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THE GROUP LAW ON A TROPICAL ELLIPTIC CURVE

MAGNUS DEHLI VIGELAND

Abstract
In analogy with the classical group law on a plane cubic curve, we define a group law on a smooth
plane tropical cubic curve. We show that the resulting group is isomorphic to S1.

1. Introduction

Tropical geometry is a recent, but rapidly growing field of research in mathem-
atics, in which one seeks to establish connections between complex algebraic
geometry and the combinatorics of certain piecewise linear objects, called
tropical varieties. Such connections has led to new insight in various areas,
like enumerative geometry [3], mirror symmetry [1] and statistics [5].

A favorite subject among many tropical geometers is the study of plane
tropical curves, and their many fascinating similarities with classical plane
algebraic curves. The purpose of this paper is to give a contribution to the list
of such analogies, by defining – in a manner resembling the classical case – a
group law on a smooth plane tropical cubic curve.

We define the Jacobian as an abelian group associated to a tropical curve.
Unlike the classical situation, the Jacobian of a tropical elliptic curve C is not
equal as a set to the curve itself, but to a smaller part of it, namely the curve’s
unique cycle C̄. For P, Q ∈ C̄ we define dC(P, Q) to be the displacement
from P to Q with respect to the Z-metric on C̄ (and a chosen orientation of
C̄). This plays a crucial role in the main results, which can be summarized as
follows:

Theorem 1.1. Let C be a tropical elliptic curve, and let C̄ be its unique
cycle. Let O be a point on C̄.

a) We have a bijection of sets C̄ −→ Jac(C), given by P �−→ P − O .

b) The induced group law on C̄ satisfies the relation

dC(O , P + Q) = dC(O , P ) + dC(O , Q).

c) As a group, C̄ is isomorphic to the circle group S1.
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2. Preliminaries

Let Rtr := (R, ⊕, �) be the tropical semiring, where the binary operations
are defined by a ⊕ b := max{a, b} and a � b := a + b. The multiplicative
identity element of Rtr is 0, while there is no additive identity (since −∞ is
not included as an element in Rtr).

Remark 2.1. The operations ⊕ and � can be extended to Rn as follows:

(a1, . . . , an) ⊕ (b1, . . . , bn) := (max{a1, b1}, . . . , max{an, bn}), and

λ � (a1, . . . , an) := (λ + a1, . . . , λ + an), for λ ∈ R.

Moreover, we can define tropical projective n-space by setting Pn
tr := Rn+1/∼,

where x ∼ y ⇐⇒ x = λ � y for some λ ∈ R. Note that unlike the classical
situation, Pn

tr does not have more points than Rn. For example, every equivalence
class in Pn

tr has a representative in Rn+1 with 0 as the last coordinate.

Let A ⊆ Zn be a finite set of vectors a = (a1, . . . , an). A tropical (Laurent)
polynomial in indeterminates x1, . . . , xn, with support A , is an expression of
the form

f =
⊕
a∈A

λa � x
a1
1 � · · · � xan

n = max
a∈A

{
. . . , λa +

n∑
i=1

aixi, . . .

}
,

where each λa ∈ Rtr . The convex hull of A is called the Newton polytope of f

and is denoted by �. When in danger of ambiguity, we use indices to indicate
the polynomial, as in Af and �f .

Notice that as a function Rn → R, f is convex and piecewise linear.

Definition 2.2. The tropical hypersurface V (f ) defined by f is the set
of points in Rn where the function f : Rn → R is not linear.

Remark 2.3. Note that if f consists of a single monomial, V (f ) is the
empty set.

Remark 2.4. Different tropical polynomials can define the same tropical
hypersurface. In particular, it is easy to see that if g = f �m, where m = xayb

is a tropical monomial, then V (g) = V (f ). Note that in this case Ag (resp.
�g) is a translation of Af (resp. �f ) by the vector (a, b).

3. Tropical curves

We now focus our attention to tropical hypersurfaces in R2:

Definition 3.1. Let f (x, y) be a tropical polynomial in two indetermin-
ates. The tropical hypersurface V (f ) ⊆ R2 is called a tropical curve in R2.
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We recall some basic properties of tropical curves. For proofs and more
details, see [6, Section 3], or [3, Sections 1-3] for a more exhaustive approach.

Given a tropical polynomial f , we can associate a lattice subdivision of the
Newton polygon � of f in the following way: Let �̂ be the convex hull of the
set {(a, b, λabc)} ⊆ R2 ×R, where (a, b) runs through A . Then define Subdivf

to be the image under the projection to R2 of the top facets of �̂, i.e., the facets
whose outer normal unit vector has positive last coordinate.

