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THE FUNDAMENTAL GROUP OF THE SPACE OF
MAPS FROM A SURFACE INTO THE

PROJECTIVE PLANE

DACIBERG L. GONÇALVES and MAURO SPREAFICO

Abstract

In this work we compute the fundamental group of each connected component of the function
space of maps from a closed surface into the projective space

1. Introduction

The homotopy of the function spaces S
S1
2 of continuous maps from a surface

S1 to another surface S2 has been studied at least in the past 50 years. The
problem can be divided into two cases. The first case is when the surface S2

is a K(π, 1), i.e. different from S2 and RP 2. In this situation the problem has
been solved completely. See [3], [5], [6], and [7] (see also related works on
the homotopy type of the components of function spaces [8], [10], [12]). The
other case is when the target is either the sphere S2 or the projective plane. For
S2 = S2, some relevant results were obtained. In [4] the fundamental group of
each connected component of (S2)S1 was determined up to some extension. In
[9] these groups were completely determined. Finally in [7] a further homotopy
information was given at least for the case of the components of (S2)S

2
. Namely,

for each degree k, the component which corresponds to this degree has a unique
k-fold covering space, and this covering space has the homotopy type of the
space of orientation preserving self-homotopy equivalences of S2. Among
several open questions about these function spaces, it seems to us that the
question still remains open to find the fundamental group of the function space
when the target is RP 2. For the case when the target is RP 2 there are few
results. From [9] one can read the fundamental group of (RP 2)S at least in the
case of the connected component of the constant map. When also S = RP 2,
for the component of the identity map, namely for the space of self homotopy
equivalences of the projective space m∗(RP 2, RP 2; id), we can find in [13] a
splitting similar to the one obtained in [6] for the sphere. This information can
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be used in order to compute the fundamental group of this component, provided
we can compute the fundamental group of the space of based self homotopy
equivalences (see details at the end of Section 3). The purpose of this note is to
compute the fundamental group in the remaining cases, i.e. the fundamental
group of the connected components which contain a map f : S → RP 2 that
is not homotopic to the constant map, for a generic surface S.

2. Background and notation

In this section we introduce some notation and we recall some general facts
and some results from works of P. Olum [11] and of Larmore and Thomas [9]
that will be used in the following sections. For the definition of degree of a map
see [2]. To start, we briefly describe the set of the components of the function
space (RP 2)S . Our description is based on [11]. First, we fix some notation.

• S will be a compact connected surface without boundary.

• We will use multiplicative notation for the fundamental group and additive
notation for cohomology groups.

• We have an isomorphism between the groups Hom(π1(S), π1(RP 2)) and
H 1(S; Z/2). We will use θ to denote homomorphisms and x to denote
classes.

• An element of Hom(π1(S), π1(RP 2)) is said to be orientation true if it
sends all the orientation preserving/reversing elements of the fundamental
group of S into orientation preserving/reversing elements of the funda-
mental group of RP 2. Otherwise we say that the element is non orientation
true.

• We will denote by θ0 the trivial homomorphism, and by θ1 the (unique)
homomorphism that send to −1 each orientation reversing element, and to
1 all the other elements. It is clear that θ1 corresponds to the orientation
class w1(τS) ∈ H 1(S; Z/2).

• We denote by ZT [x] the sheaf of local coefficients on S defined by the class
x ∈ H 1(S; Z/2).

• For any map f :S → RP 2, the (twisted) degree of f is the integer d(f ) (pos-
sible mod 2) defined by f ∗(μ) = d(f )ν, where f ∗ is the induced homo-
morphism f ∗ : H 2(RP 2; ZT [w1(τRP 2)]) → H 2(S; ZT [f ∗(w1(τRP 2))])
and μ and ν are the fundamental classes of H 2(S; ZT [w1(τRP 2)]) and
H 2(S; ZT [f ∗(w1(τRP 2))]), respectively.

• The notation [X, Y ] is for the set of free homotopy classes of maps, [X, Y ]∗
for the set of based homotopy classes of maps. The notation [X, Y ]θ∗ means
that any map in any class of this set induces the homomorphism θ on
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the fundamental group. In the case that π1(Y ) = Z/2 then the induced
homomorphism f# : π1(X) → π1(Y ) is independent of the base point, and
we denote by [X, Y ]θ the set of homotopy classes of maps where any class
of this set induces the homomorphism θ on the fundamental group.

• The notation m(X, Y ; f ) is for the component of the set of maps from X

to Y that contains f .

We can enumerate the components of the space (RP 2)S as follows.

Proposition 2.1. The set of components of (RP 2)S is described as follows.
If S is oriented,

m(S, RP 2) =
∞⊔

k=0

m(S, RP 2; f2k)

�
⊔

x∈H 1(S;Z/2),x �=0

(
m(S, RP 2; fx) � m(S, RP 2; f−x)

)
,

where the homomorphism induced in the fundamental group and the corres-
ponding class in H 1 are

(f2k)∗ = θ0, x = 0

(f±x)∗ = θ �= θ0, x �= 0,

and the twisted degree is

d(f2k) = 2k, d(f±x) = 0.

