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ON A UNIQUENESS PROPERTY OF SECOND
CONVOLUTIONS

N. BLANK

1. Introduction and Main Result

Let M∞ denote the space of all finite nontrivial complex Borel measures on
the real line whose variation has a fast decay at −∞:

(1)

∫ 0

−∞
er|t | d|μ(t)| < ∞, for every r > 0.

It follows from (1) that the Fourier-Stieltjes transform of every measure μ ∈
M∞,

μ̂(z) :=
∫ ∞

−∞
eizt dμ(t),

converges uniformly on compact subsets of the upper half-plane C+ := {z ∈
C : Im z > 0} to a function analytic in C+. Let l(μ) := inf supp μ denote the
left boundary of the support of μ, and μn∗ the nth convolution power of μ.

The following uniqueness property of nth convolutions of measures from
M∞ was discovered in connection with some probabilistic results (see for
example [1], [7], [8], [9], [10] and the literature therein): Let n ≥ 3 be an
integer, and let μ ∈ M∞ be such that l(μ) = −∞. Then every half-line
(−∞, a), a ∈ R, is a uniqueness set for the nth convolution μn∗, in the sense
that the implication holds: Suppose ν ∈ M∞ and

(2) there exists a ∈ R such that μn∗|(−∞,a) = νn∗|(−∞,a). Then μn∗ = νn∗.

It is also known that property (2) does not hold for n = 2. An easy way to
check this is to take two measures ξ1, ξ2 ∈ M∞ such that l(ξ1 + ξ2) = −∞
and ξ1 ∗ ξ2 = 0 on some half-line (−∞, a). Then the measures μ = ξ1 + ξ2

and ν = ξ1 − ξ2 belong to M∞, l(μ) = −∞ and we have

(μ2∗ − ν2∗)|(−∞,a) = 4ξ1 ∗ ξ2|(−∞,a) = 0.
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For example, let ξj ∈ M∞ be the measures with Fourier-Stieltjes transforms

(3) ξ̂j (z) = e(−1)j e−iz

, j = 1, 2.

From ξ̂1ξ̂2 = 1, we see that ξ1 ∗ ξ2 is the unit measure concentrated at the
origin, so that (ξ1 + ξ2)

2∗ − (ξ1 − ξ2)
2∗ = 4ξ1 ∗ ξ2 = 0 on (−∞, 0).

It turns out that there cannot be more than two different second convolutions
which agree on a half-line. The aim of this note is to prove the following

Theorem 1. Assume a measure μ ∈ M∞ satisfies l(μ) = −∞. Suppose
there exists a ∈ R and measures ν, φ ∈ M∞ such that

(4) μ2∗|(−∞,a) = ν2∗|(−∞,a) = φ2∗|(−∞,a),

and ν2∗ �= φ2∗. Then either ν2∗ = μ2∗ or φ2∗ = μ2∗.

An immediate corollary is the following uniqueness property of the second
convolutions:

Corollary 2. For every μ ∈ M∞, l(μ) = −∞, there is a real number
a0 = a0(μ) such that μ2∗ is uniquely determined by its values on (−∞, a), a >

a0, i.e. if ν ∈ M∞ and there exists a > a0 such that μ2∗|(−∞,a) = ν2∗|(−∞,a),

then μ2∗ = ν2∗.

We also mention a uniqueness result for squares of analytic functions:

Corollary 3. Assume functions f, g and h are analytic in the punctured
unit disk 0 < |z| < 1, and that f has an essential singularity at the origin.
Suppose that both functions f 2 − g2 and f 2 − h2 have a pole or a removable
singularity at the origin and g2 �= h2. Then either g2 = f 2 or h2 = f 2.

This is just a particular case of Theorem 1 for measures concentrated on the
set of integers, and follows from it by the change of variable z = exp(−it).

2. Remarks

1. Observe that condition (1) is crucial for the uniqueness property (2): The
property (2) does not in general hold for measures whose Fourier–Stieltjes
transform is not analytic in C+, see [7], [8] and [1]. A comprehensive survey
of results on this and similar uniqueness properties can be found in [9].

