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INCLUSIONS OF UNITAL C∗-ALGEBRAS
OF INDEX-FINITE TYPE WITH DEPTH 2

INDUCED BY SATURATED ACTIONS
OF FINITE DIMENSIONAL
C∗-HOPF ALGEBRAS

KAZUNORI KODAKA and TAMOTSU TERUYA

Abstract

Let B be a unital C∗-algebra and H a finite dimensional C∗-Hopf algebra with its dual C∗-Hopf
algebra H 0. We suppose that there is a saturated action of H on B and we denote by A its fixed
point C∗-subalgebra of B. Let E be the canonical conditional expectation from B onto A. In the
present paper, we shall give a necessary and sufficient condition that there are a weak action of
H 0 on A and a unitary cocycle σ of H 0 ⊗H 0 to A satisfying that there is an isomorphism π of
A�σ H

0 onto B, which is the twisted crossed product of A by the weak action of H 0 on A and
the unitary cocycle σ , such that F = E ◦ π , where F is the canonical conditional expectation
from A�σ H

0 onto A.

1. Introduction

Let A ⊂ B be an irreducible and index-finte inclusion of unital C∗-algebras
of depth 2. If A and B are factors then B is isomorphic to a crossed product
of A by an (outer) action of a finite dimensional Kac (C∗-Hopf) algebra ([8],
[13]). Izumi showed in [2] that if A and B are unital simple C∗-algebras then
there is an action of a finite dimensional C∗-Hopf algebra H on B such that
A is the fixed point C∗-subalgebra BH . But B is not represented by a crossed
product ofA by an action of the dualC∗-Hopf algebraH 0 in general ([4], [5]).
We give an example as follows: Let θ be an irrational number in (0, 1) and Aθ
the corresponding irrational rotationC∗-algebra generated by unitary elements
{u, v} satisfying uv = e2πθvu. For n ∈ N we define an outer automorphism
σ by σ(u) = e

2π
n
iu and σ(v) = v and an action α of Z/nZ by αk = σ k for

k = 0, 1, 2, . . . , n−1. It is easy to see that the fixed pointC∗-subalgebra isAnθ
generated by un and v. Then the inclusion Anθ ⊂ Aθ is irreducible, of depth 2
and of Watatani index n. The dual group of Z/nZ is also Z/nZ. Suppose that
Aθ is isomorphic to a crossed product Anθ �β Z/nZ of Anθ by an outer action
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β of Z/nZ on Anθ . Let w be a unitary element in Anθ �β Z/nZ implementing
β, i.e., wn = 1 and wkxwk∗ = βk(x) for x ∈ Anθ (k = 0, 1, 2, . . . , n − 1).
We can define a trace τ̃ onAnθ �β Z/nZ by τ̃ (wk) = 0 for k = 1, 2, . . . , n−1
and τ̃ (x) = τ(x) for x ∈ Anθ , where τ is the unique tracial state on Anθ .
Put p = 1

n

∑n−1
k=0 w

k . Then p is a projection in Anθ �β Z/nZ with τ̃ (p) = 1
n

.
Since Aθ has the unique tracial state and its values for projections in Aθ is
(θZ + Z) ∩ [0, 1], Aθ is not isomorphic to Anθ �β Z/nZ.

In factor cases, Kosaki ([7]) gave a necessary and sufficient condition for
B to be characterized by a crossed product by a finite group as follows:

(1.1) A′ ∩ B = C1 and A′ ∩ B1 is commutative,

where B1 is the C∗-basic construction for A ⊂ B. We can see that the above
example Anθ ⊂ Aθ satisfies Condition (1.1). So this characterization does not
hold in C∗-algebras. However, Aθ can be represented by a twisted crossed
product Anθ �β,w Z/Zn of Anθ by a twisted action (β,w). In the previous
paper [6], we showed that B is described by a twisted crossed product of A by
its twisted action of a finite group if and only if the inclusion A ⊂ B satisfies
Condition (1.1) and all the minimal projections in A′ ∩ B1 are Murray-von
Neumann equivalent in B1.

In [1], Blattner, Cohen and Montgomery defined a weak action of Hopf
algebras, which is a generalization of twisted group actions. Let H be a finite
dimensional C∗-Hopf algebra. We suppose that there is a saturated action of
H on B defined in Szymański and Peligrad [14]. Let A be the fixed point
C∗-subalgebra BH and E the canonical conditional expectation from B onto
A. Let B �H be the crossed product of B by the action of H on B, which is
defined in [14]. In [14], they showed that B �H is isomorphic to B1, the C∗-
basic construction induced byE. Let ρ be the coaction ofB1 toB1 ⊗H defined
by ρ(b�h) = ∑

(h)(b�h(1))⊗h(2) for b ∈ B and h ∈ H , where we identify
B1 with B � H and 	(h) = ∑

(h) h(1) ⊗ h(2), 	 is the comultiplication of
H . Our main result, Theorem 6.4, is that B can be represented by the twisted
crossed product A �σ H

0 if and only if ρ(eA) and eA ⊗ 1 are Murray-von
Neumann equivalent, written ρ(eA) ∼ eA⊗1 inB1 ⊗H , whereH 0 is the dual
C∗-Hopf algebra of H and eA is the Jones projection for A ⊂ B.

This paper is organized as follows: Section 2 consists of preliminaries con-
taining definitions and fundamental matters of finite dimensional C∗-Hopf
algebras and their weak actions. In Section 3 we define a unitary cocycle for a
weak action of a finite dimensional C∗-Hopf algebra and discuss about a twis-
ted crossed product. In Section 4 we suppose thatρ(eA) ∼ eA⊗1 inB1⊗H . We
prove that there is a unitary element u ∈ B⊗H such that ρ(eA) = u∗(eA⊗1)u
and we give some properties of this unitary element. In Section 5 we construct
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a weak action ofH 0 onA under the condition that ρ(eA) ∼ eA⊗ 1 in B1 ⊗H .
In Section 6 we prove the main result, Theorem 6.4. Using this theorem we
prove that B can be represented by a crossed product A � H 0 if and only if
there is a tunnel construction P ⊂ A for A ⊂ B (Proposition 6.8). From this
result, we can see that B always can be represented by A � H 0 and that any
unitary cocycle is coboundary if A ⊂ B are factors ([9], [11]).

2. Preliminaries on finite dimensional C∗-Hopf algebras

Following [14], we shall state the definition of a finite dimensional C∗-Hopf
algebra and its basic properties. Throughout this paper, H denotes a finite
dimensional C∗-Hopf algebra.

Definition 2.1. We say that a finite dimensional C∗-algebra H is a C∗-
Hopf algebra if H has the following properties.

(1) There exist linear maps;
(a) comultiplication 	 : H −→ H ⊗H ,
(b) counit ε : H −→ C,
(c) antipode S : H −→ H , 	 and ε are C∗-algebra homomorphisms

and S is a ∗- preserving antimultiplicative involution. We have
	(1) = 1⊗1, ε(1) = 1 and S(1) = 1, where 1 is the unit element
in H .

(2) The following identities hold;
(a) (	⊗ id) ◦	 = (id ⊗	) ◦	,
(b) (ε ⊗ id) ◦ 	 = (id ⊗ε) ◦ 	 = id, where C ⊗ H and H ⊗ C are

identified with H ,
(c) (m ◦ (S ⊗ id))(	(h)) = ε(h) = (m ◦ (id ⊗S))(	(h)) for any

h ∈ H , where m : H ⊗H −→ H denotes the multiplication.

We shall use Sweedler’s notation 	(h) = h(1) ⊗ h(2) for h ∈ H which
suppresses a possible summation when we write the comultiplications. By
[14, Theorem 2.2] or Woronowicz [16], there is the Haar trace τ on H such
that (τ ⊗ id)(	(h)) = τ(h)1 = (id ⊗τ)(	(h)) for any h ∈ H .

Let H 0 be the linear space of linear functionals on H . By [14, Proposi-
tion 2.3], H 0 has a C∗-Hopf algebra structure. We regard H 0 as a finite di-
mensional C∗-Hopf algebra by this structure. We denote its comultiplication,
counit, antipode and so on by 	0, ε0, S0 and so on.

Since H is a finite dimensional C∗-algebra, H ∼= ⊕N
k=1Mdk(C) as C∗-

algebras, where for each n ∈ N, we denote byMn(C) the n×n-matrix algebra
over C. Let {vkij }dkij=1 be a system of matrix units of a C∗-subalgebra of H iso-
morphic toMdk(C) for k = 1, 2, . . . , N . Also, let {wkij | k = 1, 2, . . . , N, i, j =
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1, 2, . . . , dk} be a basis of H satisfying [14, Theorem 2.2,2]. We call it a sys-
tem of comatrix units of H . By [14, Theorem 2.2] or [16], there is a minimal
and central projection e in H , called the distinguished projection such that
he = ε(h)e for any h ∈ H . By [14, Proposition 2.10] and the discussions
below it,

	(e) =
∑
i,j,k

1

dk
vkji ⊗ S(vkij ) =

∑
i,j,k

1

dk
S(vkji)⊗ vkij .