If S is nonorientable

m(S, RP 2) =
∞⊔

k=0

m(S, RP 2; f2k+1) �
⊔

x∈H 1(S;Z/2),x �=w1(τS),x2=1

m(S, RP 2; f 1
x )

�
⊔

x∈H 1(S;Z/2),x �=w1(τS),x2=0

(
m(S, RP 2; f 0

x ) � m(S, RP 2; f 0
−x)

)
,

where
(f2k+1)∗ = θ1, x = w1(τS)

(f i±x)∗ = θ �= θ1, x �= w1(τS),

and
d(f2k+1) = 2k + 1, d(f i

±x) = i.

Next, in order to apply the technique developed in [9] to compute the fun-
damental group of the space of sections of some bundles, we need some results
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about the Euler class of some plane bundles. First, we fix some further nota-
tion. In the following a section s of a vector bundle is a nowhere vanishing
section, and ξ is a 3 dimensional vector bundle over a space X.

• For any trivial bundle ξ over X, we will identify the space of sections
�(X, ESξ) with the mapping space m(X, FSξ), where ESξ is the total
space of the spherical bundle of ξ and FSξ its fiber.

• ξ has a section if and only if it is the summand of a trivial line bundle,
namely there exists a 2-plane bundle η such that ξ = η ⊕ 1 (Withney sum).

• If the associated projective bundle Pξ has a section, then there exist a line
bundle λ and a 2-plane bundle η over X such that Pξ = η ⊕ λ.

• For any line bundle λ, Pξ = P(ξ ⊗ λ).

• If ξ is trivial and Pξ has a section s, then ξ = s−1(τRP 2 ⊕ γ ), where γ is
the Hopf line bundle and τRP 2 is the tangent bundle over RP 2.

Lemma 2.2. If ξ is trivial and Pξ has a section s, then ξ ⊗ s−1γ =
s−1τRP 2 ⊕ 1.

Proof. If Pξ has a section, then ξ = s−1(τRP 2 ⊕ γ ). The thesis follows
since τRP 2 = τRP 2 ⊗ γ by [1].

Lemma 2.3. Let f : S → RP 2, and let η = f −1τRP 2. Then the Euler
class of η is determined by the degree of f , while the first Stiefel Whitney class
of η is determined by the homomorphism induced by f on the fundamental
group, namely

χ(η) = d(f ),

w1(η) = f ∗(w1(τRP 2)).

Note that, if f ∗(w1(τRP 2)) = x �= w1(τS), then

χ(η) = d(f ) =
{

0, w1(τS) = 0,

x2, w1(τS) �= 0.
.

We recall now two results of [9], that will be used to prove our main theorems
in Sections 3 and 4. It should be observed that we can not apply Theorems 1, 2
or 3 of [9] directely except for the case of the component of the constant map.
We prefer to recall here the complete statement of these theorems using our
notation, in order to make easier to understand the calculations of the following
sections.

Theorem 2.4 (Larmore-Thomas). Let s ′ be a given section of a 3-plane
bundle ξ ′ over S, and �′ = �(S, ESξ ′; s ′). Then, ξ ′ = η′⊕1, for some 2-plane
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bundle η′, and we have an exact sequence

H 0(S; ZT [w1(η
′)]) ∪χ(η′)−−−→ H 2(S; Z)

φ−→ π1(�
′) p−→ H 1(S; ZT [w1(η

′)]) −→ 0.

The following information is sufficient to determine π1(�
′) as an extension:

(1) φ(H 2(S; Z)) is central.

(2) If α1, α2 ∈ π1(�
′) and p(α1) = x1, p(α2) = x2, then [α1, α2] =

φ(2x1 ∪ x2).

(3) If w1(η
′) �= 0, let w̄1 be the unique element of H 1(S; ZT [w1(η

′)]) of
order 2. Chose z ∈ H 2(S; Z) such that z mod 2 = w2(η

′). Then there
exists y ∈ π1(�

′) such that p(y) = w̄1 and y2 = φ(w̄1 ∪ w̄1 + z).

Note that in the next theorem we will identify the elements of π1(�
′) with

their images in π1(�) when there is no ambiguity.

Theorem 2.5 (Larmore-Thomas). Let s be a given section of the projective
bundle Pξ associated to a 3-plane bundle ξ over S, and assume that s is the
identification of a section s ′ of an associated sphere bundle Sξ ′ such that Pξ ′ =
Pξ . Let � = �(S, EPξ ; s), and �′ = �(S, ESξ ′; s ′). Then, ξ ′ = η′ ⊕ 1, for
some 2-plane bundle η′, we have a diagram with exact row and column

0

↓
H 0(S; ZT [w1(η

′)]) ∪χ(η′)−−−→ H 2(S; Z)
φ−→ π1(�

′) p−→ H 1(S; ZT [w1(η
′)]) −→ 0

↓i

π1(�)

↓q

Z/2

and the following information determines π1(�):

(1) π1(�
′) is given in Theorem 2.4.

(2) χ(η′) �= 0 if and only if π1(�) = π1(�
′).

