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LINEARITY DEFECT AND REGULARITY OVER
A KOSZUL ALGEBRA

KOHJI YANAGAWA∗

Abstract

Let A = ⊕
i∈N Ai be a Koszul algebra over a field K = A0, and ∗mod A the category of finitely

generated graded left A-modules. The linearity defect ldA(M) of M ∈ ∗mod A is an invariant
defined by Herzog and Iyengar. An exterior algebra E is a Koszul algebra which is the Koszul dual
of a polynomial ring. Eisenbud et al. showed that ldE(M) < ∞ for all M ∈ ∗mod E. Improving
this, we show that the Koszul dual A! of a Koszul commutative algebra A satisfies the following.

• Let M ∈ ∗mod A!. If { dimK Mi | i ∈ Z } is bounded, then ldA! (M) < ∞.

• If A is complete intersection, then regA! (M) < ∞ and ldA! (M) < ∞ for all M ∈ ∗mod A!.

• If E = ∧〈y1, . . . , yn〉 is an exterior algebra, then ldE(M) ≤ cn!2(n−1)! for M ∈ ∗mod E with
c := max{ dimK Mi | i ∈ Z }.

1. Introduction

Let A = ⊕
i∈N Ai be a (not necessarily commutative) graded algebra over a

field K := A0 with dimK Ai < ∞ for all i ∈ N, and ∗mod A the category of
finitely generated graded left A-modules. Throughout this paper, we assume
that A is Koszul, that is, K = A/

⊕
i≥1 Ai has a graded free resolution of the

form

· · · −→ A(−i)βi (K) −→ · · · −→ A(−2)β2(K)

−→ A(−1)β1(K) −→ A −→ K −→ 0.

Koszul duality is a certain derived equivalence between A and its Koszul dual
algebra A! := Ext•A(K, K).

For M ∈ ∗mod A, we have its minimal graded free resolution · · · → P1 →
P0 → M → 0, and natural numbers βi, j (M) such that Pi

∼= ⊕
j∈Z

A(−j)βi, j (M).

We call

regA(M) := sup{ j − i | i ∈ N, j ∈ Z with βi, j (M) �= 0 }
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the regularity of M . If A is not left noetherian, then there is some M ∈ ∗mod A

such that
∑

j∈Z β1, j (M) = ∞. In this case, regA(M) = ∞.
When A is a polynomial ring, regA(M) is called the Castelnuovo-Mumford

regularity of M , and has been deeply studied from both geometric and com-
putational interest. Even for a general Koszul algebra A, regA(M) is still an
interesting invariant closely related to Koszul duality (see Theorem 3.3 below).

Let P• be a minimal graded free resolution of M ∈ ∗mod A. The linear
part lin(P•) of P• is the chain complex such that lin(P•)i = Pi for all i and
its differential maps are given by erasing all the entries of degree ≥ 2 from
the matrices representing the differentials of P•. According to Herzog-Iyengar
[11], we call

ldA(M) := sup{ i | Hi(lin(P•)) �= 0 }
the linearity defect of M . This invariant is related to the regularity via Koszul
duality (see Theorem 3.9 below).

In §4, we mainly treat a Koszul commutative algebra A and its dual A!. Even
in this case, it can occur that ldA(M) = ∞ for some M ∈ ∗mod A ([11]), while
Avramov-Eisenbud [1] showed that regA(M) < ∞ for all M ∈ ∗mod A. On
the other hand, Herzog-Iyengar [11] proved that if A is complete intersection
or Golod then ldA(M) < ∞ for all M ∈ ∗mod A. Initiated by these results,
we will show the following.

Theorem A. Let A be a Koszul commutative algebra (more generally, a
Koszul algebra with regA(M) < ∞ for all M ∈ ∗mod A). Then we have;

(1) Let N ∈ ∗mod A!. If regA!(N) < ∞ (e.g., dimK N < ∞), then
ldA!(N) < ∞.

(2) The following conditions are equivalent.
(a) ldA(M) < ∞ for all M ∈ ∗mod A.
(a′) ldA(M) < ∞ for all M ∈ ∗mod A with M = ⊕

i=0,1 Mi .
(b) If N ∈ ∗mod A! has a finite presentation, then regA!(N) < ∞.

In Theorem A (2), the implications (a) ⇒ (a′) ⇔ (b) hold for a general
Koszul algebra.

When A is commutative, Bøgvad and Halperin [4] showed that A! is noeth-
erian if and only if A is complete intersection. Moreover, by Backelin and Roos
[2, Corollary 2], if A is a Koszul complete intersection then regA!(N) < ∞
for all N ∈ ∗mod A!. (Since A! admits a balanced dualizing complex, we
can explain this also by [12].) So, in this case, we have ldA(M) < ∞ for all
M ∈ ∗mod A by Theorem A (2). This is a part of the above result of Herzog
and Iyengar. Their proof takes a slightly different approach, but is also based
on a similar result in [2].
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Let ∗fp A! be the full subcategory of ∗mod A! consisting of finitely presented
modules.