2. As it was observed in [7], the uniqueness property of nth convolu-
tions (2) is closely connected with the Titchmarsh convolution theorem and
its extensions. The classical Titchmarsh convolution theorem states that if
ξ1 and ξ2 are finite Borel measures satisfying l(ξj ) > −∞, j = 1, 2, then
l(ξ1∗ξ2) = l(ξ1)+l(ξ2). This is not true for measures with unbounded support,
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for there exist measures ξj , j = 1, 2, l(ξ1) = −∞, such that l(ξ1 ∗ξ2) > −∞.
Such measures can be taken from M∞, see example (3). However, it was
shown in [8] that the conclusion of Titchmarsh convolution theorem holds true
whenever the variation of measures satisfies a condition at −∞ more restrictive
than (1):

(5)

∫ 0

−∞
er|t | log |t |d|μ(t)| < ∞, for every r > 0.

Second convolutions of such measures enjoy the uniqueness property above
([7], [8]). Moreover, examples similar to (3) show that restriction (5) cannot
be weakened. Analogous results for unbounded measures were established in
[2].

Observe that extensions of the Titchmarsh convolution theorem have also
applications in the theory of invariant subspaces, see [2], [3] and [4].

3. The Titchmarsh convolution theorem has been extended to linearly de-
pendent measures: the equality

l (ξ1 ∗ · · · ∗ ξn) =
n∑

j=1

l(ξj )

holds for linearly dependent measures ξj ∈ M∞, j = 1, . . . , n, n ≥ 3, in
“general position”, for the precise statement see [5]. Our proof of Theorem 1
below is a fairly easy consequence of this result.

3. Proof of Theorem 1

The following lemma is a particular case of Theorem 4 in [5]:

Lemma 4. (i) Suppose measures ξ1, ξ2, ξ3 ∈ M∞ are linearly independent
over C. Then

(6) l(ξ1 ∗ ξ2 ∗ ξ3 ∗ (ξ1 + ξ2 + ξ3)) = l(ξ1) + l(ξ2) + l(ξ3) + l(ξ1 + ξ2 + ξ3).

(ii) Suppose measures ξ1, ξ2 ∈ M∞ are linearly independent over C and
|a1| + |a2| �= 0. Then

l (ξ1 ∗ ξ2 ∗ (ξ1 + ξ2) ∗ (a1ξ1 + a2ξ2))

= l(ξ1) + l(ξ2) + l(ξ1 + ξ2) + l(a1ξ1 + a2ξ2).

For the convenience of the reader, we recall shortly the main ideas of the
proof in [5]. To prove, say (6), by the Titchmarsh convolution theorem, it
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suffices to verify the implication

l (ξ1 ∗ ξ2 ∗ ξ3 ∗ (ξ1 + ξ2 + ξ3)) > −∞ ⇒ l(ξj ) > −∞, j = 1, 2, 3.

We may assume that ξ1 ∗ ξ2 ∗ ξ3 ∗ (ξ1 + ξ2 + ξ3) = 0 on (−∞, 0), so that
the product of the Fourier-Stieltjes transforms ξ̂1ξ̂2ξ̂3(ξ̂1 + ξ̂2 + ξ̂3) belongs
to the Hardy space H∞(C+). Hence, the zero set of the product, and so the
zero set of each factor satisfies the Blaschke condition. Now one can use the
following argument: If functions fj , j = 1, . . . , n, n ≥ 2, are analytic in the
unit disk, linearly independent and such that the zeros of each fj and the sum
f1 +· · ·+fn satisfy the Blaschke condition in the disk, then each fj must have
“slow” growth in the disk. A sharp statement follows from H. Cartan’s second
main theorem for analytic curves, see Theorem D in [5]. This argument proves
that the growth of each ξ̂j in C+ must satisfy a certain restriction. Next, we have
additional information that each function ξ̂j is bounded in every horizontal strip
in C+. This allows one to improve the previous estimate to show that numbers
bj exist such that ξ̂j (z) exp(ibj z) ∈ H∞(C+), j = 1, 2, 3. This means that
l(ξj ) ≥ −bj > −∞, j = 1, 2, 3.