The subdivision Subdivf is in a natural way dual to the tropical hypersurface
V (f ). In particular, each edge of V (f ) corresponds to an edge of Subdivf ,
and corresponding edges are perpendicular to each other. The unbounded rays
in V (f ) correspond to the edges of ∂�. (Cf. [6, Proposition 3.5] and [3,
Proposition 3.11].)

Let E be an edge of a tropical curve C = V (f ), and let E∨ be the corres-
ponding edge in Subdivf . We define the weight of E to be the lattice length of
E∨, i.e. 1 + �{interior lattice points of E∨}.

Lemma 3.2. For any node V of a tropical curve, the following balancing
condition holds: Let E1, . . . , En be the edges adjacent to V . For each i =
1, . . . , n let mi be the weight of Ei , and vi the primitive integer vector pointing
into Ei from V . Then

(1) m1v1 + · · · + mnvn = 0,

where 0 = (0, 0) ∈ R2.

The balancing condition characterizes tropical curves: Assume C is a 1-
dimensional polyhedral complex in R2, consisting of rays and line segments
with rational slopes, each assigned some positive integral weight. Then C =
V (f ) for some tropical polynomial f if and only if (1) is satisfied at every
vertex of C.

Next we define the degree of a tropical curve. For each d ∈ N0, let �d

be the triangle with vertices (0, 0), (d, 0), (0, d). (When d = 0 we get the
degenerated triangle �0 = {(0, 0)}.)

Definition 3.3. Let C = V (f ) be a tropical curve in R2, and let � be
the Newton polygon of f . If � fits inside �d , but not inside �d−1, then C has
degree d. If � = �d , we say that C has degree d with full support.

Remark 3.4. There seems to be no clear consensus in the literature on how
to define the degree of a tropical curve. Definition 3.3 differs slightly from the
ones in [6] and [3], but serves the purpose of this paper better. In particular,
as we will see in the next section, Definition 3.3 gives room for an extended
version of the tropical Bezout’s theorem compared to that in [6].
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Example 3.5. A tropical line is a tropical curve of degree 1 with full sup-
port. For instance, if f = ax ⊕ by ⊕ c, then the tropical line L = V (f )

consists of three unbounded rays, emanating from the “center” (c − a, c − b)

in the directions (−1, 0), (0, −1) and (1, 1) respectively.

Example 3.6. If f is any monomial, then � consists of a single point.
Hence V (f ) has degree 0. This is appropriate since V (f ) is an empty set. (Cf.
Remark 2.3.)

A vertex V of a tropical curve is called 3-valent if V has exactly 3 adjacent
edges. Furthermore, if these edges have weights m1, m2, m3 and primitive in-
teger direction vectors u = (u0, u1), v = (v0, v1), w = (w0, w1) respectively,
we define the multiplicity of V to be the absolute value of the number

m1m2

∣∣∣∣ u0 u1

v0 v1

∣∣∣∣ = m2m3

∣∣∣∣ v0 v1

w0 w1

∣∣∣∣ = m1m3

∣∣∣∣ w0 w1

u0 u1

∣∣∣∣ .
Definition 3.7. A tropical curve is called smooth if every vertex is 3-valent

and has multiplicity 1.

Notice that in a smooth tropical curve, every edge has weight 1.

Definition 3.8. The genus of a smooth tropical curve C = V (f ) is the
number of vertices of Subdivf in the interior of the Newton polygon �f .

Figure 1. A tropical curve and its associated subdivision. The subdivi-
sion shows that the curve is smooth of degree 3 and genus 1.

Figure 1 shows a smooth curve of degree 3 and genus 1, and its associated
subdivision.

3.1. The Z-metric

Let C ⊆ R2 be a smooth tropical curve. If E is any edge of C, we define
a metric on E called the Z-metric, in the following way. For any two points
x, y ∈ E, we set their distance in the Z-metric to be the number ‖x−y‖

‖v‖ , where
‖·‖ denotes the Euclidean norm, and v is a primitive integral direction vector of
E. In particular, if E is a bounded edge, we define its lattice length, l(E), to be
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the distance (in the Z-metric) between its endpoints. Note that if both endpoints
of E have integral coordinates, then l(E) = 1+�{interior lattice points on E}.