Theorem B. If A is a Koszul algebra such that ldA(M) < ∞ for all
M ∈ ∗mod A, then A! is left coherent (in the graded context), and ∗fp A! is an
abelian category. If further A is commutative, then Koszul duality gives

Db(∗mod A) ∼= Db(∗fp A!)op.

Corollary C. Let A be a Koszul commutative algebra. If A is Golod, then
we have Db(∗mod A) ∼= Db(∗fp A!)op. If A is a complete intersection, then
we have Db(∗mod A) ∼= Db(∗mod A!)op.

Let E := ∧〈y1, . . . , yn〉 be an exterior algebra. Eisenbud et al. [7] showed
that ldE(N) < ∞ for all N ∈ ∗mod E (now this is a special case of TheoremA,
since E is the Koszul dual of a polynomial ring S := K[x1, . . . , xn]). If n ≥ 2,
then sup{ ldE(N) | N ∈ ∗mod E } = ∞. On the other hand, we will see that

(1) ldE(N) ≤ cn!2(n−1)! (c := max{ dimK Ni | i ∈ Z })
for N ∈ ∗mod E.

To prove this, we use (a special case of) a result of Brodmann and Lashgari
([6, Theorem 2.6]) stating that if a submodule M ⊂ S⊕c is generated by
elements of degree 1 then regS(M) ≤ cn!2(n−1)!. But a computer experiment
suggests that the bound (1) could be very far from sharp. For example, if I ⊂ E

is a monomial ideal then we have ldE(E/I) ≤ max{n−2, 1} ([15]). This does
not hold for general graded ideals. We have a graded ideal I ⊂ E with n = 6
and ldE(E/I) = 9. It is not hard to find similar examples, but these are still
much lower than the value given in (1).

2. Koszul Algebras and Koszul Duality

Let A = ⊕
i∈N Ai be a graded algebra over a field K := A0 with dimK Ai < ∞

for all i ∈ N, ∗Mod A the category of graded left A-modules, and ∗mod A the
full subcategory of ∗Mod A consisting of finitely generated modules. We say
M = ⊕

i∈Z Mi ∈ ∗Mod A is quasi-finite, if dimK Mi < ∞ for all i and
Mi = 0 for i � 0. If M ∈ ∗mod A, then it is clearly quasi-finite. We denote
the full subcategory of ∗Mod A consisting of quasi-finite modules by qf A.
Clearly, qf A is an abelian category with enough projectives. For M ∈ ∗Mod A

and j ∈ Z, M(j) denotes the shifted module of M with M(j)i = Mi+j .
For M, N ∈ ∗Mod A, set HomA(M, N) := ⊕

i∈Z Hom∗Mod A(M, N(i)) to
be a graded K-vector space with HomA(M, N)i = Hom∗Mod A(M, N(i)).
Similarly, we also define ExtjA(M, N).



208 kohji yanagawa

Let C (qf A) be the homotopy category of cochain complexes in qf A, and
C −(qf A) its full subcategory consisting of complexes which are bounded
above (i.e., X• ∈ C (qf A) with Xi = 0 for i � 0). We say P • ∈ C −(qf A)

is a free resolution of X• ∈ C −(qf A), if each P i is a free module and there
is a quasi-isomorphism P • → X•. We say a free resolution P • is minimal,
if ∂(P i) ⊂ �P i+1 for all i. Here ∂ denotes the differential map, and � :=⊕

i>0 Ai is the graded maximal ideal. Any X• ∈ C −(qf A) has a minimal free
resolution, which is unique up to isomorphism of cochain complexes.

Regard K = A/� as a graded left A-module, and set

βi
j (X

•) := dimK Ext−i
A (X•, K)−j and βi(X•) :=

∑

j∈Z

βi
j (X

•)

for X• ∈ C −(qf A) and i, j ∈ Z. If P • is a minimal free resolution of X•, then
P i ∼= ⊕

j∈Z A(−j)β
i
j (X•) for each i ∈ Z. Clearly, βi

j (X
•) < ∞ for all i, j .

Following the usual convention, we often describe (the invariants of) a free
resolution of a module M ∈ qf A in the homological manner. So we have
βi, j (M) = β−i

j (M), and a minimal free resolution of M is of the form

P• : · · · −→
⊕

j∈Z

A(−j)β1, j (M) −→
⊕

j∈Z

A(−j)β0, j (M) −→ M −→ 0.

We say A is Koszul, if βi, j (K) �= 0 implies i = j , in other words, K has a
graded free resolution of the form

· · · −→ A(−i)βi (K) −→ · · · −→ A(−2)β2(K)

−→ A(−1)β1(K) −→ A −→ K −→ 0.