(3) When χ(η′) = 0, the following conditions apply:
(a) iφ(H 2(S; Z)) is central.
(b) There exists an element t ∈ π1(�) (defined by the section due to

the splitting η′ = ζ ′ ⊕ 1) such that q(t) = 1.
(c) For each x ∈ H 1(S; ZT [w1(η

′)]), there exists a g ∈ π1(�
′) such

that p(g) = x and tgt−1g = φ(x ∪ x).
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(d) If w1(η
′) = 0, then t2 = 1.

(e) If w1(η
′) �= 0, then p(t2) = w̄1 and t2 = y (the element defined

in (3) of Theorem 2.4).

In order to compute the fundamental group of the components of (RP 2)S ,
we will follow the routine described below.

(1) Fix ξ to be the trivial 3-plane bundle over S. Then, we have the bijection
m(S, RP 2; fs) = �(S, P ξ ; sf ) (note that we can apply here Theorem
3 of [9] only if we are dealing with the trivial/constant section; in fact,
we are concerned with splittings arising from generic sections of the
projective bundle)

(2) Let s be a fixed section of Pξ . Then, ξ = s−1τRP 2 ⊕ s−1γ , and ξ ′ =
ξ ⊗ s−1γ = 3s−1γ = s−1τRP 2 ⊕ 1 (again we can not apply Theorem 3
[9], since the splitting of ξ is not with a trivial line bundle).

(3) Since ξ ′ = s−1τRP 2 ⊕ 1, there exists a section of the spherical bundle
s ′ : S → Sξ ′, that covers s, as Sξ covers Pξ .

(4) This means that we can compute π1(�(S, ESξ ′; s ′)), using Theorem 2.4
for the spherical cases (note that we can not use Theorems 1 or 2 of [9],
since ξ ′ is nonorientable).

(5) Next, we can use Theorem 2.5 to compute π1(�(S, EPξ ; s).

Note that the 2-plane bundles η and η′ appearing in the splitting of the
spherical and projective bundle given in Theorems 2.4 and 2.5, are in fact the
same bundle: η′ = η = f −1

s τRP 2. This is the main point in the following
computations.

We conclude this section, by recalling some results about cohomology and
cup product on surfaces. If S is oriented, it is the sum of g tori. Then, we can
assume that there exists a set of generators {a1, b1, . . . , ag, bg} for H 1(S; Z),
satisfying the following rules

ai ∪ bj �=i = ai ∪ aj = bi ∪ bj = 0, ai ∪ bi = �,

where � is a fixed generator for H 2(S; Z). Similarly, if S is nonorientable, it
is a sum of g projective spaces, and we take a set of generators {c1, . . . , cg}
for H 1(S; Z/2), such that

ci ∪ cj �=i = 0, ci ∪ ci = �.

Note that the orientation class is w1(τS) = c1 + · · · + cg .
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3. Nonorientable surfaces

In this section we compute the fundamental group of the different components
of m(S, RP 2) when S is nonorientable. We decompose the result using the
enumeration of the components provided by Proposition 2.1 and we proceed
following the routine presented in Section 2. In all cases, the 2-plane bundle
η = η′ is the pullback bundle s−1τRP 2 of the tangent bundle over RP 2 induced
by a map in the mapping space under study.

In order to state our result, we introduce the following notation. Let Bl,m

be the group with generators γ1, . . . , γl, λ, t and relations

tm = 1,

λ2 = 1,

tγj t
−1γj = λ,

[γj , γk] = [λ, γj ] = [t, λ] = 1.

Then we have the following theorem, where a more precise description of
the group’s generators is given in the course of the proof.

Theorem 3.1. If S is a nonorientable surface homeomorphic to the con-
nected sum of g copies of RP 2, then

π1(m(S, RP 2; f2k+1)) =
{

Zg−1 ⊕ Z/2, if g odd,

Zg−1 ⊕ Z/4, if g even
,

π1(m(S, RP 2; f 1
x )) = Zg−2 ⊕ Z/2 ⊕ Z/2,

π1(m(S, RP 2; f 0
±x)) =

{
Bg−1,2, if x = 0,

Bg−2,4, if x �= 0.

Proof. We split the proof in three parts, corresponding to the decomposi-
tion given in Proposition 2.1.

Part 1. π1(m(S, RP 2; f2k+1)) = π1(�(S, EPξ ; f2k+1)). By Proposition
2.1 and Lemma 2.3, the Euler class is

χ(η′) = χ(η) = d(f2k+1) = 2k + 1 �= 0,

while the first SW class is

w1(η
′) = w1(η) = f ∗

2k+1(w1(τRP 2)) = θ1(w1(τRP 2)) = w1(τS).
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By (2) of Theorem 2.5, since χ(η′) �= 0, we have that

π1(�(S, EPξ ; f2k+1)) = π1(�(S, ESξ ′; f ′
2k+1)),

so we use Theorem 2.4 in order to compute π1(�) = π1(�
′) = π1(�(S, ESξ ′;

f ′
2k+1)). Before, we need the following fact about cup product. For any x ∈

H 1(S; Z/2), we have the commutative diagram

H 1(S; ZT [x]) ⊗ H 1(S; ZT [x]) ∪−−−−−→ H 2(S; Z)

↓ ↓
H 1(S; Z/2) ⊗ H 1(S; Z/2) ∪−−−−−→ H 2(S; Z/2)

where the vertical arrows are reduction mod 2. Since in the present case S is
nonorientable, we have isomorphism H 2(S; Z) = H 2(S; Z/2). So therefore,
we can use mod 2 cohomological cup product in order to find out if some
twisted coefficient cup product is non vanishing.