Also, by the above equations and Definition 2.1,

e =
∑
i,j,k

1

dk
ε(vkji)v

k
ij =

∑
i,j,k

1

dk
ε(vkji)S(v

k
ij ).

Furthermore, we note that the Haar trace τ onH is the distinguished projection
in H 0.

Next, following Blattner, Cohen and Montgomery [1, Definitions 1.1 and
2.1] and [14, Definition 2.4], we shall define an action and a coaction of a finite
dimensional C∗-Hopf algebra H on a unital C∗-algebra A.

Definition 2.2. By a weak action of H on A, we mean a bilinear map
(h, x) �→ h · x of H × A to A such that for h ∈ H , x, y ∈ A

(1) h · xy = (h(1) · x)(h(2) · y),
(2) h · 1 = ε(h)1,

(3) 1 · x = x,

(4) (h · x)∗ = S(h∗) · x∗.

By an action ofH on A, we mean a weak action such that h · (l · x) = (hl) · x
for h, l ∈ H , x ∈ A.

Let Hom(H,A) be the linear space of all linear maps from H to A. Then
by Sweedler [12, pp. 69-70] it becomes a unital *-algebra as follows: For any
f, g ∈ Hom(H,A) (fg)(h) = f (h(1))g(h(2)), f ∗(h) = f (S(h∗))∗, where ε,
the counit inH is the unit element in Hom(H,A). We call it a unital convolu-
tion *- algebra. Then as mentioned in [1, pp. 163], there is an isomorphism ı

of A⊗H 0 onto Hom(H,A) defined by ı(x ⊗ φ)(h) = φ(h)x for any x ∈ A,
h ∈ H and φ ∈ H 0 since H is finite dimensional.

Definition 2.3. A weak action of H on A is inner if there is a unitary
element U ∈ Hom(H,A) such that for any h ∈ H and x ∈ A, h · x =
U(h(1))xU

∗(h(2)). We say that U implements the weak action.

Definition 2.4. By a weak coaction of H on A, we mean a linear map
ρ : A → A⊗H such that for x, y ∈ A,
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(1) ρ(xy) = ρ(x)ρ(y),

(2) ρ(1) = 1 ⊗ 1,

(3) (id ⊗ε)(ρ(x)) = x,

(4) ρ(x∗) = ρ(x)∗.

By a coaction of H on A, we mean a weak coaction such that

(ρ ⊗ id) ◦ ρ = (id ⊗	) ◦ ρ.

If H acts on A in the saturated fashion defined in [14], then its fixed point
C∗-subalgebra AH of A is defined by

AH = {x ∈ A | h · x = ε(h)x for any h ∈ H }.
Also, we can define a conditional expectation E from A onto AH with
Index(E) = dim(H) by E(x) = e · x for x ∈ A by [14], where Index(E) is
the Watatani index of E. We call E the canonical conditional expectation of
A onto AH .

3. A twisted crossed product of a unital C∗-algebra by a finite
dimensional C∗-Hopf algebra

Modifying [14] and [1], we shall define a twisted crossed product of a unitalC∗-
algebra by a finite dimensionalC∗-Hopf algebra. LetH be a finite dimensional
C∗-Hopf algebra and A a unital C∗-algebra. In the same way as in Section 2,
Hom(H ⊗H,A) becomes a unital convolution *-algebra as follows: For any
f, g ∈ Hom(H ⊗ H,A) (fg)(h, l) = f (h(1), l(1))g(h(2), l(2)), f ∗(h, l) =
f (S(h∗), S(l∗))∗, where ε ⊗ ε is the unit element in Hom(H ⊗ H,A). We
suppose that there is a weak action of H on A.

Definition 3.1. Let σ : H ⊗ H −→ A be a bilinear map. The bilinear
map σ is a unitary cocycle for the weak action of H on A if σ satisfies the
following:

(1) In the unital convolution *- algebra Hom(H ⊗ H,A), σ is a unitary
element,

(2) σ is normal, that is, for any h ∈ H , σ(h, 1) = σ(1, h) = ε(h)1,

(3) (cocycle condition) For any h, l,m ∈ H
[h(1) · σ(l(1), m(1))]σ(h(2), l(2)m(2)) = σ(h(1), l(1))σ (h(2)l(2), m),

(4) (twisted modular condition) For any h, l ∈ H , x ∈ A,

[h(1) · (l(1) · x)]σ(h(2), l(2)) = σ(h(1), l(1))(h(2)l(2) · x).
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We suppose that σ is a unitary cocycle for the weak action of H on A. Let
A �σ H be a unital *-algebra, called a twisted crossed product of A by H ,
where underlying space is A ⊗ H . We denote by x � h the element induced
by x ∈ A and h ∈ H . Its multiplication and *-operation are given by

(x � h)(y � l) = x(h(1) · y)σ (h(2), l(1))� h(3)l(2)

(x � h)∗ = σ(S(h(2)), h(1))
∗(h∗

(3) · x∗)� h∗
(4)

for any x, y ∈ A and h, l ∈ H . By [1, Corollary 4.6], A �σ H is a unital
algebra. It is necessary to show that A�σ H is a *-algebra. We shall show it.
Before doing it, we note the following:

Remark 3.2. We identifyAwith theC∗-subalgebraA�1 ofA�σ H . Also,
if σ is trivial, that is, for any h, l ∈ H σ(h, l) = ε(h)ε(l)1, then A �σ H is
the ordinary crossed product, A�H which is defined in [14]. Furthermore, in
the ordinary crossed product, we can also identify H with the C∗-subalgebra
1 �H of A�H .

Lemma 3.3. For any h, l ∈ H ,

(1) h · σ(S(l(2)), l(1)) = σ(h(1), S(l(3)))σ (h(2)S(l(2)), l(1))

(2) h · σ(l(1), S(l(2))) = σ(h(1), l(1))σ (h(2)l(2), S(l(3)))

Proof. For any h, l ∈ H ,

h · σ(S(l(2)), l(1)) = (ε(h(2))h(1)) · σ(S(l(2)), l(1))
= [h(1) · σ(S(l(2)), l(1))]σ(h(2), 1)

= [h(1) · σ(S(l(3)), l(1))]σ(h(2), ε(l(2)))
= [h(1) · σ(S(l(4)), l(1))]σ(h(2), S(l(3))l(2))
= σ(h(1), S(l(3)))σ (h(2)S(l(2)), l(1))

by Definition 3.1(3). In the same way, we obtain Equation (2).

Lemma 3.4. For any x, y ∈ A and h ∈ H , ((x�1)(y�h))∗ = (y�h)∗(x�

1)∗.

Proof. By routine computations,

(y � h)∗(x � 1)∗ = σ(S(h(2)), h(1))
∗(h∗

(3) · y∗)(h∗
(4) · x∗)σ (h∗

(5), 1)� h∗
(6)

= σ(S(h(2)), h(1))
∗(h∗

(3) · y∗x∗)� h∗
(4)

= ((x � 1)(y � h))∗.
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Lemma 3.5. For any x ∈ A andh ∈ H , ((1�h)(x�1))∗ = (x�1)∗(1�h)∗.

Proof. By Definition 3.1(4),

((1 � h)(x � 1))∗ = [(S(h(4)) · (h(1) · x))σ (S(h(3)), h(2))]∗ � h∗
(5)

= [σ(S(h(4)), h(1))(S(h(3))h(2) · x)]∗ � h∗
(5)

= (σ (S(h(2)), h(1))x)
∗

� h∗
(3) = (x � 1)∗(1 � h)∗.

Lemma 3.6. For any h, l ∈ H , ((1 � h)(1 � l))∗ = (1 � l)∗(1 � h)∗.

Proof. By routine calculations,

((1 � h)(1 � l))∗

= [(S(h(4)l(4)) · σ(h(1), l(1)))σ (S(h(3)l(3)), h(2)l(2))]∗ � (h(5)l(5))
∗.

Using Definition 3.1(3),

((1 � h)(1 � l))∗ = [σ(S(h(4)l(3)), h(1))σ (S(h(3)l(2))h(2), l(1))]
∗

� (h(5)l(4))
∗

= σ(S(l(2)), l(1))
∗σ(S(l(3))S(h(2)), h(1))∗ � l∗(4)h

∗
(3).

On the other hand,

(1 � l)∗(1 � h)∗

= σ(S(l(2)), l(1))
∗[S(l(3)) · σ(S(h(2)), h(1))]∗σ(l∗(4), h∗

(3))� l∗(5)h
∗
(4).

Using Lemma 3.3(1) and that σ ∗σ = ε ⊗ ε,

(1 � l)∗(1 � h)∗

= σ(S(l(2)), l(1))
∗

× [σ(S(l(4)), S(h(3)))σ (S(l(3))S(h(2)), h(1))]
∗σ(l∗(5), h

∗
(4))� l∗(6)h

∗
(5)

= σ(S(l(2)), l(1))
∗σ(S(l(3))S(h(2)), h(1))∗ � l∗(4)h

∗
(3).