Even if we regard K as a right A-module, we get the equivalent definition.
The polynomial ring K[x1, . . . , xn] and the exterior algebra

∧〈y1, . . . , yn〉
are primary examples of Koszul algebras. Of course, there are many other
important examples. In the noncommutative case, some of them are not left
(or right) noetherian. In the rest of the paper, we assume that A is Koszul.

Koszul duality is a derived equivalence between a Koszul algebra A and its
dual A!. A standard reference of this subject is Beilinson et al. [3]. But, in the
present paper, we follow the convention of Mori [14].

Recall that Yoneda product makes A! := ⊕
i∈N ExtiA(K, K) a graded K-

algebra. (In the convention of [3], A! denotes the opposite algebra of our A!.
So the reader should be careful.) If A is Koszul, then so is A! and we have
(A!)! ∼= A. The Koszul dual of the polynomial ring S := K[x1, . . . , xn]
is the exterior algebra E := ∧〈y1, . . . , yn〉. In this case, since S is reg-
ular and noetherian, Koszul duality is very simple. It gives an equivalence
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Db(∗mod S) ∼= Db(∗mod E) of the bounded derived categories. This equival-
ence is sometimes called Bernstein-Gel’fand-Gel’fand correspondence (BGG
correspondence for short). In the general case, the description of Koszul dual-
ity is slightly technical. For example, if A is not left noetherian, then ∗mod A

is not an abelian category. So we have to treat qf A.
Let C ↑(qf A) be the full subcategory of C (qf A) (and C −(qf A)) consisting

of complexes X• satisfying

Xi
j = 0 for i � 0 and for i + j � 0.

And let D↑(qf A) be the localization of C ↑(qf A) at quasi-isomorphisms. By
the usual argument, we see that D↑(qf A) is equivalent to the full subcategory
of the derived category D(qf A) (and D−(qf A)) consisting of the complex
X• such that

Hi(X•)j = 0 for i � 0 and for i + j � 0.

We also see that D↑(qf A) is a triangulated subcategory of D(qf A).
We write V ∗ for the dual space of a K-vector space V . Note that if M ∈

∗Mod A then M∗ := ⊕
i∈Z(Mi)

∗ is a right A-module. And we fix a basis {xλ}
of A1 and its dual basis {yλ} of (A1)

∗ (= (A!)1). Let (X•, ∂) ∈ C ↑(qf A). In
this notation, we define the contravariant functor FA : C ↑(qf A) → C ↑(qf A!)

as follows.
FA(X•)pq =

⊕
A!

q+j ⊗K (X
j−p

−j )∗

with the differential d = d ′ + d ′′ given by

d ′: A!
q+j ⊗K (X

j−p

−j )∗ � a ⊗ m

�−→ (−1)p
∑

ayλ ⊗ mxλ ∈ A!
q+j+1 ⊗K (X

j−p

−j−1)
∗

and

d ′′: A!
q+j ⊗K (X

j−p

−j )∗ � a ⊗ m �−→ a ⊗ ∂∗(m) ∈ A!
q+j ⊗K (X

j−p−1
−j )∗.

The contravariant functor FA! : C ↑(qf A!) → C ↑(qf A) is given in a similar
way. (More precisely, the construction is different, but the result is similar. See
the remark below.) They induce the contravariant functors FA : D↑(qf A) →
D↑(qf A!) and FA! : D↑(qf A!) → D↑(qf A).

Remark 2.1. In [14], two Koszul duality functors are defined individually.
The functor denoted by ĒA is the same as our FA. The other one which is de-
noted by ẼA is defined using the operations HomK(A!, −) and HomK(−, K).
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But, in our case, it coincides with FA except the convention of the sign ±1. So
we do not give the precise definition of ẼA here.

Theorem 2.2 (Koszul duality. cf. [3], [14]). The contravariant functors
FA and FA! give an equivalence

D↑(qf A) ∼= D↑(qf A!)op.

The next result easily follows from Theorem 2.2 and the fact that FA(K) =
A!.

Lemma 2.3 (cf. [14, Lemma 2.8]). For X• ∈ D↑(qf A), we have

βi
j (X

•) = dim H−i−j (FA(X•))j .

3. Regularity and Linearity Defect

Throughout this section, A = ⊕
i∈N Ai is a Koszul algebra.

Definition 3.1. For X• ∈ D↑(qf A), we call

regA(X•) := sup{ i + j | i, j ∈ Z with βi
j (X

•) �= 0 }
the regularity of X•. For convenience, we set the regularity of the 0 module to
be −∞.

If M ∈ qf A is not finitely generated, then β0, j (M) �= 0 for arbitrary large
j and regA(M) = ∞.