Since w1(η
′) = w1(τS), and since, by duality H 1(S; ZT [w1(τS)]) =

H1(S; Z), by Theorem 2.4, we have the exact sequence

0 −−→ Z/2[�] φ−−→ π1(�
′) p−−→ Z[c̄1, . . . , c̄g−1] ⊕ Z/2[w̄1(τS)] −−→ 0,

where the bar notation is for the classes in H 1(S; ZT [w1(τS)]) that reduce
modulo 2 to the respective classes in H 1(S; Z/2). See also the remark at page
235 of [9]. In order to find the extension, we start with a set of generators

{γ1, . . . , γg−1, δ, λ},
such that

p(γi) = c̄i ,

p(δ) = w̄1(τS),

λ = φ(�).

Now, by (1) of Theorem 2.4, λ is central. Also, λ2 = φ(2�) = φ(0) = 1.
By (2) of the same theorem, [γj , γk] = [γj , δ] = 0, since the cup product
of each two elements has order 2. This means that the extension is abelian.
Therefore, the only problem is to determine its torsion component. The torsion
can only be Z/2 ⊕ Z/2 or Z/4. By (3) of Theorem 2.4, there exists an element
y ∈ π1(�

′), such that

p(y) = w̄1(τS), y2 = φ(w̄1(τS) ∪ w̄1(τS) + z),

where z ∈ H 2(S; Z) with z mod 2 = w2(η). Since w2(η) = χ(η′) mod 2 =
(2k + 1) mod 2 = 1 �= 0, clearly z = � �= 0. Since, w̄1(τS) mod 2 =
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w1(τS) = c1 + · · · + cg , and w1(τS) ∪ w1(τS) = g�, the above remark
on the twisted cup product implies that w̄1(τS) ∪ w̄1(τS) = g�. Therefore,
y2 = φ(w̄1(τS) ∪ w̄1(τS) + �) = φ((g + 1)�) = λ(g+1) mod 2, depends on
the parity of g.

Note that, since p(y) = w̄1(τS), it follows that y = λ or y = δλ, and in
both cases y2 = δ2. Therefore, up to a change of the generator δ into δλ, we
can always assume y = λ.

We have the two possibilities.

(1) If g is odd, then δ2 = 1, therefore we have two generators of order 2,
and the extension is π1(�) = Z[γ1, . . . , γg−1] ⊕ Z/2[δ, λ].

(2) If g is even, then δ2 = λ. This means that in this case the torsion com-
ponent is Z/4 and π1(�) = Z[γ1, . . . , γg−1] ⊕ Z/4[δ].

Part 2. π1(m(S, RP 2; f 1
x )) = π1(�(S, EPξ ; f 1

x ). Now, the Euler class is
χ(η′) = χ(η) = d(f 1

x ) �= 0, while the first SW class is w1(η
′) = w1(η) =

(f 1
x )∗(w1(τRP 2)) = θ(w1(τRP 2)) = x �= w1(τS), 0, since θ �= θ1, and

since x ∪ x �= 0.
As before, by (2) of Theorem 2.5, since χ(η′) �= 0, we have that

π1(�(S, EPξ ; f 1
x )) = π1(�(S, ESξ ′; (f 1

x )′)),

so we use Theorem 2.4 in order to compute π1(�) = π1(�
′) = π1(�(S, ESξ ′;

(f 1
x )′)). We have the exact sequence

H 0(S; ZT [x]) −−→ H 2(S; Z)
φ−−→ π1(�)

p−−→ H 1(S; ZT [x]) −−→ 0,

that since x �= 0, becomes

0 −−→ Z/2[�] φ−−→ π1(�
′) p−−→ Z[c̄1, . . . , c̄g−2] ⊕ Z/2[x̄] −−→ 0.

The situation is very much the same as in previous Part 1, with the class x̄

instead of w̄1(τS). We take a set of generators

{γ1, . . . , γg−1, δ, λ},
such that

p(γi) = c̄i ,

p(δ) = x̄,

λ = φ(�).

By (1) of Theorem 2.4, λ is central. Also, λ2 = φ(2�) = φ(0) = 1. By (2)
of the same theorem, [γj , γk] = [γj , δ] = 0, since the cup product of each two
elements has order 2. Thus the extension is abelian and the torsion can only be
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Z/2 ⊕ Z/2 or Z/4. By (3) of Theorem 2.4, there exists an element y ∈ π1(�
′),

such that

p(y) = x̄, y2 = φ(x̄ ∪ x̄ + z),

where z = � ∈ H 2(S; Z), since z mod 2 = w2(η), and χ(η) = 1. Also, now
x ∪ x �= 0, and therefore x̄ ∪ x̄ = �, and y2 = φ(2�) = φ(0) = 1. Again,
by changing the generators, we can assume y = δ. Thus, δ2 = 1, i.e. δ is a
generator of order 2, and the extension is π1(�) = Z[γ1, . . . , γg−2]⊕Z/2[δ, λ].