Therefore we obtain the conclusion.

Lemma 3.7. For any h ∈ H , (1 � h)∗∗ = 1 � h.

Proof. Using Lemma 3.3(1) and that σ ∗σ = ε ⊗ ε, by routine computa-
tions,

(1 � h)∗∗ = σ(S(h(4))
∗, h∗

(3))
∗[h(5) · σ(S(h(2)), h(1))] � h(6)

= σ(S(h∗
(5)), h

∗
(4))

∗σ(h(6), S(h(3)))σ (h(7)S(h(2)), h(1))� h(8)

= ε(h(4))ε(S(h(3)))σ (h(5)S(h(2)), h(1))� h(6) = 1 � h.
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Proposition 3.8. The unital algebra A�σ H is a *-algebra.

Proof. We have only to show that for any x, y ∈ A and h, l ∈ H ,

((x � h)(y � l))∗ = (y � l)∗(x � h)∗, (x � h)∗∗ = x � h.

Since (1�h)(y� l) is a finite sum of elements in the form z�k, where z ∈ A,
k ∈ H , by Lemma 3.4

((x � h)(y � l))∗ = ((x � 1)(1 � h)(y � l))∗

= ((1 � h)(y � 1)(1 � l))∗(x � 1)∗.

Also, we can write that (1 � h)(y � 1) = ∑
i zi � ki , where zi ∈ A, ki ∈ H

for any i. Hence

((1 � h)(y � 1)(1 � l))∗ =
∑
i

((zi � 1)(1 � ki)(1 � l))∗.

Since (1 � ki)(1 � l) is also a finite sum of elements in the form z� k, where
z ∈ A, k ∈ H , by Lemmas 3.4, 3.5 and 3.6,

((1 � h)(y � 1)(1 � l))∗ =
∑
i

(1 � l)∗(1 � ki)
∗(zi � 1)∗

=
∑
i

(1 � l)∗((zi � 1)(1 � ki))
∗

= (1 � l)∗(y � 1)∗(1 � h)∗.

Thus by Lemma 3.4,

((x � h)(y � l))∗ = (1 � l)∗(y � 1)∗(1 � h)∗(x � 1)∗ = (y � l)∗(x � h)∗.

Furthermore, by the above discussion and Lemma 3.7,

(x � h)∗∗ = (x � 1)∗∗(1 � h)∗∗ = x � h.

Modifying [14], we shall define a C∗-norm in A�σ H . We suppose that A
acts on a Hilbert space H faithfully and non-degenerately. Let l2(τ,H) be a
Hilbert space induced by the Haar trace τ on H and B the C∗-algebra of all
bounded linear operatros on a Hibert space H ⊗ l2(τ,H). Let θ be a map from
A�σ H to B defined by for any x ∈ A, h, l ∈ H and ξ ∈ H ,

θ(x � h)(ξ ⊗ l) = (S(h(3)l(2)) · x)σ (S(h(2)l(1)), h(1))ξ ⊗ h(4)l(3).

We shall show that θ is a faithful representation of the *-algebra A�σ H to B.
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Lemma 3.9. For any x, y ∈ A and h ∈ H , θ((x � 1)(y � h)) = θ(x �

1)θ(y � h).

Proof. By routine calculations, for any ξ ∈ H and l ∈ l2(τ,H),
θ(x � 1)θ(y � h)(ξ ⊗ l)

= [S(h(4)l(3)) · x][S(h(3)l(2)) · y]σ(S(h(2)l(1)), h(1))ξ ⊗ h(5)l(4)

= [S(h(3)l(2)) · xy]σ(S(h(2)l(1)), h(1))ξ ⊗ h(4)l(3)

= θ((x � 1)(y � h))(ξ ⊗ l).

Lemma 3.10. For any x ∈ A and h, k ∈ H , θ((1 � h)(x � k)) = θ(1 �

h)θ(x � k).

Proof. By Definition 3.1(3) and (4) for any ξ ∈ H and l ∈ l2(τ,H),
θ((1 � h)(x � k))(ξ ⊗ l)

= [S(h(6)k(5)l(3)) · (h(1) · x)][S(h(5)k(4)l(2)) · σ(h(2), k(1))]
× σ(S(h(4)k(3)l(1)), h(3)k(2))ξ ⊗ h(7)k(6)l(4)

= [S(h(4)k(4)l(3)) · (h(1) · x)]σ(S(h(3)k(3)l(2)), h(2))σ (S(k(2)l(1)), k(1))ξ
⊗ h(5)k(5)l(4)

= σ(S(h(4)k(4)l(3)), h(1))[S(h(3)k(3)l(2))h(2) · x]σ(S(k(2)l(1)), k(1))ξ

⊗ h(5)k(5)l(4)

= σ(S(h(2)k(4)l(3)), h(1))[S(k(3)l(2)) · x]σ(S(k(2)l(1)), k(1))ξ ⊗ h(3)k(5)l(4)

= θ(1 � h)θ(x � k)(ξ ⊗ l).

Lemma 3.11. For any x ∈ A and h ∈ H , θ((x � 1)∗) = θ(x � 1)∗,
θ((1 � h)∗) = θ(1 � h)∗.

Proof. For any ξ, η ∈ H and l, k ∈ H ,

(θ((x � 1)∗)(ξ ⊗ l)|η ⊗ k) = ([S(l(1)) · x∗]ξ |η)τ(l(2)k∗).

Also, by [14, Theorem 2.2],

(θ(x � 1)∗(ξ ⊗ l)|η ⊗ k)

= (ξ ⊗ l|θ(x � 1)(η ⊗ k)) = (ξ |[S(k(1)) · x]η)τ(lk∗
(2))

= (ξ |[S(k(1)) · x]η)τ(ε(l(1))l(2)k
∗
(2)) = (ξ |[S(k(1))S(l∗(2))l∗(1)τ (k(2)l∗(3)) · x]η)

= (ξ |[τ(S(l∗(3)k(2)))S(l∗(2)k(1))l∗(1) · x]η) = (ξ |[τ(l∗(2)k)l∗(1) · x]η)

= ([S(l(1)) · x∗]ξ |η)τ(l(2)k∗).
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Thus we obtain the first equation in the above. Furthermore, using Lem-
ma 3.3(1) and that σ ∗σ = ε ⊗ ε, by routine computations,

(θ((1 � h)∗)(ξ ⊗ l)|η ⊗ k)

= ([S(h∗
(5)l(2)) · σ(S(h(2)), h(1))∗]σ(S(h∗

(4)l(1)), h(3))ξ |η)τ(h∗
(6)l(3)k

∗)

= (ξ |σ ∗(l∗(1)h(5), S(h(4)))σ (l
∗
(2)h(6), S(h(3)))

× σ(l∗(3)h(7)S(h(2)), h(1))η)τ (h
∗
(8)l(4)k

∗)

= (ξ |σ(τ(kl∗(2)h(2))l∗(1), h(1))η)
= (ξ |σ(τ(k(2)ε(k(1))l∗(2)h(3)ε(h(2)))l∗(1), h(1))η)
= (ξ |σ(S(k(1))S(h(2))τ (h(4)k(3)l∗(2))h(3)k(2)l∗(1), h(1))η).

By [14, Theorem 2.2],

(θ((1 � h)∗)(ξ ⊗ l)|η ⊗ k) = (ξ |σ(S(h(2)k(1)), h(1))η)τ (lk∗
(2)h

∗
(3))

= (θ(1 � h)∗(ξ ⊗ l)|η ⊗ k).

Let V be a linear map fromH to A�σ H defined by V (h) = 1 �h for any
h ∈ H . By easy computations V ∈ Hom(H,A�σ H). Moreover, we have the
following properties:

Lemma 3.12. (i) The element V is a unitary one in Hom(H,A�σ H).
(ii) For any x ∈ A and h, l ∈ H ,

(h · x)� 1 = V (h(1))(x � 1)V ∗(h(2)),
σ (h, l)� 1 = V (h(1))V (l(1))V

∗(h(2)l(2)).

Proof. Since σ is a unitary element in Hom(H ⊗H,A�σ H),

(V ∗V )(h) = σ(h∗
(3), S(h(4)))

∗σ(S(h(2)), h(5))� S(h(1))h(6) = ε(h)� 1.

Furthermore, by Lemma 3.3(2),

(V V ∗)(h) = (S(h∗
(1)) · σ(h∗

(4), S(h(5))))
∗σ(h(2), S(h(3)))� 1

= σ(S(h∗
(1))h

∗
(6), S(h

∗
(7)))

∗σ(S(h∗
(2)), h

∗
(5))

∗σ(h(3), S(h(4)))� 1

= ε(h)� 1.