If A is a polynomial ring K[x1, . . . , xn] (more generally, A is AS regu-
lar), then regA(X•) of X• ∈ Db(∗mod A) can be defined in terms of the local
cohomology modules Hi

�(X•), see [8], [12], [19]. If A is commutative, it is
known that regA(M) < ∞ for all M ∈ ∗mod A (see Theorem 4.2 below). But
this is not true in the non-commutative case. In fact, if A is not left noeth-
erian, then A has a graded left ideal I which is not finitely generated, that is,
β1(A/I) = β0(I ) = ∞. Hence, if A is not left noetherian, then regA(M) = ∞
for some M ∈ ∗mod A. The author does not know any example M ∈ ∗mod A

such that βi(M) < ∞ for all i but regA(M) = ∞.

Lemma 3.2.
(1) For M ∈ qf A, we have

regA(M) < ∞ ⇒ βi(M) < ∞ for all i ⇒ M has a finite presentation.

(2) If X• → Y • → Z• → X•[1] is a triangle in D↑(qf A), then we have

regA(Y •) ≤ max{ regA(X•), regA(Z•) }.
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If regA(X•) �= regA(Z•) + 1, then equality holds.

(3) If M ∈ ∗mod A has finite length, then regA(M) ≤ max{ i | Mi �= 0 }.
(4) For X• ∈ D↑(qf A), we have

regA(X•) ≤ sup{ regA(H i(X•)) + i | i ∈ Z }.

Proof. (1) is clear. Let us prove (2). Since the triangle yields the long
exact sequence · · · → ExtiA(Z•, K) → ExtiA(Y •, K) → ExtiA(X•, K) →
Exti+1

A (Z•, K) → · · ·, we have the assertions.
We can prove (3) by induction on dimK M . More precisely, if we set d :=

max{ i | Mi �= 0 }, we have a short exact sequence 0 → K(−d) → M →
M ′ → 0. Now use the induction hypothesis and (2) of this lemma.

In [19, Lemma 2.10], (4) is proved using the spectral sequence

E
p,q

2 = ExtpA(H−q(X•), K) �⇒ Extp+q

A (X•, K)

under the additional assumption that A is regular, left noetherian, and X• is
bounded. But these assumptions are clearly irrelevant.

The next result directly follows from Lemma 2.3.

Theorem 3.3 (Eisenbud et al [7], Mori [14]). For X• ∈ D↑(qf A), we have

regA(X•) = − inf{ i | Hi(FA(X•)) �= 0 }.

We say a complex X• ∈ D↑(qf A) is strongly bounded, if X• is bounded
(i.e., Hi(X•) = 0 for i � 0 and for i � 0) and regA(X•) < ∞. Let D sb(qf A)

be the full subcategory of D↑(qf A) consisting of strongly bounded complexes.

Proposition 3.4. D sb(qf A) is a triangulated subcategory of D(qf A).

Proof. Easily follows from Lemma 3.2 (2).

Proposition 3.5. The (restriction of) functors FA and FA! give an equi-
valence

D sb(qf A) ∼= D sb(qf A!)op.

Proof. By Theorem 2.2, it suffices to show that FA(X•) ∈ D sb(qf A!)

for all X• ∈ D sb(qf A). Since regA(X•) < ∞, FA(X•) is bounded by
Theorem 3.3. Similarly, since FA!(FA(X•)) is isomorphic to X•, which is
bounded, we have regA!(FA(X•)) < ∞.

Let (P •, ∂) ∈ C ↑(qf A) be a complex of free A-modules such that ∂(P i) ⊂
�P i+1, in other words, P • is a minimal free resolution of someX• ∈ C ↑(qf A).
According to [7], we define the linear part lin(P •) of P • as follows:
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(1) lin(P •) is a complex with lin(P •)i = P i .

(2) The matrices representing the differentials of lin(P •) are given by “eras-
ing” all the entries of degree ≥ 2 (i.e., replacing them by 0) from the
matrices representing the differentials of P •.

It is easy to check that lin(P •) is actually a complex. But, even if P• is a minimal
free resolution of M ∈ qf A, lin(P•) is not acyclic (i.e., Hi(lin(P•)) �= 0 for
some i > 0) in general.

Definition 3.6 (Herzog-Iyengar [11]). Let M ∈ qf A and P• its minimal
graded free resolution. We call

ldA(M) := sup{ i | Hi(lin(P•)) �= 0 }
the linearity defect of M .

We say M ∈ ∗mod A has a linear (free) resolution if there is some l ∈ Z
such that βi, j (M) �= 0 implies that j − i = l. In this case, the minimal free
resolution P• of M coincides with lin(P•), and ldA(M) = 0. For M ∈ qf A

with ι := inf{ i | Mi �= 0 }, M has a linear resolution, if and only if regA(M) =
ι, if and only if regA(M) ≤ ι. As shown in [14, Theorem 5.4], we have

regA(M) = inf{ i | Mi �= 0 and M≥i := ⊕
j≥i Mj has a linear resolution }.

