau_{k*}([((1 \rtimes e) \otimes 1)((1 \rtimes 1) \otimes p_k)]).$$

Since τ_{k*} is injective for k = 1, 2, ..., N, by Lemma 6.6(3) in $K_0(B_1 \otimes M_{d_k}(\mathsf{C}))$,

$$[\rho(1 \rtimes e)((1 \rtimes 1) \otimes p_k)] = [((1 \rtimes e) \otimes 1)((1 \rtimes 1) \otimes p_k)].$$

Since $B_1 \otimes M_{d_k}(C)$ has cancellation by Lemma 6.6(1), we have

$$\rho(1 \rtimes e)((1 \rtimes 1) \otimes p_k) \sim ((1 \rtimes e) \otimes 1)((1 \rtimes 1) \otimes p_k)$$

in $B_1 \otimes M_{d_k}(\mathsf{C})$ for k = 1, 2, ..., N. Hence $\rho(1 \rtimes e) \sim (1 \rtimes e) \otimes 1$ in $B_1 \otimes H$. Therefore we obtain the conclusion by Theorem 6.4.

Also, we have the following similar result to Theorem 6.4.

PROPOSITION 6.8. With the same notations and assumptions as Corollary 6.5, the following are equivalent:

(1) There are a C*-subalgebra P of A with the common unit and a conditional expectation G from A onto P, which is index-finite, satisfying that there is an isomorphism π of P₁ onto B such that G₁ = E $\circ \pi$, where P_1 is the C^* -basic construction induced by G and G_1 is the dual conditional expectation of G from P_1 onto A.

(2) There is a saturated action of H^0 on A satisfying that there is an isomorphism π of $A \rtimes H^0$ onto B such that $F = E \circ \pi$.

PROOF. (1) \Rightarrow (2): Let ρ , B_1 and e be as in the proof of Corollary 6.7. Since the inclusion $A \subset B$ is of depth 2, so is the inclusion $P \subset A$. Hence since $P' \cap B_1$ is isomorphic to some full matrix algebra over C, $P' \cap B_1$ has the properties (1), (2) and (3) in Lemma 6.6. In the same way as in the proof of Corollary 6.7, $\rho(1 \rtimes e) \sim (1 \rtimes e) \otimes 1$ in $(P' \cap B_1) \otimes H$. Thus there is a partial isometry $w \in (P' \cap B_1) \otimes H$ such that $w^*w = \rho(1 \rtimes e)$, $ww^* = (1 \rtimes e) \otimes 1$. Also, in the same way as in Section 4, there is a unitary element $U \in (P' \cap B) \otimes H$ such that $((1 \rtimes e) \otimes 1)w = ((1 \rtimes e) \otimes 1)U$. In the same discussions as in Sections 4 and 5, we can define a weak action of H^0 on A and a unitary cocycle σ of $H^0 \otimes H^0$ to A by for any $x \in A$ and $\phi, \psi \in H^0$,

$$\phi \cdot x = U^{\wedge}(\phi_{(1)}) x U^{\wedge *}(\phi_{(2)})$$

$$\sigma(\phi, \psi) = U^{\wedge}(\phi_{(1)}) U^{\wedge}(\psi_{(1)}) U^{\wedge *}(\phi_{(2)}\psi_{(2)}) \in A,$$

where U^{\wedge} is a unitary element in Hom $(H^0, P' \cap B)$ induced by U. We note that since $U \in (P' \cap B) \otimes H$, $U^{\wedge}(\phi) \in P' \cap B$ for any $\phi \in H^0$. Let e_P be the Jones projection induced by $P \subset A$. Since e_P is a minimal and central projection in $P' \cap B$, for any $x \in P' \cap B$, there is the unique element $c(x) \in C$ such that $xe_P = e_P x = c(x)e_P$. We regard c as a map $x \in P' \cap B \mapsto c(x) \in C1$. Then c is a homomorphism of $P' \cap B$ to C. Let c^{\wedge} be a homomorphism of H^0 to C1defined by $c^{\wedge} = c \circ U^{\wedge}$. By easy computations, we can see that c^{\wedge} is a unitary element in Hom $(H^0, C1)$ with $c^{\wedge}(1^0) = 1$. Furthermore, for any $\phi, \psi \in H^0$,

$$\sigma(\phi, \psi)e_P = U^{\wedge}(\phi_{(1)})U^{\wedge}(\psi_{(1)})U^{\wedge*}(\phi_{(2)}\psi_{(2)})e_P$$

= $U^{\wedge}(\phi_{(1)})U^{\wedge}(\psi_{(1)})e_Pc^{\wedge*}(\phi_{(2)}\psi_{(2)})$
= $c^{\wedge}(\phi_{(1)})c^{\wedge}(\psi_{(1)})c^{\wedge*}(\phi_{(2)}\psi_{(2)})e_P.$