Part 3. π1(m(S, RP 2; f 0±x)) = π1(�(S, EPξ ; f 0±x). Now, we have that
χ(η′) = χ(η) = d(f 0±x) = 0, while w1(η

′) = w1(η) = ((f 0±x)
∗(w1(τRP 2)) =

θ(w1(τRP 2)) = x �= w1(τS), since θ �= θ1. Recall that x ∪ x = 0 in the
present case.

By (2) of Theorem 2.5, since χ(η′) = 0, we have that

π1(�) = π1(�(S, EPξ ; f 1
x )) �= π1(�

′) = π1(�(S, ESξ ′; (f 1
x )′)),

but can be determined using the extension given in Theorem 2.5. We distinguish
between the two cases x = 0, x �= 0.

Case 3.1. x = 0. First, we use Theorem 2.4 in order to compute π1(�
′).

Since x = 0, we have the exact sequence

Z 0−−→ Z/2[�] φ−−→ π1(�
′) p−−→ Z[c̄1, . . . , c̄g−1] −−→ 0.

In order to find the extension, we take the set of generators

{γ1, . . . , γg−1, λ},

such that

p(γi) = ci,

λ = φ(�).

Now, by (1) of Theorem 2.4, λ is central. By (2) of the same theorem,
[γj , γk] = 0. This means that the extension is abelian. Since the unique tor-
sion element is the image of the generator of Z/2, we have that π1(�

′) =
Z[γ1, . . . , γg−1] ⊕ Z/2[λ].
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Second, we use the exact sequence given in Theorem 2.5.

0

↓
Z 0−−→ Z/2[�] φ−−→ Z[γ1, . . . , γg−1] ⊕ Z/2[λ] p−−→ Z[c̄1, . . . , c̄g−1] −−→ 0

↓i

π1(�)

↓q

Z/2

Consider the set of generators

{γ̂1, . . . , γ̂g−1, λ̂, t},
such that

γ̂j = i(γj ),

λ̂ = i(λ),

q(t) = 1.

We have the following facts:

• since w1(η) = x = 0, by (3d) of Theorem 2.5, t2 = 1;

• λ̂2 = i(2λ) = i(0) = 1;

• all the generators γ̂j and λ̂ commute with each others, since they are in
the image of i;

• by (3a) of Theorem 2.5, λ̂ is central, and therefore [λ̂, t] = 1.

• by (3c) of Theorem 2.5, since γ̂j = i(γj ) and p(γj ) = c̄j ,

t γ̂j t γ̂j = iφ(c̄j ∪ c̄j ) = iφ(�) = i(λ) = λ̂.

Thus, we have proved that (where we identify the elements of π1(�
′) with their

images in π1(�))

π1(�) = 〈γ1, . . . , γg−1, λ, t;
[γj , γk] = [γj , λ] = [t, λ] = 1, λ2 = t2 = 1, tγj tγj = λ〉.

Case 3.2. x �= 0. Now by Theorem 2.4, since x �= 0, w1(τS), we have the
exact sequence

0 −−→ Z/2[�] φ−−→ π1(�
′) p−−→ Z[c̄1, . . . , c̄g−2] ⊕ Z/2[x̄] −−→ 0.
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Thus we are precisely in the same situation as in the Part 2, with the unique
difference that here both χ(η) and x ∪ x vanish. Thus, the extension is abelian
and we just need to determine the torsion component. The element y ∈ π1(�

′)
required by (3) of Theorem 2.4 satisfies the conditions

p(y) = x̄, y2 = φ(x̄ ∪ x̄ + z),

with z mod 2 = w2(η) = 0 and x̄ ∪ x̄ = 0. Thus, y2 = φ(0) = 1, and the
extension is π1(�) = Z[γ1, . . . , γg−2] ⊕ Z/2[δ, λ].

Next, we use the exact sequence given in Theorem 2.5.

0

↓
0 −→ Z/2[�] φ−−→ Z[γ1, . . . , γg−2] ⊕ Z/2[δ, λ] p−−→ Z[c̄1, . . . , c̄g−1] ⊕ Z/2[x̄] −→ 0

↓i

π1(�)

↓q

Z/2

Consider the set of generators

{γ̂1, . . . , γ̂g−2, δ̂, λ̂, t},
such that

γ̂j = i(γj ),

δ̂ = i(δ),

λ̂ = i(λ),

q(t) = 1.