For i ∈ Z and M ∈ qf A, M〈i〉 denotes the submodule of M generated by
the degree i component Mi . We say M ∈ qf A is componentwise linear, if
M〈i〉 has a linear resolution for all i ∈ Z. For example, if M has a linear
resolution, then it is componentwise linear. To see this, it suffices to show that if
M = ⊕

i≥0 Mi with M0 �= 0 has a linear resolution, then so does M〈1〉. But this
follows from the short exact sequence 0 → M〈1〉 → M → M/M〈1〉 → 0 and
Lemma 3.2 (2), since regA(M/M〈1〉) = regA(K⊕ dimK M0) = 0 = regA(M).
Note that M can be componentwise linear even if it is not finitely generated.
For example,

⊕
i∈N K(−i) is componentwise linear.

Proposition 3.7 (cf. [16], [19]). For M ∈ qf A, the following are equival-
ent.

(1) M is componentwise linear.

(2) ldA(M) = 0.

This result has been proved by Römer [16] and the author [19, Proposi-
tion 4.1] under the assumption that M is finitely generated. But this assump-
tion is not important, since for each j the submodule of M generated by
{ Mi | i ≤ j } is finitely generated. In the proof of [19, Proposition 4.1],
the author carelessly stated that “if M ∈ ∗mod A has a finite length, then
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regA(M) = max{ i | Mi �= 0 }”, which is clearly false (e.g., the exterior
algebra E = ∧〈y1, . . . , yn〉 satisfies regE(E) = 0 while En �= 0). But the
correct statement (Lemma 3.2 (3)) is enough for the proof.

The next result follows easily from Proposition 3.7.

Proposition 3.8 (cf. [16], [19]). For M ∈ qf A, we have

ldA(M) = inf{ i | �i(M) is componentwise linear },
where �i(M) is the i th syzygy of M .

Clearly, we have ldA(M) ≤ proj.dimA(M). The inequality is strict quite
often. For example, we have proj.dimA(M) = ∞ and ldA(M) < ∞ for many
M . On the other hand, sometimes ldA(M) = ∞.

The next result connects the linearity defect with the regularity via Koszul
duality. For a complex X•, H (X•) denotes the complex such that H (X•)i =
Hi(X•) for all i and all differentials are 0.

Theorem 3.9 (cf. [7, Corollary 3.6]). Let X• ∈ D↑(qf A), and P • a
minimal free resolution of FA(X•) ∈ D↑(qf A!). Then we have

lin(P •) = FA ◦ H (X•).

Hence, for M ∈ qf A,

ldA(M) = sup{ regA!(H
i(FA(M))) + i | i ∈ Z}.

Proof. Recall that the Koszul duality functors used in [7] are covariant,
and the K-dual of our F . The “K-dual version” of the first assertion has been
proved in [7, Corollary 3.6] under the assumption that A is the polynomial
ring S or the exterior algebra E, but the assumption is irrelevant and the proof
in [7] also works here. The second assertion follows from Theorem 3.3, since
FA! ◦ H ◦ FA(M) is the linear part of the minimal free resolution of M .

4. Koszul Commutative Algebras and their Dual

If A is a Koszul commutative algebra and S := SymK A1 is the polynomial
ring, then we have A = S/I for a graded ideal I of S. In this situation,
A is Golod if and only if I has a 2-linear resolution as an S-module (i.e.,
βi, j (I ) �= 0 implies j = i + 2), see [11, Proposition 5.8]. We say A comes
from a complete intersection by a Golod map (see [2], [11], although they
do not use this terminology), if there is an intermediate graded ring R with
S →→ R →→ A satisfying the following conditions:

(1) R is a complete intersection.
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(2) Let J be the graded ideal of R such that A = R/J . Then J has a 2-linear
resolution as an R-module.

If this is the case, R is automatically Koszul (since so is A). Clearly, if A itself
is complete intersection or Golod, then it comes from a complete intersection
by a Golod map.

Example 4.1. Set S = K[s, t, u, v, w] and A = S/(st, uv, sw). Then
A is neither Golod nor complete intersection, but comes from a complete
intersection by a Golod map (as an intermediate ring, take S/(st, uv)).

The next result plays a key role in this section.

Theorem 4.2 (Avramov-Eisenbud [1]). Let A be a Koszul commutative
algebra, and S := SymK A1 the polynomial ring. Then we have regA(M) ≤
regS(M) < ∞ for all M ∈ ∗mod A.