Since $\sigma(\phi, \psi) \in A$, $\sigma(\phi, \psi) = c^{\wedge}(\phi_{(1)})c^{\wedge}(\psi_{(1)})c^{\wedge*}(\phi_{(2)}\psi_{(2)})$ for any $\phi, \psi \in H^0$. Let $W = c^{\wedge*}U^{\wedge} \in \text{Hom}(H^0, B)$. Then for any $x \in A$ and $\phi \in H^0$

$$W(\phi_{(1)})xW^*(\phi_{(2)}) = c^{\wedge *}(\phi_{(1)})(\phi_{(2)} \cdot x)c^{\wedge}(\phi_{(3)}) \in A.$$

Thus by easy computations, we can see that the map

$$A \times H^0 \ni (x, \phi) \mapsto W(\phi_{(1)}) x W^*(\phi_{(2)}) \in A$$

is an action of H^0 on A. We denote by $A \rtimes H^0$ the crossed product of A by the above action of H^0 on A. Let Φ be a map from $A \rtimes H^0$ to $A \rtimes_{\sigma} H^0$ defined by for any $x \in A$ and $\phi \in H^0$, $\Phi(x \rtimes \phi) = xc^{\wedge *}(\phi_{(1)}) \rtimes \phi_{(2)}$, where $x \rtimes \phi \in A \rtimes H^0$. Then by routine computations, Φ is an isomorphism of $A \rtimes H^0$ onto $A \rtimes_{\sigma} H^0$ satisfying that $F' = E \circ \Phi$, where F' is the canonical conditional expectations from $A \rtimes H^0$ onto A. (2) \Rightarrow (1): Let $P = A^{H^0}$, the fixed point C^* -subalgebra of A for the action of H^0 on A. Then P is the desired C^* -subalgebra of A.

REFERENCES

- 1. Blattner, R. J., Cohen, M., and Montgomery, S., *Crossed products and inner actions of Hopf algebras*, Trans. Amer. Math. Soc. 298 (1986), 671–711.
- 2. Izumi, M., Inclusions of simple C*-algebras, J. Reine Angew. Math. 547 (2002), 97-138.
- 3. Jones, V., Index for subfactors, Invent. Math. 72 (1983), 1-25.
- 4. Kajiwara, T., and Watatani, Y., *Jones index theory for Hilbert C*-bimodules and K-theory*, Trans. Amer. Math. Soc. 352 (2000), 3429–3472.
- Kodaka, K., and Teruya, T., *Involutive equivalence bimodules and inclusions of C*-algebras* with Watatani index 2, J. Operator Theory 57 (2007), 3–18.
- 6. Kodaka, K., and Teruya, T., *Inclusions of unital C*-algebras of index-finite type with depth 2 and twisted actions of finite groups*, preprint, 2006.
- Kosaki, H., Characterization of crossed product (properly infinite case), Pacific J. Math. 137 (1989), 159–167.
- Longo, R., A duality for Hopf algebras and subfactors I, Comm. Math. Phys. 159 (1994), 133–150.
- 9. Masuda, T., and Tomatsu, R., *Classification of minimal actions of a compact Kac algebra with the amenable dual*, preprint(arXiv:math.OA/0604348).
- Rieffel, M. A., C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415–429.
- Sutherland, C. E., Cohomology and extensions of von Neumann algebras, I, II, Publ. Res. Inst. Math. Sci. 16 (1980), 105–133, 135–174.
- 12. Sweedler, M. E., Hopf Algebras, Benjamin, New York, 1969.
- Szymański, W., Finite index subfactors and Hopf algebra crossed products, Proc. Amer. Math. Soc. 120 (1994), 519–528.
- 14. Szymański, W., and Peligrad, C., Saturated actions of finite dimensional Hopf *-algebras on C*-algebras, Math. Scand. 75 (1994), 217–239.
- 15. Watatani, Y., Index for C*-subalgebras, Mem. Amer. Math. Soc. 424 (1990).
- 16. Woronowicz, S. L., Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665.

DEPARTMENT OF MATHEMATICAL SCIENCES FACULTY OF SCIENCE, RYUKYU UNIVERSITY NISHIHARA-CHO, OKINAWA 903-0213 JAPAN *E-mail:* kodaka@math.u-ryukyu.ac.jp DEPARTMENT OF MATHEMATICAL SCIENCES RITSUMEIKAN UNIVERSITY KUSATSU, SHIGA 525-8577 JAPAN *E-mail:* teruya@se.ritsumei.ac.jp