Remark 3.9. By identifying each edge E of C with the real interval
[0, l(E)] (or [0, ∞) if E is unbounded), C can be thought of as a “metric
graph with possibly unbounded edges”. This is equivalent to giving C a Z-
affine structure, or tropical structure as described e.g. in [4].

4. Intersections of tropical curves

We say that two tropical curves C and D intersect transversally if no vertex of
C lies on D and vice versa. In a transversal intersection we define intersection
multiplicities as follows: Let P be an intersection point of C and D, where the
two edges meeting have weights m1 and m2, and primitive direction vectors
(v0, v1) and (w0, w1) respectively. The intersection multiplicity multP (C ∩D)

is then the absolute value of

m1m2

∣∣∣∣ v0 v1

w0 w1

∣∣∣∣ .
Non-transversal intersections are dealt with in the following way: For any

intersecting tropical curves C and D, let Cε and Dε be nearby translations
of C and D such that Cε and Dε intersect transversally. We then have ([6,
Theorem 4.3]):

Theorem-Definition 4.1. Let the stable intersection of C and D, denoted
C ∩st D, be defined by

C ∩st D = lim
ε→0

(Cε ∩ Dε).

This limit is independent of the choice of perturbations, and is a well-defined
subset of points with multiplicities in C ∩ D.

Theorem 4.2 (Tropical Bezout). Assume C and D are tropical curves of
degrees c and d respectively. If both curves have full support, then their stable
intersection consists of cd points, counting multiplicities.

Proof. See [6, Theorem 4.2 and Corollary 4.4]. The idea is to show that
the number of (stable) intersection points is invariant under translations of the
curves. Thus we can arrange the two curves such that for each of them, the
intersection points lie on the unbounded rays in one of the three coordinate
directions. It is then trivial to check that �(C ∩st D) = cd.

There is also a tropical version of Bernstein’sTheorem: Recall that the mixed
area of two convex polygons R and S is defined as the number Area(R +S)−
Area(R) − Area(S), where R + S is the Minkowski sum of R and S.
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Theorem 4.3 (Tropical Bernstein). Let C = V (f ) and D = V (g) be any
tropical curves intersecting transversally, with Newton polygons �f and �g

respectively. Then the number of intersection points, counting multiplicities,
equals the mixed area of �f and �g .

Proof. See [7, Theorem 9.5].

Although perhaps not as enlightening as the homotopy argument given in
[6], one can prove Theorem 4.2 as a special case of Theorem 4.3. In fact, we
can get a stronger result:

Theorem 4.4 (Strong version of Tropical Bezout). Assume C and D are
tropical curves of degrees c and d respectively. If at least one of the curves
have full support, then their stable intersection consists of cd points, counting
multiplicities.

Proof. Because of Theorem-Definition 4.1 we can assume that the inter-
section is transversal. Note that for any positive integers c and d, we have the
Minkowski sum �c + �d = �c+d . Hence the mixed area of �c + �d equals
1
2 (c + d)2 − 1

2c2 − 1
2d2 = cd. This proves Theorem 4.2.

Suppose now C has full support, i.e. �f = �c, and that �g is a convex
polygon of the form �d � Q, where Q ⊆ �d is a lattice polygon containing
exactly one of the corners of �d , say (d, 0). Then Area(�f +�g) = Area(�c+
(�d � Q)) = Area(�c + �d) − Area(Q). Thus the mixed area of �f and �g

is

Area(�f + �g) − Area(�f ) − Area(�g)

= (Area(�c + �d)) − Area(Q) − Area(�d) − (Area(�d) − Area(Q))

= cd.

The same argument shows that we can do the same at the other corners,
without changing the mixed area. In this way we can form any Newton polygon
�g associated to a tropical curve of degree d. Hence �(C ∩st D) = cd for any
tropical curve D of degree d.

Remark 4.5. If neither of the two curves have full support, the theorem
will not hold in general. For example, if C and D are the quadric curves given
by C = V (x2 ⊕ y) and D = V (x ⊕ y2), then C ∩ D consists of a single
point with multiplicity 3. Another example is given by the non-intersecting
lines V (0 ⊕ x) and V (1 ⊕ x).

An important special case of Theorem 4.4 is the following corollary:

Corollary 4.6. Let D be any tropical curve of degree d. Then any tropical
line meets D stably in exactly d points, counting multiplicities.



194 magnus dehli vigeland

5. Divisors on smooth tropical curves

Let C be a smooth tropical curve in R2.