On the other hand, even if A is Koszul and commutative, ldA(M) can be
infinite for some M ∈ ∗mod A, as pointed out in [11]. In fact, if ldA(M) < ∞
then the Poincaré series PM(t) = ∑

i∈N βi(M)·t i is rational. But a Koszul com-
mutative algebra A = K[x1, x2, x3]/(x1, x2, x3)

2⊗K[x4, x5, x6]/(x4, x5, x6)
2

has a module M ∈ ∗mod A such that PM(t) is not rational (cf. [17]).
But we have the following.

Theorem 4.3 (Herzog-Iyengar [11]). Let A be a Koszul commutative al-
gebra. If A comes from a complete intersection by a Golod map (e.g., A itself
is complete intersection or Golod), then ldA(M) < ∞ for all M ∈ ∗mod A.

Now we are interested in regA!(N) and ldA!(N) for a Koszul commutative
algebra A. First, we remark the important fact that the categories ∗mod A! and
∗mod(A!)op are equivalent in this case. In fact, a graded left A!-module has
a natural graded right A!-module structure, and vice versa (cf. [11, §3]). In
particular, A! is left noetherian if and only if it is right noetherian.

For the next result and its proof, we need a few preparations. For a graded
ring B = ⊕

i∈N Bi , let ∗fp B be the full subcategory of ∗mod B consisting of
finitely presented modules. We say B is left graded coherent, if any finitely
generated graded left ideal of B has a finite presentation. As is well-known, B

is left graded coherent if and only if ∗fp B is an abelian subcategory of ∗mod B.

Theorem 4.4. If A is a Koszul commutative algebra, we have the following.

(1) Let N ∈ ∗mod A!. If regA!(N) < ∞, then ldA!(N) < ∞.

(2) The following conditions are equivalent.
(a) ldA(M) < ∞ for all M ∈ ∗mod A.
(a′) ldA(M) < ∞ for all M ∈ ∗mod A with M = ⊕

i=0,1 Mi .
(b) regA!(N) < ∞ for all N ∈ ∗fp A!.
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(3) Let N ∈ qf A!. If there is some c ∈ N such that dimK Ni ≤ c for all
i ∈ Z, then ldA!(N) < ∞.

Proof. (1) The complex FA!(N) is always bounded above. Hence if
regA!(N) < ∞ then Hi(FA!(N)) �= 0 for only finitely many i by Theorem 3.3.
Thus the assertion follows from Theorems 3.9 and 4.2.

(2) The implication (a) ⇒ (a′) is clear.
(a′) ⇒ (b): First assume that N ∈ ∗fp A! has a presentation of the form

A!(−1)⊕β1 → A! ⊕β0 → N → 0. Then there is M ∈ ∗mod A with M =⊕
i=0,1 Mi such that FA(M) gives this presentation. Since ldA(M) < ∞, we

have regA!(N) < ∞ by Theorem 3.9.
Next take an arbitrary N ∈ ∗fp A!. For a sufficiently large s, N≥s :=⊕
i≥s Ni has a presentation of the form A!(−s − 1)⊕β1 → A!(−s)⊕β0 →

N≥s → 0. (To see this, consider the short exact sequence 0 → N≥s → N →
N/N≥s → 0, and use the fact that regA!(N/N≥s) < s.) We have shown that
regA!(N≥s) < ∞. So regA!(N) < ∞ by the above short exact sequence.

(b) ⇒ (a): First, we show that A! is left graded coherent in this case. Assume
the contrary. Then there is a finitely generated graded left ideal I ⊂ A! which is
not finitely presented. Clearly, A!/I has a finite presentation, but β2(A

!/I) =
β1(I ) = ∞, in particular, regA!(A!/I) = ∞. This is a contradiction.

So ∗fp A! is an abelian category. Each term of FA(M) is a finite free A!-
module, in particular, FA(M) ∈ C −(∗fp A!). Hence we have Hi(FA(M)) ∈
∗fp A! for all i. By the assumption, regA!(H i(FA(M))) < ∞. On the other
hand, Hi(FA(M)) �= 0 for finitely many i by Theorems 3.3 and 4.2. So the
assertion follows from Theorem 3.9.

(3) Let S be the set of all graded submodules of A⊕c which are generated
by elements of degree 1. By Brodmann [5], there is some C ∈ N such that
regA(M) ≤ regS(M) < C for all M ∈ S . Here S denotes the polynomial ring
SymK A1. To prove the assertion, it suffices to show that regA(H i(FA!(N)))+
i < C for all i. We may assume that i = 0. Note that H 0(FA!(N)) is the
cohomology of the sequence

A ⊗K (N1)
∗ ∂−1−→ A ⊗K (N0)

∗ ∂0−→ A ⊗K (N−1)
∗.

Since Im(∂0)(−1) is a submodule of A⊕ dimK N−1 generated by elements of
degree 1 and dimK N−1 ≤ c, we have regA(Im(∂0)) < C − 1. Consider the
short exact sequence

0 −→ Ker(∂0) −→ A ⊗K (N0)
∗ −→ Im(∂0) −→ 0.