We shall also need a simple lemma:

Lemma 5. Suppose μ ∈ M∞ is such that l(μ2∗) > −∞. Then l(μ) > −∞.

Indeed, we may assume that μ2∗ = 0 on (−∞, 0), so that (μ̂)2 ∈ H∞(C+).
Since μ̂ is analytic in C+, we obtain μ̂ ∈ H∞(C+). Consider now convolutions
μ ∗ pn, where pn is any sequence of smooth functions concentrated on [0, ∞]
which converges weakly to the delta-function concentrated at the origin. We
have p̂nμ̂ ∈ (H∞ ∩ H 1)(C+). A standard argument involving inverse Fourier
transform along the line Im z = y as y → ∞, proves that l(μ ∗ pn) ≥ 0.

Taking the limit as n → ∞, we conclude that l(μ) ≥ 0.

Proof of Theorem 1. Suppose measures μ, ν, φ ∈ M∞, l(μ) = −∞,
satisfy (4) for some a ∈ R, and ν2∗ �= φ2∗. Set ξ1 := (μ + ν)/2, ξ2 :=
(μ − ν)/2, and η1 := (μ + φ)/2, η2 := (μ − φ)/2. To prove the theorem, it
suffices to show that one of the measures ξj , ηj , j = 1, 2, is trivial.

Let us assume that it is not so, and show that this leads to a contradiction.
Since

(μ2∗ − ν2∗)|(−∞,a) = 4ξ1 ∗ ξ2|(−∞,a) = 0,

(μ2∗ − φ2∗)|(−∞,a) = 4η1 ∗ η2|(−∞,a) = 0,

we have

(7) l(ξ1 ∗ ξ2) > −∞, l(η1 ∗ η2) > −∞.
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Let us show that (7) implies l(μ) > −∞, which contradicts the assumption
l(μ) = −∞.

We shall consider several cases. First, assume that ξ1 and ξ2 are linearly
dependent. Then μ = ξ1 + ξ2 = (1 + b)ξ2, for some b ∈ C, b �= 0, and so

μ2∗ = (1 + b)2ξ 2∗
2 = (1 + b)2

b
ξ1 ∗ ξ2.

By (7), this gives l(μ2∗) > −∞. Lemma 5 yields l(μ) > −∞.
Assume now that ξ1 and ξ2 are linearly independent. From μ = ξ1 + ξ2 =

η1 + η2 we have η2 = ξ1 + ξ2 − η1. Now (7) gives

−∞ < l(ξ1 ∗ ξ2 ∗ η1 ∗ η2) = l(ξ1 ∗ ξ2 ∗ η1 ∗ (ξ1 + ξ2 − η1)).

If ξ1, ξ2 and η1 are linearly independent, then by part (i) of Lemma 4, we
obtain l(ξj ) > −∞, j = 1, 2, and so l(μ) > −∞. If ξ1, ξ2 and η1 are linearly
dependent, we have η1 = c1ξ1 + c2ξ2, for some c1, c2 ∈ C. Hence,

−∞ < l(ξ1∗ξ2∗η1∗η2) = l (ξ1 ∗ ξ2 ∗ (c1ξ1 + c2ξ2))∗((1−c1)ξ1+(1−c2)ξ2).

If either cj �= 0, j = 1, 2, or 1 − cj �= 0, j = 1, 2, then part (ii) of Lemma 4
implies l(ξj ) > −∞, and so l(μ) > −∞. Otherwise, we may assume that
c1 = 0 and 1 − c2 = 0. This gives

−∞ < l(ξ1 ∗ ξ2 ∗ η1 ∗ η2) = l(ξ 2∗
1 ∗ ξ 2∗

2 ).

From (7) and Lemma 5 we conclude that l(ξj ) > −∞, j = 1, 2, which shows
that l(μ) > −∞.
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