Definition 5.1. We define the group of divisors on C, Div(C), to be the
free abelian group generated by the points on C. A divisor D on C is an element
of Div(C), i.e. a finite formal sum of the form D = ∑

μP P .

The number
∑

μP is as usual called the degree of D. Observe that the
elements of degree 0 in Div(C) form a group, denoted by Div0(C).

To define principle divisors, we must first define rational functions. By a
tropical rational function h: R2 → R we mean a function of the form h = f −g,
where f and g are tropical polynomials with equal Newton polygons.

Definition 5.2. Given a tropical polynomial f , we define the divisor
div(f ) ∈ Div(C) as the formal sum of points in C ∩st V (f ), counted with
their respective intersection multiplicities. Furthermore, if h = f − g is a
tropical rational function on R2, we set div(h) := div(f ) − div(g). A divisor
D ∈ Div(C) is called a principal divisor if D = div(h) for some tropical
rational function h.

It follows from Theorem 4.3 that any principal divisor on C has degree 0.

Remark 5.3. Suppose the Newton polygons of f and g differ by a trans-
lation. Then we would still have div(f ) − div(g) ∈ Div0(C), because of
Theorem 4.3. In fact, div(f ) − div(g) is a principle divisor. Indeed, if (a, b)

is the translation vector from �f to �g , let m = xayb be the corresponding
tropical monomial. Since V (f ) = V (f � m) (by Remark 2.4) it follows that
div(f )−div(g) = div(h), where h is the tropical rational function (f �m)−g.

Definition 5.4. Two divisors D1 and D2 are linearly equivalent, denoted
as D1 ∼ D2, if D1 − D2 is principal.

Linear equivalence is an equivalence relation, and as in the classical case one
can show that it restricts to an equivalence relation on the subgroup Div0(C).
Hence we can make the following definition:

Definition 5.5. The group Div0(C)/∼ is called the Jacobian of C, Jac(C).

5.1. A formula for the divisor of a tropical rational function

The purpose of this section is to develop a formula for the divisor of a tropical
rational function h: R2 → R, using only the properties of h restricted to C. We
begin with some easy observations:

Lemma 5.6. Let h: R2 → R be a tropical rational function, and C ⊆ R2 a
tropical curve. The restriction of h to C is then
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a) continuous on C,

b) piecewise linear on each edge of C, with integer slopes (with respect to
the Z-metric on the edge),

c) eventually constant on each unbounded ray of C.

Proof. a) Note that h is the difference of tropical polynomials, which are
continuous.

b) It is enough to prove this for tropical polynomials. Let E be an edge of
C, with primitive integer direction vector v, and let f (x) = maxa∈A {αa +
a · x} be a tropical polynomial function. Clearly, f |E is piecewise linear on
E. Furthermore, consider any point P ∈ E such that f is linear in an open
interval I ⊆ E containing P . Then f (x) = αa + a · x for all x ∈ I , for some
a ∈ A , and the slope of f at P in the direction of v (w.r.t the Z-metric on E),
is f (P + v) − f (P ) = a · v ∈ Z.

c) Suppose h(x) = f (x) − g(x), where f (x) = maxa∈Af
{αa + a · x}

and g(x) = maxb∈Ag
{βb + b · x} are tropical polynomials with �f = �g . Let


 = {V +tu | t ≥ 0}be an unbounded ray ofC, starting at the vertexV and with
primitive direction vector u. Then f (V +tu) = maxa∈Af

{αa +a ·V +t (a ·u)}.
For all t � 0 this maximum is achieved for some a = a
 with the property
that a
 · u ≥ a · u for all a ∈ Af . In particular this implies that a
 ∈ ∂�f .
Similarly, when t � 0, we have g(V + tu) = βb


+ b
 · V + t (b
 · u), for
some b
 ∈ ∂�g such that b
 · u ≥ b · u for all b ∈ Ag . Since �f = �g

this implies that a
 · u = b
 · u, and we conclude that for t � 0 we have
h(V + tu) = αa


− βb

+ (a
 − b
) · V , which is constant.

For any function r: C → R satisfying a) and b) above, we associate to each
point P ∈ C an integer ordP (r) as follows: If P is a vertex of C, then ordP (r)

is the sum of the outgoing slopes of r along the edges adjacent to P . If P ∈ C is
not a vertex, we use the same definition, after first having inserted a (2-valent)
vertex at P (but otherwise keeping C unchanged).