Since regA(A ⊗K (N0)
∗) = 0, we have regA(Ker(∂0)) < C. Similarly, we
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have regA(Im(∂−1)) < C. By the short exact sequence

0 −→ Im(∂−1) −→ Ker(∂0) −→ H 0(FA!(N)) −→ 0,

we are done.

Remark 4.5. In Theorem 4.4 (2), the implications (a) ⇒ (a′) ⇔ (b) hold
for a general Koszul algebra.

If A is a (not necessarily commutative) Koszul algebra satisfying
regA(M) < ∞ for all M ∈ ∗mod A, then Theorem 4.4 (1) and (2) hold
for A.

In [2, Corollary 3], Backelin and Roos showed that if A is a Koszul commut-
ative algebra which comes from a complete intersection by a Golod map then
A! is left graded coherent. Moreover, they actually proved that regA!(N) < ∞
for all N ∈ ∗fp A! (see [2, Corollary 2] and [11, Lemma 5.1]). So we have
ldA(M) < ∞ for all M ∈ ∗mod A by Theorem 4.4, that is, we get a result of
Herzog and Iyengar (Theorem 4.3). Their original proof is essentially based
on this line too.

A deep theory on the Hopf algebra structure of A! plays a key role in [2].
But, when A is a Koszul complete intersection, we have another exposition
of the fact that regA!(N) < ∞ for all N ∈ ∗mod A!. Since this exposition
has its own interest, we will give it here. The next lemma might be known
to specialists. But the author could not find a reference. So we give a proof,
which is suggested by Professor Izuru Mori. For the unexplained terminology
appearing in the next result and its proof, consult [14], [18], [20].

Lemma 4.6. If A is a complete intersection, then A! is noetherian and
admits a balanced dualizing complex.

Proof. Let S := SymK A1 be the polynomial ring. We have a regular se-
quence z1, . . . , zm ∈ S2 such that A = S/(z1, . . . , zm). Recall that E := S! is
the exterior algebra. Set A(1) := S/(z1). Then there is a central regular element
w1 ∈ (A(1))

! of degree 2 such that (A(1))
!/(w1) ∼= E by [18, Theorem 5.12].

Since E is artinian, it is noetherian and admits a balanced dualizing com-
plex. Hence (A(1))

! is noetherian and admits a balanced dualizing complex
too by [14, Lemma 7.2]. Similarly, if we set A(2) := S/(z1, z2) = A(1)/(z̄2),
then there is a central regular element w2 ∈ (A(2))

! of degree 2 such that
(A(2))

!/(w2) ∼= (A(1))
!. Hence (A(2))

! is noetherian and admits a balanced du-
alizing complex again. Repeating this argument, we see that A! is noetherian
and has a balanced dualizing complex.

Corollary 4.7. If A is a Koszul complete intersection, then regA!(N) < ∞
and ldA!(N) < ∞ for all N ∈ ∗mod A!.
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Proof. By Lemma 4.6 and [12], we have regA!(N) < ∞ for all N ∈
∗mod A!. Hence ldA!(N) < ∞ for all N ∈ ∗mod A! by Theorem 4.4.

The next result, which easily follows from [11, Corollary 6.2], states that if
A is Golod then there is an upper bound of regA!(N) for N ∈ ∗fp A! depending
only on max{ j | β1, j (N) �= 0 }. Even if A = K[x1, . . . , xn], n ≥ 2, there is
no similar bound for regA(M) at all.

Proposition 4.8. Assume that A is Koszul and Golod. For N ∈ ∗fp A!, we
have

regA!(N) < 2 · dimK A1 + max{ j | β1, j (N) �= 0 }.

Proof. Assume thatN∈ ∗fp A! has a presentation of the formA!(−1)⊕β1 →
A! ⊕β0 → N → 0. Then there is M ∈ ∗mod A with M = ⊕

i=0,1 Mi such
that FA(M) gives this presentation. Since ldA(M) ≤ 2 · dimK A1 by [11,
Corollary 6.2], we have regA!(N) ≤ 2 · dimK A1 by Theorem 3.9.

Next take an arbitrary N ∈ ∗fp A! and set s := max{ j | β1, j (N) �=
0 }. Then N ′ := ⊕

i≥s−1 Ni has a presentation of the form A!(−s)⊕β1 →
A!(−s + 1)⊕β0 → N ′ → 0, and we have regA!(N) = regA!(N ′). Since
N ′(s−1) satisfies the conditon in the previous paragraph, we have regA!(N) =
regA!(N ′) < 2 dimK A1 + s.

Even if A is not commutative, ldA(M) < ∞ for all M ∈ ∗mod A implies
that regA!(N) < ∞ for all N ∈ ∗fp A! as noted in Remark 4.5. So we have the
following (see the proof of the implication (b) ⇒ (a) of Theorem 4.4 (2)).