Hence V is a unitary element in Hom(H,A�σ H). Also, since σ ∗σ = ε⊗ ε,
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by Lemma 3.3(1)

V (h(1))(x � 1)V ∗(h(2))
= (h(1) · x)[S(h∗

(2)) · σ(h∗
(5), S(h

∗
(6)))]

∗σ(h(3), S(h(4)))� 1

= (h(1) · x)[σ(S(h∗
(3)), h(6))σ (S(h

∗
(2))h

∗
(7), S(h

∗
(8)))]

∗σ(h(4), S(h(5)))� 1

= (h · x)� 1.

Furthermore, since σ ∗σ = ε ⊗ ε, by Lemma 3.3(2)

V (h(1))V (l(1))V
∗(h(2)l(2))

= σ(h(1), l(1))[σ(S(h(3)l(3))
∗, (h(6)l(6))∗)

× σ(S(h(2)l(2))
∗(h(7)l(7))∗, S(h(8)l(8))∗)]∗σ(h(4)l(4), S(h(5)l(5)))� 1

= σ(h(1), l(1))σ (S(h(2)l(2))
∗(h(5)l(5))∗, S(h(6)l(6))∗)∗

× (σ ∗σ)(h(3)l(3), S(h(4)l(4)))� 1

= σ(h, l)� 1.

This lemma means that the action ofH on A is inner in A�σ H . Using the
above lemmas we shall show the following proposition:

Proposition 3.13. The map θ is an injective representation of A�σ H to
B.

Proof. It is immediate by Lemmas 3.9, 3.10 and 3.11 that θ is a represent-
ation of A�σ H to B. We have only to show that θ is injective. Let {wkij } be a
system of comatrix units of H and let x = ∑

i,j,k xijk � wkij , where xijk ∈ A.
We suppose that θ(x) = 0. Then for any ξ ∈ H ,

0 = θ(x)(ξ ⊗ 1) =
∑

i,j,k,t1,t2,t3

[S(wkt2t3) · xijk]σ(S(wkt1t2), wkit1)ξ ⊗ wkt3j

by [14, Theorem 2.2,2]. Since {wkij } is a basis of H and A acts on H faith-
fully and non-degenerately,

∑
i,t1,t2

[S(wkt2t3) · xijk]σ(S(wkt1t2), wkit1) = 0 for
k, t3, j . Thus

∑
i,t1,t2

[S(wkt2s) · xijk]σ(S(wkt1t2), wkit1) � 1 = 0 for any j, k, s.
By Lemma 3.12

0

=
∑

i,t1,t2,t3,t4

V (S(wkt4s))(xijk � 1)V ∗(S(wkt3t4))V (S(w
k
t2t3
))V (wkit1)× V ∗(ε(wkt1t2))

=
∑
i,t1

V (S(wkt1s))(xijk � 1)V (wkit1).
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Since s is arbitrary and V ∗V = ε, for any r

0 =
∑
i,t1,s

V ∗(S(wksr ))V (S(w
k
t1s
))(xijk � 1)V (wkit1) =

∑
i

(xijk � 1)V (wkir ).

Since r is arbitrary and VV ∗ = ε, for any p

0 =
∑
i,r

(xijk � 1)V (wkir )V
∗(wkrp) =

∑
i

(xijk � 1)ε(wkip).

Since ε(wkip) = δip by [14, Theorem 2.2,2], xpjk�1 = 0 for any p, j, k, where
δip is the Kronecker delta. Hence θ is injective.

Let F be a linear map from A�σ H to A defined by F(x�h) = τ(h)x for
any x ∈ A and h ∈ H . In the same way as in [14, Proposition 2.8], we can see
that F is a conditional expectation from A�σ H onto A.

Lemma 3.14. The conditional expectation F is faithful.

Proof. We show this lemma in the same way as in [14, Proposition 2.8].
Let {hj } be a basis of H such that τ(hih∗

j ) = δij , where δij is the Kronecker
delta. Let x = ∑

i xi � hi in A �σ H , where xi ∈ A for any i. We suppose
that F(xx∗) = 0. Then by Definition 3.1(4) and [14, Theorem 2.2,1]

0 =
∑
i,j

F ((xi � hi)(xj � hj )
∗)

=
∑

i,j,(hi ),(hj )

xiτ (hi(4)h
∗
j (5))[hi(1) · σ(S(hj(2)), hj (1))∗]

× [hi(2) · (h∗
j (3) · xj )]σ(hi(3), hj (4))

=
∑

i,j,(hi ),(hj )

xiτ (hi(4)h
∗
j (5))[S(h

∗
i(1)) · σ(S(hj(2)), hj (1))]∗σ(hi(2), h∗

j (3))

× (hi(3)h
∗
j (4) · xj )

=
∑

i,j,(hi ),(hj )

xiτ (hi(3)h
∗
j (4))[S(h

∗
i(1)) · σ(S(hj(2)), hj (1))]∗σ(hi(2), h∗

j (3))x
∗
j .

Since σ ∗σ = ε ⊗ ε, by Lemma 3.3(1) 0 = ∑
i,j τ (hih

∗
j )xix

∗
j = ∑

i xix
∗
i .

Hence xi = 0 for any i. Thus F is faithful.

Proposition 3.15. The unital ∗-algebra θ(A�σ H) is closed in B.

Proof. We note that for any x ∈ A�σ H , ‖F(x)‖ ≤ ‖θ(x)‖. Indeed, we
can write x = ∑

i xi �hi , where xi ∈ A, hi ∈ H for any i. Since id ⊗τ can be
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regarded as a contractive linear map from H ⊗ l2(τ,H) to H , for any ξ ∈ H ,

‖θ(x)(ξ ⊗ 1)‖ =
∥∥∥∥
∑
i,(hi )

[S(hi(3)) · xi]σ(S(hi(2)), hi(1))ξ ⊗ hi(4)

∥∥∥∥
≥

∥∥∥∥
∑
i,(hi )

[S(hi(3)) · xi]σ(S(hi(2)), hi(1))ξ ⊗ τ(hi(4))

∥∥∥∥
=

∥∥∥∥
∑
i

(τ (hi)xiξ)⊗ 1

∥∥∥∥ = ‖F(x)ξ‖

by [14, Theorem 2.2]. Hence ‖F(x)‖ ≤ ‖θ(x)‖ for any x ∈ A �σ H . Thus
we can obtain this proposition in the same way as in [14, Proposition 2.15].

By Proposition 3.15, we can regard A �σ H as a C∗-subalgebra of B and
A �σ H is independent of the choice of a Hilbert space H . We call it the
twisted crossed product of a unital C∗-algebraA by a weak actionH onA and
a unitary cocycle σ . Following [14, Definition 2.7], we define the dual action
of H 0 on A�σ H .

Definition 3.16. There is the dual action of H 0 on A�σ H defined by

φ · (x � h) = x � (φ ⇀ h)

for x ∈ A, h ∈ H , φ ∈ H 0, where ⇀ is the Sweedler’s arrow which is the
action of H 0 on H defined in [14, Example 2.5].

It is necessary to check that the above is an action. But we can easily do it.
Also, we have the following lemma:

Lemma 3.17. The following statements hold.

(1) F(x � h) = τ · (x � h) for any x ∈ A and h ∈ H ,

(2) A = (A�σ H)
H 0

, where (A�σ H)
H 0

is the fixed point C∗-subalgebra
of A�σ H for the action of H 0 on A�σ H .

Proof. This is immediate by routine computations.

By Lemma 3.17(1), we can see that 1 � τ is the Jones projection induced
by F .

Proposition 3.18. Let {wkij } be a system of comatrix units of H . Then

{((√
dk � wkij

)∗
,
√
dk � wkij

)}
i,j,k

is a quasi-basis for F and Index(F ) = dim(H).
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Proof. For any x ∈ A �σ H , we can write that x = ∑
i,j,k xijk � wkij ,

where xijk ∈ A for any i, j, k. Since F is an A-A-bimodule map, in order to
prove the first statement, we have only to show that for any i0, j0, k0,

∑
i,j,k

F ((1 � w
k0
i0j0
)(1 � wkij )

∗)(1 � wkij ) = 1

dk0

� w
k0
i0j0
.

By routine computations and [14, Theorem 2.2,2],
∑
i,j,k

F ((1 � w
k0
i0j0
)(1 � wkij )

∗)(1 � wkij )

=
∑

i,t1,t2,s1,s2

1

dk0

[S(wk0
i0s1
)∗ · σ(wk0∗

t2t1
, S(w

k0
t1i
)∗)]∗σ(wk0

s1s2
, S(wk0

s2t2
))� w

k0
ij0
.

We change the sufixes as follows: We change t2, t1 and i to s3, s4 and s5,
respectively. Then since σ ∗σ = ε ⊗ ε, by Lemma 3.3(2) and routine compu-
tations,
∑
i,j,k

F ((1 � w
k0
i0j0
)(1 � wkij )

∗)(1 � wkij )

=
∑
s1,...,s5

1

dk0

[S(wk0
i0s1
)∗ · σ(wk0∗

s3s4
, S(wk0

s4s5
)∗)]∗σ(wk0

s1s2
, S(wk0

s2s3
))� w

k0
s5j0

=
∑
s1,...,s7

1

dk0

σ(S(w
k0
i0s1
)∗wk0∗

s5s6
, S(wk0∗

s6s7
))∗σ(S(wk0

s1s2
)∗, wk0∗

s4s5
)∗

× σ(wk0
s2s3
, S(wk0

s3s4
))� w

k0
s7j0

= 1

dk0

� w
k0
i0j0
.