We say that r is locally linear at P ∈ C if there exists an open neighborhood
U ⊆ R2 containing P , and an affine-linear function s: R2 → R such that
r|C∩U = s|C∩U . It is easy to see that ordP (r) = 0 if r is locally linear at P .
Note however, that the converse is not true if P is a vertex of C.

We are now ready to prove the following:

Lemma 5.7. For any tropical rational function h: R2 → R we have

div(h) =
∑
P∈C

ordP (h|C)P .

Proof. Let f = maxa∈Af
{αa + a · x} be a tropical polynomial, and let

f := f |C . It is clear that f is locally linear at any P ∈ C � (C ∩st V (f )),



196 magnus dehli vigeland

and therefore ordP (f ) = 0 for such P . We show below that for each P ∈
C ∩st V (f ), the intersection multiplicity at P equals ordP (f ). This implies
div(f ) = ∑

P∈C ordP (f ) P . By the obvious extension from tropical polyno-
mials to tropical rational functions, the lemma follows from this.

Consider first the case where P is a transversal intersection point, between
an edge EC of C and an edge Ef of V (f ). We can choose primitive direction
vectors v = (v1, v2) and u = (u1, u2) of EC and Ef respectively, such that
if m is the weight of Ef , the intersection multiplicity is multP (C ∩ V (f )) =
m(v1u2 − v2u1).

To find ordP (f ), suppose a, b ∈ Af are such that f equals αa + a · x on
one side of P , and αb +b ·x on the other side. Then b−a is orthogonal to Ef .
Moreover, by the definition of weight, we have (possibly after swapping a and
b) that b − a = m(u2, −u1). This implies that ordP (f ) = v · b + (−v) · a =
v · (b−a) = m(v1u2 −v2u1), which equals the intersection multiplicity found
above.

Next, suppose P ∈ C ∩st V (f ) is a non-transversal intersection point,
i.e., that P is a vertex of either C or V (f ). In either case, consider fε =
maxa∈Af

{αε
a + a · x} such that V (fε) is a small translation of V (f ) inter-

secting C transversally, and P /∈ V (fε). Let P1, . . . , Pk ∈ C ∩ V (fε) be the
intersection points close to P (i.e. the points tending to P when fε → f ).
Then we have

(2) multP (C ∩st V (f )) =
k∑

i=1

multPi
(C ∩ V (fε)).

We proceed to show that ordP (f ) shows a similar, stable behavior. Let

1, . . . , 
s be the edges of C emanating from P , with primitive direction vectors
v1, . . . , vs . (If P is not a vertex of C, we insert a vertex at P , making s = 2,
and v1 = −v2.) Furthermore, let a1, . . . , as ∈ Af be such that for x ∈ 
i close
to P , we have f (x) = λai

+ ai · x. In particular, with this notation, we have
ordP (f ) = ∑s

i=1 ai · vi .
Because P /∈ V (fε), fε is locally linear at P , and we can assume w.l.o.g.

that fε(x) = αε
a1

+ a1 · x in a neighborhood of P . For j = 1, . . . , s, let
Bj ⊆ {P1, . . . , Pk} be the subset whose elements lies on 
j . It is not hard to
see that if Bj �= ∅, then

∑
Q∈Bj

ordQ(f ε) = aj · vj − a1 · vj . Hence,

(3)

k∑
i=1

ordPi
(f ε) =

∑
Bj �=∅

(aj · vj − a1 · vj )

=
∑
Bj �=∅

aj · vj +
∑
Bj =∅

a1 · vj = ordP (f ),
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where in the second to last transition we used the balancing condition, and in
the final transition the easily proved observation that if Bj = ∅ then aj = a1.

From (2) and (3) we deduce that multP (C ∩st V (f ) = ordP (f ) also when
P is non-transversal, and hence that div(f ) = ∑

ordP (f )P . This proves the
lemma.

Remark 5.8. A consequence of the above two lemmas is that our definitions
of tropical rational functions and their divisors are in agreement with those used
by Gathmann and Kerber in [2]. The set R = {h|C | h is a tropical rational
function} is a subset of what they call rational functions on C, i.e. functions
r : C → R which satisfy parts a) and b) of Lemma 5.6. Moreover, Lemma 5.7
implies that for any function in R, the definition of its associated divisor given
in [2] is equivalent to our Definition 5.2. In particular, the endpoints at infinity
of unbounded rays (these are included as part of the curve in [2]) are avoided
because of Lemma 5.6c).