Proposition 4.9. Let A be a Koszul algebra. If ldA(M) < ∞ for all
M ∈ ∗mod A, then A! is left graded coherent.

Lemma 4.10. Let A be a Koszul algebra with ldA(M) < ∞ for all M ∈
∗mod A, and let X• ∈ Db(qf A!) be a bounded complex. Then regA!(X•) < ∞
if and only if Hi(X•) ∈ ∗fp A! for all i.

Proof. (Sufficiency): If Hi(X•) ∈ ∗fp A!, then regA!(H i(X•)) < ∞.
Since X• is bounded, we have regA!(X•) < ∞ by Lemma 3.2 (4).

(Necessity): Assume that regA!(X•) < ∞ (more generally, βi(X•) < ∞ for
all i), and P • is a minimal free resolution of X•. Clearly, P i ∈ ∗fp A! for each i.
By Proposition 4.9, ∗fp A! is an abelian category and each Hi(P •) (∼= Hi(X•))
belongs to ∗fp A!.

If A is commutative, then A is noetherian and ∗mod A is an abelian cat-
egory. So we can consider the derived category Db(∗mod A), which is a full
subcategory of D↑(qf A).
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Lemma 4.11. Let A be a Koszul commutative algebra. Then Db(∗mod A) =
D sb(qf A) and the Koszul duality gives Db(∗mod A) ∼= D sb(qf A!)op.

Proof. By Proposition 3.5, it suffices to show the first statement. If X• ∈
Db(∗mod A), then regA(X•) < ∞ by Lemma 3.2 (4) and Theorem 4.2. Hence
we have X• ∈ D sb(qf A). Conversely, if Y • ∈ D sb(qf A), then βi(Y •) < ∞
for all i, and the minimal free resolution of Y • is a complex of finite free
modules. So we have Y • ∈ Db(∗mod A).

Theorem 4.12. Let A be a Koszul commutative algebra such that ldA(M) <

∞ for all M ∈ ∗mod A (e.g., A comes from a complete intersection by a Golod
map). Then Koszul duality gives an equivalence Db(∗mod A) ∼= Db(∗fp A!)op.

Proof. By Proposition 4.9, ∗fp A! is an abelian category, and closed under
extensions in qf A!. Since a free A!-module of finite rank belongs to ∗fp A!, this
category has enough projectives. So we have Db(∗fp A!) = Db

∗fp A!(qf A!) =
D sb(qf A!). Here the first equality follows from [9, Exercise III.2.2] and the
second one follows from Lemma 4.10. Now the assertion is a direct con-
sequence of Lemma 4.11.

We remark that the next corollary also follows from Lemma 4.6 and [14,
Proposition 4.5].

Corollary 4.13. IfA is a Koszul complete intersection, then Koszul duality
gives Db(∗mod A) ∼= Db(∗mod A!)op.

In the rest of the paper, we study the linearity defect over the exterior
algebra E := ∧〈y1, . . . , yn〉. Eisenbud et al. [7] showed that ldE(N) < ∞ for
all N ∈ ∗mod E. Now this is a special case of Theorem 4.4. But the behavior
of ldE(N) is still mysterious.

If n ≥ 2, then we have sup{ ldE(N) | N ∈ ∗mod E } = ∞. In fact, N :=
E/ soc(E) satisfies ldE(N) ≥ 1. And the i th cosyzygy �−i (N) of N (since E

is selfinjective, we can consider cosyzygies) satisfies ldE(�−i (N)) > i. But
we have an upper bound of ldE(N) depending only on max{ dimK Ni | i ∈ Z }
and n. Before stating this, we recall a result on regS(M) for M ∈ ∗mod S.

Theorem 4.14 (Brodmann and Lashgari, [6, Theorem 2.6]). Let S =
k[x1, . . . , xn] be the polynomial ring. Assume that a graded submodule M ⊂
S⊕c is generated by elements whose degrees are at most d. Then we have
regS(M) ≤ cn!(2d)(n−1)!.

When c = 1 (i.e., when M is an ideal), the above bound is a classical result,
and there is a well-known example which shows the bound is rather sharp. For
our study on ldE(N), the case when d = 1 (but c is general) is essential. When
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c = d = 1, we always have regS(M) = 1. So the author believes the bound
can be strongly improved when d = 1.

Proposition 4.15. Let E = ∧〈y1, . . . , yn〉 be an exterior algebra, and
N ∈ ∗mod E. Set c := max{ dimK Ni | i ∈ Z }. Then ldE(N) ≤ cn!2(n−1)!.

Proof. If M is a graded submodules of S⊕c generated by elements of
degree 1, then we have regS(M) ≤ cn!2(n−1)! by Theorem 4.14. Now the
assertion follows from the argument similar to the proof of Theorem 4.4 (3).
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