Furthermore, since 1�wkij = V (wkij ) for any i, j, k, by [14, Theorem 2.2] and
Lemma 3.12,

Index(F ) =
∑
i,j,k

dkV (w
k
ij )

∗V (wkij ) =
∑
ij,k

dkV
∗(wkji)V (w

k
ij ) =

∑
j,k

dkε(w
k
jj )

= dim(H).

We denote by B the twisted crossed product A�σ H . Then we can define
the dual action of H 0 on B in the same way as in Definition 3.16. Also, we
can define a coaction ρ of H 0 on B � H 0 by ρ(x � φ) = (x � φ(1)) ⊗ φ(2)
for any x ∈ B and φ ∈ H 0. We can easily check that ρ is a coaction of H 0 on
B �H 0.
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Proposition 3.19. We have that ρ(1B �τ) ∼ (1B �τ)⊗10 in
(
B �H 0

)⊗
H 0, where 1B and 10 are the unit elements in B and H 0, respectively.

Proof. LetV be a unitary element in Hom(H,B) defined byV (h) = 1�h

for anyh ∈ H . We regard it as an element in Hom(H,B�H 0). Also, there is an
isomorphism ı of (B�H 0)⊗H 0 onto Hom(H,B�H 0)defined after Definition
2.2. Hence we regardρ(1�τ) and (1�τ)⊗10 as elements in Hom(H,B�H 0).
We denote them by ρ(1�τ)∧ and ((1�τ)⊗10)∧, respectively. Then by direct
computations, for any h ∈ H ,

(((1 � τ)⊗ 10)∧V )(h) = (1 � τ)ε(h(1))(V (h(2))� 10)

= (1 � h(1))� τ(1)(h(2))τ(2).

On the other hand,

(Vρ(1 � τ)∧)(h) = (V (h(1))� 10)(1 � τ(2)(h(2))τ(1))

= (1 � h(1))� τ(2)(h(2))τ(1).

Furthermore, for any h, l ∈ H ,

(τ(2)τ(1)(h))(l) = τ(1)(h)τ(2)(l) = τ(hl) = τ(lh)

= τ(1)(l)τ(2)(h) = (τ(2)(h)τ(1))(l).

Since H 0 can be identified with 1B �H 0, a C∗-subalgebra of B �H 0,

Vρ(1 � τ)∧ = ((1 � τ)⊗ 10)∧V.

Since V is a unitary element in Hom(H,B) by Lemma 3.12(i), so is V in
Hom(H,B �H 0). Therefore, ρ(1 � τ) ∼ (1 � τ)⊗ 10 in (B �H 0)⊗H 0.

4. Construction of a unitary element and its properties

As mentioned in Introduction, let B be a unital C∗-algebra and H a finite
dimensional C∗-Hopf algebra. We suppose that there is a saturated action of
H on B defined in [14]. LetA be its fixed point C∗-subalgebra of B and E the
canonical conditional expectation from B onto A. Let B � H be the crossed
product of B by the action ofH on B and we denote it by B1. In the same way
as in Section 3, we can define a coaction ρ of H on B1 by for any x ∈ B and
h ∈ H

ρ(x � h) = (x � h(1))⊗ h(2).

We suppose that ρ(1�e) ∼ (1�e)⊗1 inB1 ⊗H , where e is the distinguished
projection in H . We note that 1 � e is the Jones projection induced by E. We
shall show that the above condition is a necessary and sufficient one we stated



236 kazunori kodaka and tamotsu teruya

in Introduction. Since ρ(1 � e) ∼ (1 � e) ⊗ 1 in B1 ⊗ H , there is a partial
isometry w ∈ B1 ⊗ H such that w∗w = ρ(1 � e), ww∗ = (1 � e) ⊗ 1. Let
{vkij }i,j,k be a system of matrix units ofH . We writew = ∑

i,j,k x
k
ij⊗vkij , where

xkij ∈ B1 for any i, j, k. Moreover, we write xkij = ∑
i1,j1,k1

(bkij )
k1
i1j1

� v
k1
i1j1

for

any i, j, k, where (bkij )
k1
i1j1

∈ B for any i, j, k, i1, j1, k1. Then ((1�e)⊗1)w =∑
i,j,k(1 � e)xkij ⊗ vkij . Also, since {vkij } is a system of matrix units of H , by

Equation (5) in [14]

(1 � e)xkij =
∑

i1,j1,k1,i2

1

dk1

S(v
k1
i1i2
) · (bkij )k1

i1j1
� v

k1
i2j1
.

Let ukij = ∑
i1,j1,k1

S(v
k1
i1j1
) · (bkij )k1

i1j1
∈ B for any i, j, k. Then by routine

calculations, for any i, j, k,

(1 � e)(ukij � 1) =
∑

i1,j1,k1,i2

1

dk1

S(v
k1
j1i2
)S(v

k1
i1j1
) · (bkij )k1

i1j1
� v

k1
i2j1

= (1 � e)xkij .

Thus
((1 � e)⊗ 1)w =

∑
i,j,k

(1 � e)(ukij � 1)⊗ vkij

= ((1 � e)⊗ 1)

(∑
i,j,k

(ukij � 1)⊗ vkij

)
.

Let u = ∑
i,j,k u

k
ij ⊗ vkij ∈ B ⊗ H . Since we identify B with B � 1, a

C∗-subalgebra of B1, we identify B ⊗ H with (B � 1) ⊗ H . If we do so,
u = ∑

i,j,k(u
k
ij � 1)⊗ vkij . Hence by the above equation, we obtain that

((1 � e)⊗ 1)w = ((1 � e)⊗ 1)u,

u∗((1 � e)⊗ 1)u = w∗((1 � e)⊗ 1)w = ρ(1 � e).

On the other hand, u∗((1�e)⊗1)u = ∑
i,j,k,j1

(uk∗ij �e)(ukij1
�1)⊗vkjj1

. Since
ρ(1 � e) = ∑

i,j,k
1
dk
((1 � S(vkji))⊗ vkij ), we can see that for any j, j1, k,

(4.1)
1

dk
(1 � S(vkj1j

)) =
∑
i

(uk∗ij � e)(ukij1
� 1).

Now, we shall show that u is a unitary element in B ⊗ H . By [14, Proposi-
tion 2.8], we can define the canonical faithful conditional expectationE1 from
B1 ontoB byE1(x�h) = τ(h)x for any x ∈ B and h ∈ H , where we identify
B with B � 1 and τ is the Haar trace on H .
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Lemma 4.1. We have that u∗u = 1 ⊗ 1 in B ⊗H .

Proof. Since we regard B ⊗ H as a C∗-subalgebra of B1 ⊗ H , we shall
show that u∗u = (1 � 1)⊗ 1. By Equation (4.1) and the definition of E1, for
any j, j1, k, ∑

i

uk∗ij u
k
ij1

= 1

τ(e)dk
τ (S(vkj1j

)).

Using the the above equation,

u∗u =
∑
j,k,j1

1

τ(e)dk
(τ (S(vkj1j

))� 1)⊗ vkjj1

= (1 � 1)⊗
∑
j,k,j1

1

τ(e)dk
τ (S(vkj1j

))vkjj1

= (1 � 1)⊗ 1

τ(e)
(τ ⊗ id)

(∑
j,k,j1

1

dk
S(vkj1j

)⊗ vkjj1

)

= (1 � 1)⊗ 1

τ(e)
(τ ⊗ id)(	(e)) = (1 � 1)⊗ 1.

Therefore we obtain the conclusion.

Proposition 4.2. The element u is a unitary one in B ⊗H .

Proof. By Lemma 4.1, it suffices to show that uu∗ = 1 ⊗ 1. First,

((1 � e)⊗ 1)uu∗((1 � e)⊗ 1) = (1 � e)⊗ 1 =
∑
i,k

(1 � e)⊗ vkii .

On the other hand,

((1 � e)⊗ 1)uu∗((1 � e)⊗ 1) =
∑
i,j,k,i1

(1 � e)(ukiju
k∗
i1j

� 1)(1 � e)⊗ vkii1

=
∑
i,j,k,i1

(e · (ukijuk∗i1j )� e)⊗ vkii1

=
∑
i,j,k,i1

(E(ukiju
k∗
i1j
)� e)⊗ vkii1

by [14, Proposition 2.12]. Thus

∑
j

E(ukiju
k∗
i1j
)� e =

{ 0 if i �= i1

1 � e if i = i1
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for any k. Hence using E1,

∑
j

E(ukiju
k∗
i1j
) =

{ 0 if i �= i1

1 if i = i1

for any k. It follows by the above equation that

(E ⊗ id)(uu∗) =
∑
i,j,k,i1

E(ukiju
k∗
i1j
)⊗ vkii1 =

∑
i,k

1 ⊗ vkii = 1 ⊗ 1.