6. Tropical elliptic curves

In the remainder of the paper C will denote a tropical elliptic curve, by which
we mean a smooth tropical curve of degree 3 and genus 1. We assume that
C = V (f ), where f (x, y) has Newton polygon �f ⊆ �3. Since (1, 1) is the
only lattice point in the interior of �3, the definition of genus requires that
(1, 1) is a vertex of Subdivf lying in the interior of �f . Hence C contains a
unique cycle, which we will denote by C̄. Finally, each connected component
of C � C̄ is called a tentacle of C.

6.1. An explicit homeomorphism C̄ → S1

Obviously, as a topological space, C̄ is homeomorphic to the circle group S1.
We will now construct one such homeomorphism, based on the Z-metric on
the edges of C.

Choose any fixed point O ∈ C̄. Let V1, . . . , Vn be the vertices of C̄ in
counter-clockwise direction, such that if O is a vertex then V1 = O , otherwise
O lies between V1 and Vn. Let E1, . . . , En be the edges of C̄, such that E1 =
V1V2 and so on. Recall that for each i, l(Ei) denotes the length of Ei in the
Z-metric on Ei . Let l be the cycle length of C̄, i.e., l = l(E1) + · · · + l(En).

We now define a homeomorphism μ: C̄ −→ R/lZ ≈ S1, linear in the
Euclidean metric of each edge Ei . It is then enough to specify the images in
R/lZ of the points O , V1, . . . , Vn, which we do recursively:

(4)

μ(O ) = 0

μ(V1) = l(OV1)

μ(Vi+1) = μ(Vi) + l(Ei), i = 1, . . . , n − 1.
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Finally, identifying R/lZ with the interval [0, l), we define the (signed)
displacement function dC : C̄ × C̄ → R by the formula

(5) dC(P, Q) = μ(Q) − μ(P ).

Note that dC(Q, P ) = −dC(P, Q) for any P, Q ∈ C̄. Moreover, for any three
points P, Q, R ∈ C̄ we have dC(P, Q) + dC(Q, R) = dC(P, R).

6.2. When are two points on C linearly equivalent?

In this section we give two propositions, which together give a complete answer
to the question in the title. Namely, we prove that any two points on the same
tentacle are linearly equivalent, while two distinct points on C̄ are never linearly
equivalent.

Proposition 6.1. Let P and Q be points on the same tentacle of C. Then
P ∼ Q.

Proof. We begin by showing that the points on any unbounded ray are
equivalent. By symmetry, it is enough to prove this for the rays that are un-
bounded in, say, the x-coordinate. Figure 2 shows a typical situation with three
such rays, 
1, 
2 and 
3.

L 1


1


2


3

L 2

Q P

RR

SS

QP

Figure 2. Sufficiently close points P and Q on 
1 are linearly equivalent.

The following argument shows that any two sufficiently close points P and Q

on 
1 are equivalent: Assume P is further away from C̄ than Q. Let h = f1−f2

be the tropical rational function where f1 and f2 are tropical linear polynomials
such that L1 = V (f1) is the tropical line with center in P , and L2 = V (f2)

is the line passing through Q and with center on the ray of L1 with direction
vector (1, 1). Denote this ray by ρ. Then div(f1) = P + R + S, where R and
S lies on ρ, and div(f2) = Q + R + S (as long as P and Q are close enough).
It follows that div(h) = P − Q, in other words P ∼ Q.

To show that any two points P and Q on 
1 are equivalent, we can choose
a finite sequence of points P = P1, P2, . . . , Pm = Q on 
1 such that each pair
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R

QP


1


2


3

P ′ Q′

P

Q


1


2


3

Figure 3. P ∼ Q on 
2. Figure 4. P ∼ Q on 
3.

(Pi, Pi+1) is close enough for the above technique to work. Then P = P1 ∼
· · · ∼ Pm = Q.

A similar argument shows that the points on 
2 are equivalent. The idea is
sketched in Figure 3. To show that P and Q are equivalent, take the tropical
line L1 with center in P and slide it along the ray with direction (1, 1) (i.e.
keeping R as intersection point with C) until it passes through Q. With the
notation on Figure 3, we see that P + P ′ + R ∼ Q + Q′ + R. But P ′ ∼ Q′,
since they are on 
1, thus P ∼ Q.

The same technique works for 
3 (see Figure 4) and also for the bounded
line segments of the tentacles. Any tentacle of a tropical elliptic curve can be
handled in this way.

Proposition 6.2. If P, Q ∈ C̄ and P ∼ Q, then P = Q.