We have the following facts:

• since w1(η) = x �= 0, by (3e) of Theorem 2.5, t2 = δ̂;

• δ̂2 = i(2δ) = i(0) = 1, λ̂2 = i(2λ) = i(0) = 1; so t4 = 1;

• all the generators γ̂j , δ̂, and λ̂ commute with each others, since they are
in the image of i;

• by (3a) of Theorem 2.5, λ̂ is central;

• by (3c) of Theorem 2.5, since γ̂j = i(γj ) and p(γj ) = c̄j ,

t γ̂j t
−1γ̂j = iφ(c̄j ∪ c̄j ) = iφ(�) = i(λ) = λ̂.
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Thus, we have proved that

π1(�) = 〈γ1, . . . , γg−2, λ, t;
λ2 = t4 = 1, tγj t

−1γj = λ, [γj , γk] = [γj , λ] = [t, λ] = 1〉.

Remark 3.2. As observed in the introduction, the case of the component
of the identity map of (RP 2)RP 2

can be tackled using a result of [13]. In fact,
by Theorem 4.3 of [13]

π1(m(RP 2, RP 2; id)) = Z/2 × π1(m∗(RP 2, RP 2; id)/SO2),

and by Lemma 4.2 of the same work,

π1(m∗(RP 2, RP 2; id)) = Z × π1(m∗(RP 2, RP 2; id)/SO2).

We will show that π1(m∗(RP 2, RP 2; id)) is cyclic.
Therefore π1(m∗(RP 2, RP 2; id)/SO2) = 0 and π1(m(RP 2, RP 2; id)) =

Z/2. For, starting with the cofiber sequence

in : RP 1 → RP 2 → S2,

we obtain the fibration

in# : m∗(RP 2, RP 2; id) → m∗(RP 1, RP 2; in),

with fiber �2
inRP 2 ∼ �2

0RP 2. Therefore, the associated long homotopy se-
quence reads as

. . . → Z → Z → π1(m∗(RP 2, RP 2; id))

→ π2(RP 2) = Z → π2(RP 2) = Z → ∗,

since m∗(RP 2, RP 2; id) is connected. This proves that π1(m∗(RP 2, RP 2; id))

is at most Z.

4. Oriented surfaces with positive genus

In this section we compute the fundamental group of the different components
of m(S, RP 2) when S is oriented and has genus g > 0. We decompose the
result using the enumeration of the components provided by Proposition 2.1
and we proceed following the routine presented in Section 2. In all cases, the
2-plane bundle η = η′ is the pullback bundle s−1τRP 2 of the tangent bundle
over RP 2 induced by a map in the mapping space under study.
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In order to state our result, we introduce the following notation. Let Dl,m,n

be the group with generators α1, β1, . . . , αl, βl, λ, t and relations

tm = 1,

λn = 1,

tαj t
−1αj = tβj t

−1βj = 1,

[αj , αk] = [βj , βk] = [αj , βk �=j ] = 1,

[αj , λ] = [βj , λ] = [t, λ] = 1,

[αj , βj ] = λ2.

Then we have the following theorem, where a more precise description of
the group’s generators is given in the course of the proof.

Theorem 4.1. If S is an oriented surface homeomorphic to the connected
sum of g ≥ 1 copies of T , then

π1(m(S, RP 2; f2k)) =
{

Dg,1,2k, if k > 0,

Dg,2,∞, if k = 0,

π1(m(S, RP 2; f±x)) = Dg−1,4,∞.

Proof. We split the proof in 2 parts, corresponding to the decomposition
given in Proposition 2.1.

Part 1. π1(m(S, RP 2; f2k)) = π1(�(S, EPξ ; f2k). The Euler class is
χ(η′) = χ(η) = d(f2k) = 2k, while the first SW class is w1(η

′) = w1(η) =
f ∗

2k(w1(τRP 2)) = θ0(w1(τRP 2)) = w1(τS) = 0
We need to distinguish between the two cases χ(η) = 0 or not, i.e. k = 0

or k �= 0.
Case 1.1. k �= 0. By (2) of Theorem 2.5, since χ(η′) �= 0, we have that

π1(�(S, P ξ ; f2k)) = π1(�(S, Sξ ′; f ′
2k)),

so we use Theorem 2.4 in order to compute π1(�) = π1(�
′) = π1(�(S, Sξ ′;

f ′
2k)). We have the exact sequence

H 0(S; ZT [w1(η)]) −→ H 2(S; Z)
φ−−→ π1(�

′) p−−→ H 1(S; ZT [w1(η)]) −→ 0,

Z 2k−−→ Z[�] φ−−→ π1(�
′) p−−→ Z[ā1, b̄1, . . . , āg, b̄g] −−→ 0.

In order to find the extension, we take a set of generators

{α1, β1, . . . , αg, βg, λ},
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such that
p(αi) = āi ,

p(βi) = b̄i ,

λ = φ(�).

Now, by (1) of Theorem 2.4, λ is central. Since 2k� is in the image of the
previous homomorphism, it must be in the kernel of φ, namely φ(2k�) = 1;
as φ(2k�) = λ2k , it follows λ2k = 1. By (2) of the same theorem,

[αi, αj ] = φ(2āi ∪ āj ) = φ(0) = 1,

[βi, βj ] = φ(2b̄i ∪ b̄j ) = φ(0) = 1,

[αi, βj �=i] = φ(2āi ∪ b̄j �=i ) = φ(0) = 1,

[αi, βi] = φ(2āi ∪ b̄i ) = φ(2�) = λ2.