Since E ⊗ id is faithful, uu∗ = 1 ⊗ 1.

Also, we have the following proposition:

Proposition 4.3. The set
{(√

dku
k∗
ij ,

√
dku

k
ij

)}
i,j,k

is a quasi-basis for E.

Proof. We note that if j = j1 in Equation (4.1), we obtain that for any
j, k,

1

dk
(1 � S(vkjj )) =

∑
i

(uk∗ij � e)(ukij � 1).

Since 1 � e is the Jones projection in B1 induced by E, for any x ∈ B,

(1 � e)

{∑
i,j,k

dkE(xu
k∗
ij )u

k
ij � 1

}
=

∑
i,j,k

dk(1 � e)(E(xuk∗ij )u
k
ij � 1)

=
∑
i,j,k

dk(1 � e)(xuk∗ij � 1)(1 � e)(ukij � 1)

=
∑
i,j,k

dk(1 � e)(x � 1)(uk∗ij � e)(ukij � 1)

=
∑
j,k

(1 � e)(x � 1)(1 � S(vkjj ))

= (1 � e)(x � 1).

Therefore we obtain the conclusion.

Moreover, we have the following:

Lemma 4.4. For any h ∈ H ,
∑

i,j,k(h · ukij )⊗ vkij = ∑
i,j,k u

k
ij ⊗ vkijh.

Proof. Let {wkij } be a system of comatrix units of H . We note that

((1 � e)⊗ 1)u = uρ(1 � e).



inclusions of unital C∗-algebras of index-finite type with . . . 239

Then by [14, Theorem 2.2],

((1 � e)⊗ 1)u =
∑

i,j,k,i1,j1,k1

dk1

dim(H)
((w

k1
i1j1

· ukij )� w
k1
j1i1
)⊗ vkij .

Also,

uρ(1 � e) =
∑

i,j,k,i1,j1,k1

dk1

dim(H)
((ukij � w

k1
i1j1
)⊗ vkijw

k1
j1i1
).

Thus since {wkij } is a basis of H , we obtain that for any i1, j1, k1,

∑
i,j,k

(w
k1
j1i1

· ukij )⊗ vkij =
∑
i,j,k

ukij ⊗ vkijw
k1
j1i1
.

Therefore we obtain the conclusion.

In the rest of this section, we are devoted to the properties of u.

Lemma 4.5. Let x ∈ (B� 1)⊗H . If x((1 � e)⊗ 1) = ((1 � e)⊗ 1)x, then
x ∈ (A� 1)⊗H .

Proof. This is immediate by routine computations.

Lemma 4.6. For any a ∈ A,

u((a � 1)⊗ 1)u∗((1 � e)⊗ 1) = ((1 � e)⊗ 1)u((a � 1)⊗ 1)u∗.

Proof. Since u is a unitary element in (B� 1)⊗H by Proposition 4.2, we
have only to show that for any a ∈ A,

((a � 1)⊗ 1)u∗((1 � e)⊗ 1)u = u∗((1 � e)⊗ 1)u((a � 1)⊗ 1).

Since u∗((1 � e)⊗ 1)u = ρ(1 � e), for any a ∈ A,

((a � 1)⊗ 1)u∗((1 � e)⊗ 1)u = ((a � 1)⊗ 1)ρ(1 � e)

= ρ((a � 1)(1 � e))

= ρ((1 � e)(a � 1))

= ρ(1 � e)((a � 1)⊗ 1)

= u∗((1 � e)⊗ 1)u((a � 1)⊗ 1).

Proposition 4.7. For any a ∈ A, u(a ⊗ 1)u∗ ∈ A⊗H .

Proof. This is immediate by Lemmas 4.5 and 4.6.
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Let z = ∑
i,j,k ε(v

k
ij )u

k
ij ∈ B.

Lemma 4.8. The element z is a unitary one in A.

Proof. We note that id ⊗ε is a homomorphihsm of B ⊗H onto B. Since
u is a unitary element in B⊗H , so is z = (id ⊗ε)(u) in B. Also, we have that
((1 � e)⊗ 1)u = uρ(1 � e). Since (id ⊗ε) ◦ ρ = id,

(1 � e)z = (id ⊗ε)(((1 � e)⊗ 1)u) = (id ⊗ε)(uρ(1 � e)) = z(1 � e).

Thus z is in A.

Remark 4.9. For any unitary element a ∈ A, we can see that

{(√
dkau

k∗
ij ,

√
dku

k
ij a

∗)}
i,j,k

is a quasi-basis for E by the above proposition and easy computations. Espe-
cially

{(√
dkzu

k∗
ij ,

√
dku

k
ij z

∗)}
i,j,k

is a quasi-basis for E.

Let U = u(z∗ ⊗ 1) which is used in the next section. Clearly U is a unitary
element in B ⊗H .

5. A weak action of the dual C∗-Hopf algebra and a unitary cocycle

As mentioned in Section 2, there is an isomorphism ı of B⊗H onto the unital
convolution *-algebra Hom(H 0, B) defined by for any x ∈ B, h ∈ H and
φ ∈ H 0,

ı(x ⊗ h)(φ) = φ(h)x.

For any x ∈ B ⊗ H , we denote by x∧ an element ı(x) ∈ Hom(H 0, B).
We constructed a unitary element U ∈ B ⊗ H in the previous section. Then
U∧ is a unitary element in Hom(H 0, B). Let {φrmn} be the dual basis of H 0

corresponding to a system of matrix units {vkij } of H . Then it is a system of
comatrix units ofH 0. By [14, Theorem 2.2],	0(φrmn) = ∑

t φ
r
mt ⊗φrtn for any

m, n, r . Hence we can see that U∧(φrmn) = urmnz
∗ and U∧∗(φrmn) = zur∗nm for

any m, n, r .

Lemma 5.1. We define φ · x = U∧(φ(1))xU∧∗(φ(2)) for any x ∈ B and
φ ∈ H 0. Then (φ, x) �→ φ · x is a weak inner action of H 0 on B.

Proof. Since U∧(10) = 1, by [1, Lemma 1.4], it suffices to show that
(φ · x)∗ = S0(φ∗) · x∗ for any x ∈ B, φ ∈ H 0. Thus we have only to show that
(φrmn · x)∗ = S0(φr∗mn) · x∗ for any x ∈ B and m, n, r . Indeed

(φrmn ·x)∗ =
∑
t

(urmtz
∗xzur∗nt )

∗ = φrnm ·x∗ = (S0◦S0)(φrnm)·x∗ = S0(φr∗mn)·x∗.



inclusions of unital C∗-algebras of index-finite type with . . . 241

Lemma 5.2. For any a ∈ A and φ ∈ H 0, φ · a ∈ A.

Proof. For any a ∈ A, u(a ⊗ 1)u∗ = ∑
i,j,k,i1

ukij au
k∗
i1j

⊗ vkii1 . Thus by
Proposition 4.7,

∑
j u

k
ij au

k∗
i1j

∈ A for any a ∈ A and i, i1, k. Hence for any
r,m, n and a ∈ A

φrmn · a =
∑
t

urmtz
∗azur∗nt ∈ A.

Therefore we obtain the conclusion.

Corollary 5.3. The mapH 0 ×A −→ A : (φ, a) �→ φ ·a is a weak action
of H 0 on A, where a ∈ A and φ ∈ H 0.

Proof. This is immediate by Lemmas 5.1 and 5.2.

Following [1, Example 4.11], we shall construct a unitary cocycle ofH 0 ⊗
H 0 to B. Let σ be a bilinear map from H 0 ⊗ H 0 to B defind by for any
φ,ψ ∈ H 0,

σ(φ,ψ) = U∧(φ(1))U∧(ψ(1))U∧∗(φ(2)ψ(2)).

By [1, Example 4.11], σ satisfies Conditions (2), (3) and (4) of Definition 3.1
of a unitary cocyle for the weak inner action of H 0 on B.

Lemma 5.4. For any φ,ψ ∈ H 0, σ(φ,ψ) ∈ A.

Proof. For any φ ∈ H 0,

(U ∗((1 � e)⊗ 1))∧(φ) = U∧∗(φ(1))ε0(φ(2))(1 � e) = U∧∗(φ)(1 � e),

(ρ(1 � e)U ∗)∧(φ) = ((1 � e(1))⊗ e(2))
∧(φ(1))U∧∗(φ(2))

= (id ⊗φ(1))ρ(1 � e)U∧∗(φ(2)).

Since U ∗((1 � e)⊗ 1) = ρ(1 � e)U ∗, we obtain that

(5.1) U∧∗(φ)(1 � e) = (id ⊗φ(1))ρ(1 � e)U∧∗(φ(2)).