Proof. Suppose otherwise that P �= Q, and that there exists a tropical
rational function h such that div(h) = P − Q. We will apply Lemma 5.7 to
show that this leads to a contradiction.

Let h = h|C . As a first observation, note that h is constant on each tentacle
of C. Indeed, this follows from Lemma 5.6c) and the fact that ordR(h) = 0
for all points R ∈ C � C̄. (Note in particular that if h is constant on two edges
adjacent to a 3-valent vertex V , then ordV (h) = 0 implies that h is constant
on the third edge as well.)

Now, let c1 and c2 be the two directed polygonal arcs of C̄ from P to Q. We
claim that for each i = 1, 2, h has constant slope along ci , w.r.t. the Z-metric.
To see this, observe that h is clearly linear along any edge of ci . Furthermore,
suppose two edges of ci intersect in a vertex V ∈ C̄, and that the slopes of h

along these edges (directed from P to Q) are s1 and s2. Because h is constant
on the tentacle adjacent to V , ordV (h) is of the form ±(s1 − s2 + 0). This
equals 0, hence s1 = s2. This proves the claim. Since ordP (h) = 1, the slopes
of h along the paths c1 and c2 must be s and 1 − s for some s ∈ Z. But this
contradicts the assumption of continuity of h at Q, since for any choice of s,
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QP

slope = s

slope = 1 − s

Figure 5. Slope properties of a function h satisfying
div(h) = P − Q.

one of the numbers s and 1− s is positive, while the other is non-positive. (See
Figure 5.)

6.3. The group law

In this final section we show that the Jacobian Jac(C) is set-theoretically equal
to C̄, and describe the resulting group structure on C̄. A crucial step towards this
goal is to determine when divisors of the form P + Q are linearly equivalent.
When trying to imitate the techniques from the classical case, we stumble
across the following problem: Given two points P and Q on C̄, we cannot
always find a tropical line L that intersects C stably in P and Q. (Recall that
a stable intersection is defined as a limit of transversal intersections.) If there
exists such a tropical line, we call (P, Q) a good pair.

We fix the notation p1 = (−1, 0), p2 = (0, −1) and p3 = (1, 1) for the
primitive integer direction vectors of a tropical line.

Lemma 6.3. Let P, Q, P ′, Q′ be any points on C̄. Then

P + Q ∼ P ′ + Q′ ⇐⇒ dC(P, P ′) = −dC(Q, Q′).

Proof. We proceed in two steps. First, we prove the result when (P, Q)

and (P ′, Q′) are good pairs. Using this, we then generalize to any pairs.
• Step 1. Assume (P, Q) and (P ′, Q′) are good pairs, and that P + Q ∼

P ′ +Q′. Then there exists (unique) tropical lines L and L′, and a point R ∈ C̄

such that L ∩st C = P + Q + R and L′ ∩st C = P ′ + Q′ + R. (Note that
the existence of R follows from Proposition 6.2.) Consider a homotopy Lt of
lines containing R such that L0 = L and L1 = L′. It is enough to consider the
case where P and P ′ are on the same edge, Q and Q′ are on the same edge,
and L′ is a parallel displacement of L along one of the axes. Indeed, in more
complex cases, the homotopy can be broken down into parts with the above
properties.
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Figure 6. Step 1. Figure 7. Non-orthogonal
projection in R2.

Let vP and vQ be primitive integer direction vectors of the edges of C̄ contain-
ing P, P ′ and Q, Q′ respectively, and assume that L′ equals the shifting of L δ

units in the direction of, say, p1 (see Figure 6). Then from the formula for non-
orthogonal vector projection (Figure 7), we find the Z-metric displacements of
P and Q:

|dC(P, P ′)| = ‖P ′ − P ‖
‖vP ‖ =

∥∥ det(δp1,p2)

det(vP ,p2)
vP

∥∥
‖vP ‖ = |δ|, and

|dC(Q, Q′)| = ‖Q′ − Q‖
‖vQ‖ =

∥∥ det(δp1,p3)

det(vQ,p3)
vQ

∥∥
‖vQ‖ = |δ|

(Note that | det(vP , p2)| = | det(vQ, p3)| = 1 since the corresponding inter-
sections have multiplicity 1.) Finally, it is clear that P and Q are moved in
opposite directions on C̄. Hence dC(P, P ′) = −dC(Q, Q′) as claimed.