Therefore

π1(�) = 〈α1, β1, . . . , αg, βg, λ; [αj , βj ] = λ2, λ2k = 1

[αj , αk] = [βj , βk] = [αj , βk �=j ] = [αj , λ] = [βj , λ] = 1〉.
Note the extension is the abelian extension when k = 1.
Case 1.2. k = 0. Note that this is the case of the constant map f0 = c0. By

(2) of Theorem 2.5, since χ(η′) = 0, we have that

π1(�) = π1(�(S, P ξ ; f0)) �= π1(�
′) = π1(�(S, Sξ ′; (f0)

′)),

but can be determined using the extension given in the same theorem.
First, we use Theorem 2.4 in order to compute π1(�

′). We are exactly in
the same situation as above in Case 1.1, thus we obtain

π1(�
′) = 〈α1, β1, . . . , αg, βg, λ; [αj , βj ] = λ2, λ2k = 1,

[αj , αk] = [βj , βk] = [αj , βk �=j ] = [αj , λ] = [βj , λ] = 1〉.
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Second, we use the exact sequence given in Theorem 2.5.

0

↓
0 −−→ Z[�] φ−−−→ π1(�

′) p−−−→ Z[ā1, b̄1 . . . , āg, b̄g] −−→ 0

↓i

π1(�)

↓q

Z/2

Consider the set of generators

{α̂1, β̂1, . . . , α̂g, β̂g, λ̂, t},
such that

α̂j = i(αj ),

β̂i = i(βi),

λ̂ = i(λ),

q(t) = 1.

We have the following facts:

• since w1(η) = 0, by (3d) of Theorem 2.5, t2 = 1;

• all the relations of π1(�
′) survive since i is homomorphism;

• by (3a) of Theorem 2.5, λ̂ is central, and therefore [t, λ̂] = 1;

• by (3c) of Theorem 2.5, since the square cup product of each two ele-
ments is 0, we have

t α̂i t α̂i = t β̂i t β̂i = 1.

Thus, we have proved that

π1(�) = 〈α1, β1, . . . , αg, βg, λ, t;
[αj , αk] = [βj , βk] = [αj , βk �=j ] = [αj , λ] = [βj , λ] = [t, λ] = 1,

t2 = 1, [αj , βj ] = λ2, tαj tαj = tβj tβj = 1〉.

Part 2. π1(m(S, RP 2; f±x)) = π1(�(S, EPξ ; f±x). The Euler class is
χ(η′) = χ(η) = d(f±x) = 0, while the first SW class is w1(η

′) = w1(η) =
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f ∗±x(w1(τRP 2)) = θ(w1(τRP 2)) = x �= 0, since θ �= θ0 = 0. By (2) of
Theorem 2.5, since χ(η′) = 0, we have that

π1(�) = π1(�(S, P ξ ; f±x)) �= π1(�
′) = π1(�(S, Sξ ′; (f±x)

′)).

First, we use Theorem 2.4 in order to compute π1(�
′). We have the exact

sequence

H 0(S; ZT [x]) −−→ H 2(S; Z)
φ−−→ π1(�

′) p−−→ H 1(S; ZT [x]) −−→ 0,

0 −−→ Z[�] φ−−→ π1(�
′) p−−→ Z[ā1, b̄1, . . . , āg−1, b̄g−1] ⊕ Z/2[x̄] −−→ 0.

In order to find the extension, we take a set of generators

{α1, β1, . . . , αg−1, βg−1, λ, δ},
such that

p(αi) = āi ,

p(βi) = b̄i ,

p(δ) = x̄,

λ = φ(�).

We have the following facts.

• By (1) of Theorem 2.4, λ = φ(�) is central.

• By (3) of Theorem 2.4, there exists an element y ∈ π1(�
′), such that

p(y) = x̄, y2 = φ(x̄ ∪ x̄ + z),

where z ∈ H 2(S; Z) = Z[�], with z mod 2 = w2(η). Since, w2(η) =
χ(η) mod 2 = 0 mod 2 = 0, we have z = 2n�. Since x̄ ∪ x̄ is in Z and x̄

has order 2, it follows that x̄ ∪ x̄ = 0. Therefore, y2 = φ(2n�) = λ2n.
But p(y) = p(δ), and therefore y = δλk , for some k. This means that
y2 = δ2λ2k (since λ is central), and therefore λ2n = δ2λ2k . Thus, we
have got the relation δ2 = λ2m, and any element of the form δλk can be
chosen as y. Since the group is isomorphic to the one with the unique
relation δ2 = 1, and with the same range of choice for y, we take the last
simpler relation and we set y = δ (the explicit choice of y is necessary
in what follows).

• By (2) of Theorem 2.4,

[αj , δ] = φ(2āj ∪ x̄) = φ(āj ∪ 2̄x) = φ(0) = 1,

[βj , δ] = φ(2b̄j ∪ x̄) = φ(b̄j ∪ 2̄x) = φ(0) = 1,
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since x̄ has order 2. Also

[αj , αk] = φ(2āj ∪ āk) = φ(0) = 1,

[βj , βk] = φ(2b̄j ∪ b̄k) = φ(0) = 1,

[αj , βk �=j ] = φ(2āj ∪ b̄k �=j ) = φ(0) = 1,

[αj , βj ] = φ(2āj ∪ b̄j ) = φ(2�) = λ2.