Also, for any φ ∈ H 0,

(Uρ(1 � e))∧(φ) = U∧(φ(1))(1 � e(1))φ(2)(e(2)),

(((1 � e)⊗ 1)U)∧(φ) = (1 � e)ε0(φ(1))U
∧(φ(2)) = (1 � e)U∧(φ).

Since ((1 � e)⊗ 1)U = Uρ(1 � e), we obtain that

(5.2) (1 � e)U∧(φ) = U∧(φ(1))(1 � e(1))φ(2)(e(2)).
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Furthermore, by Equation (5.2)

ρ((1 � e)U∧(φ)) = ρ(U∧(φ(1))(1 � e(1))φ(2)(e(2))).

Since U∧(φ) ∈ B and ρ(U∧(φ)) = U∧(φ)⊗ 1, we see that

(5.3) (1 � e(1))U
∧(φ)⊗ e(2) = U∧(φ(1))(1 � e(1))φ(2)(e(3))⊗ e(2),

where we identify B with B � 1. Now, we shall show that any φ,ψ ∈ H 0,

(1 � e)(σ (φ,ψ)� 1) = (σ (φ,ψ)� 1)(1 � e).

First, by Equation (5.2)

(1 � e)(σ (φ,ψ)� 1) = U∧(φ(1))(1 � e(1))φ(2)(e(2))U
∧(ψ(1))U∧∗(φ(3)ψ(2)).

Moreover, by Equation (5.3),

(1 � e)(σ (φ,ψ)� 1)

= U∧(φ(1))φ(2)(e(2))U∧(ψ(1))(1 � e(1))ψ(2)(e(3))U
∧∗(φ(3)ψ(3)).

On the other hand, by Equation (5.1)

(σ (φ,ψ)� 1)(1 � e)

= U∧(φ(1))U∧(ψ(1))(id ⊗φ(2)ψ(2))ρ(1 � e)U∧∗(φ(3)ψ(3))
= U∧(φ(1))U∧(ψ(1))(1 � e(1))φ(2)(e(2))ψ(2)(e(3))U

∧∗(φ(3)ψ(3)).

It follows that for anyφ,ψ ∈ H 0, (1�e)(σ (φ,ψ)�1) = (σ (φ,ψ)�1)(1�e).
Therefore we obtain the conclusion.

Lemma 5.5. The element σ is a unitary one in Hom(H 0 ⊗H 0, A).

Proof. By Lemma 5.4, it suffices to show that σ ∗σ = σσ ∗ = ε0 ⊗ ε0. For
any φ,ψ ∈ H 0, we see that (σ ∗σ)(φ,ψ) = (σσ ∗)(φ, ψ) = ε0(φ)ε0(ψ) by
routine computations. Therefore we obtain the conclusion.

Proposition 5.6. The element σ is a unitary cocycle for the weak action of
H 0 on A.

Proof. This is immediate by Lemma 5.5 and [1, Example 4.11].

6. A twisted crossed product induced by an inclusion of unital
C∗-algebras of depth 2

In this section we suppose that there is a saturated action of a finite dimensional
C∗-Hopf algebra H on a unital C∗-algebra B. Also, we suppose that A is the
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fixed point C∗-subalgebra of B for the action of H and that ρ(1 � e) ∼
(1 � e)⊗ 1 in B1 ⊗H , where B1 = B �H . Furthermore, we suppose that ρ
is the coaction of H on B1 induced by the action of H on B. By the previous
section, we can construct the weak action of the dual C∗-Hopf algebra H 0 on
A and the unitary cocycle σ ∈ Hom(H 0 ⊗ H 0, A) using the unitary element
U ∈ B ⊗ H defined at the end of Section 4. By Section 3 we can construct
the twisted crossed productA�σ H

0 ofA by the weak action ofH 0. Also, we
can define the dual action of H on A�σ H

0. Let π be a map from A�σ H
0

to B defined by π(a � φ) = aU∧(φ) for any a ∈ A and φ ∈ H 0. Then the
following proposition holds:

Proposition 6.1.With the above notations,π is an epimorphism ofA�σ H
0

onto B satisfying that h · π(x) = π(h · x) for any x ∈ A�σ H
0 and h ∈ H .

Proof. Clearly π is a linear map from A �σ H
0 to B. For any a, b ∈ A

and φ,ψ ∈ H 0,

π((a � φ)(b � ψ)) = a(φ(1) · b)σ (φ(2), ψ(1))U∧(φ(3)ψ(2))

= aU∧(φ(1))bε0(φ(2))U
∧(ψ(1))ε0(φ(3)ψ(2))

= aU∧(φ)bU∧(ψ) = π(a � φ)π(b � ψ).

Also,

π((a � φ)∗) = π [σ(S(φ(2)), φ(1))
∗(φ∗

(3) · a∗)� φ∗
(4)]

= U∧∗(ε0(φ(2)))
∗U∧(φ(1))∗U∧∗(φ∗

(4))U
∧(φ∗

(5))a
∗ε0(φ∗

(6))

= U∧(φ)∗a∗ = π(a � φ)∗.

Thus π is a homomorphism of A�σ H
0 to B. For any x ∈ B, we can write

x =
∑
i,j,k

dkE(xzu
k∗
ij )u

k
ij z

∗

by Proposition 4.3 and Remark 4.9. Put y = ∑
i,j,k dkE(xzu

k∗
ij ) � φkij . Then

y ∈ A �σ H
0 and π(y) = ∑

i,j,k dkE(xzu
k∗
ij )U

∧(φkij ) = x since U∧(φkij ) =
ukij z

∗ for any i, j, k. Henceπ is surjective. Furthermore, for any a ∈ A, h ∈ H ,
φ ∈ H 0,

π(h · (a � φ)) = φ(2)(h)aU
∧(φ(1)) =

∑
i,j,k,(φ)

φ(1)(v
k
ij )φ(2)(h)au

k
ij z

∗

=
∑
i,j,k

φ(vkijh)au
k
ij z

∗
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since U = ∑
i,j,k u

k
ij z

∗ ⊗ vkij . On the other hand,

h · π(a � φ) =
∑
i,j,k

a(h · ukijφ(vkij )z∗) =
∑
i,j,k

a(id ⊗φ)((h · ukij )⊗ vkij )z
∗

=
∑
i,j,k

a(id ⊗φ)(ukij ⊗ vkijh)z
∗ =

∑
i,j,k

φ(vkijh)au
k
ij z

∗

by Lemma 4.4. Therefore π(h · (a�φ)) = h ·π(a�φ) for any a ∈ A, h ∈ H ,
φ ∈ H 0.

Corollary 6.2. With the same notations as above, F = E ◦ π , where F
is the canonical conditional expectation from A�σ H

0 onto A.

Proof. For any a ∈ A, π(a � 10) = aU∧(10) = a. Hence for any a ∈ A,
φ ∈ H 0,

(E ◦ π)(a � φ) = e · π(a � φ) = π(e · (a � φ)) = F(a � φ)

by Proposition 6.1, where we identify A with A� 10.

Proposition 6.3. With the same notations as above, π is an isomorphism
of A�σ H

0 onto B.

Proof. By Proposition 6.1, we have only to show that π is injective. We
suppose that π(x) = 0 for an element x ∈ A �σ H

0. Then F(x∗x) =
E(π(x∗)π(x)) = 0 by Corollary 6.2. Since F is faithful by Lemma 3.14,
x = 0.

The following theorem is the main result:

Theorem 6.4. Let B be a unital C∗-algebra and H a finite dimensional
C∗-Hopf algebra acting on B in the saturated fashion. LetA be the fixed point
C∗-subalgebra of B for the action ofH on B and E the canonical conditional
expectation from B onto A. Let e be a minimal and central projection in H ,
which is called the distinguished projection and ρ the coaction ofH onB�H ,
the crossed product of B by the action of H on B, which is induced by the
action of H on B. Then the following are equivalent:

(1) We have that ρ(1 � e) ∼ (1 � e)⊗ 1 in (B �H)⊗H ,

(2) There are a weak action ofH 0 onA and a unitary cocycle σ ofH 0 ⊗H 0

to A satisfying that there is an isomorphism π of A�σ H
0 onto B such

that F = E ◦ π ,

whereH 0 is the dualC∗-Hopf algebra ofH andF is the canonical conditional
expectation from A�σ H

0 onto A.
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Proof. This is immediate by Propositions 3.19, 6.3 and Corollary 6.2.

Let A ⊂ B be an irreducible inclusion of unital C∗-algebras and E a
condtional expectation from B onto A which is index-finite and of depth 2.
Then in [2] Izumi pointed the following: There is a finite dimensionalC∗-Hopf
algebraH acting on B such that A = BH and E(x) = e · x for any x ∈ B. We
note that the action ofH on B is saturated by [14]. Let ρ be the coaction ofH
on B �H defined in the same way as in Section 3. We call ρ the coaction of
H on B �H induecd by the inclusion A ⊂ B.