The implication ⇐ follows by a similar argument.
• Step 2. Now assume (P, Q) is not a good pair. Let L1 and L2 be trop-

ical lines through P and Q respectively, and let R1, S1, R2, S2 be the other
intersection points. The idea is to move L1 and L2 into new lines L′

1 and L′
2

in such a way that R1, S1, R2, S2 are preserved as intersection points. P and
Q are not preserved; they move to the two new intersection points P ′ and
Q′ (see Figure 8). By construction, these points satisfy P ′ + Q′ ∼ P + Q.
Using our results in Step 1 on each of the lines L1 and L2, it follows that
dC(P, P ′) = −dC(Q, Q′). Conversely, it is not hard to see that in this way
one can reach any nearby pair (P ′, Q′) satisfying dC(P, P ′) = −dC(Q, Q′).

Moving P and Q far enough apart (sometimes more than one move is
needed) one obtains a good pair (P ′, Q′). Since we proved in Step 1 that the
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Q

P P ′

Q′

Figure 8. Moving a bad pair (P, Q).

lemma holds for good pairs, it follows that the lemma is true for any pairs
(P, Q) and (P ′, Q′).

Proposition 6.4. For any fixed point O ∈ C̄, the map τO : C̄ → Jac(C)

given by P �→ P − O is a bijection of sets.

Proof. Injectivity follows immediately from Lemma 6.3, since

P − O ∼ Q − O �⇒ P + O ∼ Q + O �⇒ dC(P, Q) = 0 �⇒ P = Q.

To prove surjectivity, let D be any divisor of degree 0. We must show that
there exists P ∈ C̄ such that D ∼ P−O . Assume first that D = P1−Q1, where
P1, Q1 ∈ C̄. Choose P such that dC(P, P1) = dC(O , Q1), then Lemma 6.3
gives P + Q1 ∼ P1 + O . Thus we have D = P1 − Q1 ∼ P − O .

Now assume D = D1 − D2, where D1 = P1 + · · · + Pn and D2 =
Q1 · · · + Qn are any effective divisors of degree n > 1. Let P12 and Q12 be
points such that P1 + P2 ∼ O + P12 and Q1 + Q2 ∼ O + Q12. Then

D ∼ O + P12 + · · · + Pn − (O + Q12 + · · · + Qn)

= P12 + · · · + Pn − (Q12 + · · · + Qn).

Hence D ∼ D′
1 − D′

2, where D1 and D2 are effective of degree n − 1. This
way we can reduce to the case n = 1, which we already proved.

Because of Proposition 6.4, C̄ has a natural group structure:

Definition 6.5. Define (C̄, O ) to be the group consisting of points on C̄,
with the group structure induced from Jac(C) such that the bijection τO is an
isomorphism of groups.

The next theorem and its corollary are the main results of this paper.

Theorem 6.6. Let P and Q be any points on C̄, and let + denote addition
in the group (C̄, O ). Then the point P+Q satisfies the relation

dC(O , P+Q) = dC(O , P ) + dC(O , Q).
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Proof. Because τO is a group isomorphism, the following equalities hold
in Jac(C):

(P+Q) − O = τO (P+Q) = τO (P ) + τO (Q) = P − O + Q − O .

Thus in Jac(C) we have (P+Q) + O = P + Q. This means that the divisors
(P+Q) + O and P + Q are equivalent, which by Lemma 6.3 implies the
relation

dC(P, P+Q) = dC(O , Q).

Adding dC(O , P ) on each side then gives dC(O , P+Q) = dC(O , P ) +
dC(O , Q) as wanted.

Remark 6.7. We can describe the group law geometrically just as in the
classical case of elliptic curves: To add P and Q we do the following. If (P, Q)

is a good pair, consider the tropical line L through P and Q, and let R be the
third intersection point of L and C̄. Now if (R, O ) is a good pair, let L′ be the
through R and O . Then P+Q is the third intersection point of L′ and C̄. (See
Figure 9 for an example.)

P P � Q
Q

O

R

P

Q

O

R

Figure 9. Adding points on a tropical elliptic curve.

If any of the pairs (P, Q) and (R, O ) fail to be good, then move the two points
involved equally far (in the Z-metric) in opposite directions until they form a
good pair, and use this new pair as described above.

Corollary 6.8. The map μ: (C̄, O ) −→ R/lZ ≈ S1 defined in (4) is a
group isomorphism.

Proof. It follows from the relation (5) that for any P we have μ(P ) =
dC(O , P ). Thus

μ(P+Q) = dC(O , P+Q) = dC(O , P ) + dC(O , Q) = μ(P ) + μ(Q).
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