Corollary 6.5. Let A ⊂ B be an irreducible inclusion of unital C∗-
algebras and E a condtional expectation from B onto A which is index-finite
and of depth 2. LetH be a finite dimensional C∗-Hopf algebra acting on B in
the saturated fashion such that the inclusion A ⊂ B can be identified with the
inclusion BH ⊂ B. Let ρ be the coaction of H on B �H induced by A ⊂ B.
Furthermore, let e be the distinguished projection in H . Then the following
are equivalent:

(1) We have that ρ(1 � e) ∼ (1 � e)⊗ 1 in (B �H)⊗H ,

(2) There are a weak action ofH 0 onA and a unitary cocycle σ ofH 0 ⊗H 0

to A satisfying that there is an isomorphism π of A�σ H
0 onto B such

that F = E ◦ π ,

whereH 0 is the dualC∗-Hopf algebra ofH andF is the canonical conditional
expectation from A�σ H

0 onto A.

Proof. This is immediate by Theorem 6.4.

We shall give another application of Theorem 6.4. Let A be a unital C∗-
algebra. We suppose that A has cancellation and the unique tracial state τA.
Let τA∗ be the homomorphism ofK0(A) to R induced by τA. Also, we suppose
that τA∗ is injective. Irrational rotation C∗-algebras, UHF-algebras and AFD
II1-factors have the above properties.

Lemma 6.6. Let A be as above and let B be a unital C∗-algebra which is
strongly Morita equivalent to A. Then B has the following properties:

(1) B has cancellation,

(2) B has the unique tracial state τB ,

(3) Let τB∗ be the homomorphism of K0(B) to R. Then τB∗ is injective.

Proof. Since unital C∗-algebras A and B are strongly Morita equivalent,
B is isomorphic to a full corner of some full matrix algebra over A by Rieffel
[10, Proposition 2.1]. By this fact and [10, Proposition 2.2], we can obtain the
conclusion.
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Corollary 6.7. With the same notations and assumptions as Theorem 6.4,
we suppose thatA has cancellation and the unique tracial state τA and that the
homomorphism τA∗ ofK0(A) to R induced by τA is injective. Then there are a
weak action of H 0 on A and a unitary cocycle σ of H 0 ⊗H 0 to A satisfying
that there is an isomorphism π of A �σ H

0 onto B such that F = E ◦ π ,
where H 0 is the dual C∗-Hopf algebra and F is the canonical conditional
expectation from A�σ H

0 onto A.

Proof. Let ρ be the coaction ofH onB1 = B�H induced by the action of
H on B and e the distinguished projection inH . Then by [14, Definition 4.2],
B1 is strongly Morita equivalent to A. Thus by Lemma 6.6(2), B1 has the
unique tracial state τB1 . Recall that H ∼= ⊕N

k=1Mdk(C) as C∗-algebras. We
identifyH with ⊕N

k=1Mdk(C). For k = 1, 2, . . . , N , let pk be a minimal central
projection inH and πk a homomorphism ofB1 ⊗H ontoB1 ⊗Mdk(C) defined
by πk(x) = x((1 � 1)⊗pk) for any x ∈ B1 ⊗H . Let T rk be the unique tracial
state on Mdk(C) and let τk = τB1 ⊗ T rk for k = 1, 2, . . . , N . Let τk∗ be the
homomorphism of K0(B1 ⊗Mdk(C)) to R induced by τk for k = 1, 2, . . . , N .
Since τk ◦ πk ◦ ρ is a tracial state on B1, τB1 = τk ◦ πk ◦ ρ. Thus for k =
1, 2, . . . , N ,

τk∗([ρ(1 � e)((1 � 1)⊗ pk)]) = (τk ◦ πk ◦ ρ)(1 � e) = τB1(1 � e)

= τk((1 � e)⊗ pk)

= τk∗([((1 � e)⊗ 1)((1 � 1)⊗ pk)]).

Since τk∗ is injective for k = 1, 2, . . . , N , by Lemma 6.6(3) in K0(B1 ⊗
Mdk(C)),

[ρ(1 � e)((1 � 1)⊗ pk)] = [((1 � e)⊗ 1)((1 � 1)⊗ pk)].

Since B1 ⊗Mdk(C) has cancellation by Lemma 6.6(1), we have

ρ(1 � e)((1 � 1)⊗ pk) ∼ ((1 � e)⊗ 1)((1 � 1)⊗ pk)

inB1 ⊗Mdk(C) for k = 1, 2, . . . , N . Hence ρ(1�e) ∼ (1�e)⊗1 inB1 ⊗H .
Therefore we obtain the conclusion by Theorem 6.4.

Also, we have the following similar result to Theorem 6.4.

Proposition 6.8. With the same notations and assumptions as Corollary
6.5, the following are equivalent:

(1) There are a C∗-subalgebra P of A with the common unit and a con-
ditional expectation G from A onto P , which is index-finite, satisfying
that there is an isomorphism π of P1 onto B such that G1 = E ◦ π ,
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where P1 is the C∗-basic construction induced by G and G1 is the dual
conditional expectation of G from P1 onto A.

(2) There is a saturated action of H 0 on A satisfying that there is an iso-
morphism π of A�H 0 onto B such that F = E ◦ π .

Proof. (1) ⇒ (2): Let ρ, B1 and e be as in the proof of Corollary 6.7.
Since the inclusion A ⊂ B is of depth 2, so is the inclusion P ⊂ A. Hence
since P ′ ∩ B1 is isomorphic to some full matrix algebra over C, P ′ ∩ B1

has the properties (1), (2) and (3) in Lemma 6.6. In the same way as in the
proof of Corollary 6.7, ρ(1 � e) ∼ (1 � e) ⊗ 1 in (P ′ ∩ B1) ⊗ H . Thus
there is a partial isometry w ∈ (P ′ ∩ B1) ⊗ H such that w∗w = ρ(1 � e),
ww∗ = (1 � e)⊗ 1. Also, in the same way as in Section 4, there is a unitary
element U ∈ (P ′ ∩B)⊗H such that ((1 � e)⊗ 1)w = ((1 � e)⊗ 1)U . In the
same discussions as in Sections 4 and 5, we can define a weak action ofH 0 on
A and a unitary cocycle σ ofH 0 ⊗H 0 to A by for any x ∈ A and φ,ψ ∈ H 0,

φ · x = U∧(φ(1))xU∧∗(φ(2))
σ (φ,ψ) = U∧(φ(1))U∧(ψ(1))U∧∗(φ(2)ψ(2)) ∈ A,

whereU∧ is a unitary element in Hom(H 0, P ′∩B) induced byU . We note that
sinceU ∈ (P ′ ∩B)⊗H ,U∧(φ) ∈ P ′ ∩B for any φ ∈ H 0. Let eP be the Jones
projection induced by P ⊂ A. Since eP is a minimal and central projection in
P ′ ∩ B, for any x ∈ P ′ ∩ B, there is the unique element c(x) ∈ C such that
xeP = eP x = c(x)eP . We regard c as a map x ∈ P ′ ∩ B �→ c(x) ∈ C1. Then
c is a homomorphism of P ′ ∩B to C. Let c∧ be a homomorphism ofH 0 to C1
defined by c∧ = c ◦U∧. By easy computations, we can see that c∧ is a unitary
element in Hom(H 0,C1) with c∧(10) = 1. Furthermore, for any φ,ψ ∈ H 0,

σ(φ,ψ)eP = U∧(φ(1))U∧(ψ(1))U∧∗(φ(2)ψ(2))eP
= U∧(φ(1))U∧(ψ(1))eP c∧∗(φ(2)ψ(2))
= c∧(φ(1))c∧(ψ(1))c∧∗(φ(2)ψ(2))eP .

Since σ(φ,ψ) ∈ A, σ(φ,ψ) = c∧(φ(1))c∧(ψ(1))c∧∗(φ(2)ψ(2)) for any φ,ψ ∈
H 0. Let W = c∧∗U∧ ∈ Hom(H 0, B). Then for any x ∈ A and φ ∈ H 0

W(φ(1))xW
∗(φ(2)) = c∧∗(φ(1))(φ(2) · x)c∧(φ(3)) ∈ A.

Thus by easy computations, we can see that the map

A×H 0 � (x, φ) �→ W(φ(1))xW
∗(φ(2)) ∈ A

is an action of H 0 on A. We denote by A � H 0 the crossed product of A by
the above action of H 0 on A. Let � be a map from A � H 0 to A �σ H

0
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defined by for any x ∈ A and φ ∈ H 0, �(x � φ) = xc∧∗(φ(1))� φ(2), where
x � φ ∈ A � H 0. Then by routine computations, � is an isomorphism of
A�H 0 onto A�σ H

0 satisying that F ′ = E ◦�, where F ′ is the canonical
conditional expectations from A � H 0 onto A. (2) ⇒ (1): Let P = AH

0
,

the fixed point C∗-subalgebra of A for the action of H 0 on A. Then P is the
desired C∗-subalgebra of A.
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