Therefore

π1(�
′) = 〈α1, β1, . . . , αg−1, βg−1, δ, λ;
[αj , αk] = [βj , βk] = [αj , βk �=j ] = [αj , λ] = [βj , λ] = [δ, λ] = 1,

[αj , βj ] = λ2, δ2 = 1〉.
Note that we have proved that π1(�

′) is the direct sum of Z/2 plus one
extension G of

Z → G → (2g − 2)Z.

Second, we use the exact sequence given in Theorem 2.5.

0

↓
0 −−→ Z[�] φ−−→ π1(�

′) p−−→ Z[ā1, b̄1, . . . , āg−1, b̄g−1] ⊕ Z/2[x̄] −−→ 0

↓i

π1(�)

↓q

Z/2

Consider the set of generators

{α̂1, . . . , α̂g−1, β̂1, . . . , β̂g−1, δ̂, λ̂, t},
such that

α̂j = i(αj ),

β̂j = i(βj ),

λ̂ = i(λ),

δ̂ = i(δ)

q(t) = 1.
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Since i is homomorphism, all the relations of π1(�
′) survive. Since w1(η) =

x �= 0, by (3e) of Theorem 2.5, t2 = i(y) = δ̂, and since δ̂2 = 1, t4 = 1. Also,
by (3a) of the same theorem, λ̂ is central, and this implies that [λ̂, t] = 1. By
(3c) of Theorem 2.5, since all the cup square are trivial,

t α̂j t
−1α̂j = t β̂j t β̂j = 1.

Thus, we have proved that

π1(�) = 〈α1, β1, . . . , αg−1, βg−1, λ, t;
[αj , αk] = [βj , βk] = [αj , βk �=j ] = [αj , λ] = [βj , λ] = [t, λ] = 1,

t4 = 1, [αj , βj ] = λ2, tαj t
−1αj = tβj tβj = 1〉.

5. The 2-sphere

Theorem 5.1.

π1(m(S2, RP 2; f2k)) =
{

Z/2k, if k > 0,

Z ⊕ Z/2, if k = 0.

Proof. By Proposition 2.1, we have

m(S2, RP 2) =
∞⊔

k=0

m(S2, RP 2; f2k),

and
(f2k)∗ = θ0 = 0.

The Euler class is χ(η′) = χ(η) = d(f2k) = 2k, while the first SW class
is w1(η

′) = w1(η) = f ∗
2k(w1(τRP 2)) = θ0(w1(τRP 2)) = w1(τS2) = 0. We

distinguish between the two cases χ(η) = 0 or not.
Case 1. k �= 0. By (2) of Theorem 2.5,

π1(�) = π1(�(S, P ξ ; f2k)) = π1(�(S, Sξ ′; f ′
2k)),

and we have the exact sequence

Z 2k−−→ Z[�] φ−−→ π1(�
′) p−−→ 0 −−→ 0.

Thus, we have π1(�) = Z/2k[λ], where λ = φ(�).
Case 2. k = 0. This is the case of the constant mapf0 = c0. Now, χ(η′) = 0,

so (2) of Theorem 2.5 implies that

π1(�) = π1(�(S, P ξ ; f0)) �= π1(�
′) = π1(�(S, Sξ ′; (f0)

′)).
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By Theorem 2.4, we have the exact sequence

Z 0−−→ Z[�] φ−−→ π ′
1

p−−→ 0 −−→ 0.

Thus, π1(�
′) = Z[λ], with φ(�) = λ. By Theorem 2.5, we have the exact

sequence
0

↓
0 −−→ Z[λ] φ−−−→ Z[�] p−−−→ 0 −−→ 0

↓i

π1(�)

↓q

Z/2

Consider the set of generators {λ̂, t}, λ̂ = i(λ), and q(t) = 1. Since w1(η) = 0,
by (3e) of Theorem 2.5, t2 = 1. Also, all the relations of π1(�

′) survive. Thus
the extension is abelian. And because of the previous relation, it is

π1(�) = Z[λ] ⊕ Z/2[t].

Remark 5.2. It is worthwhile to mention that all the results above in the
case where θ is the trivial homomorphism follows from a stronger result,
based on a very simple observation. In fact, the natural map m(S, S2; fk) →
m(S, RP 2; f|2k|), obtained by composing with the projection S2 → RP 2, is a
homeomorphism for S orientable and (f|2k|)∗ = θ = θ0. A similar statement
is true for S nonorientable. Namely the maps m(S, S2; f0) → m(S, RP 2; f 0

0 )

and m(S, S2; f−0) → m(S, RP 2; f 0−0) obtained by composing with the pro-
jection S2 → RP 2, are double coverings for S nonorientable, since again
(f 0±0)∗ = θ0; here, f0 is the constant map and f−0 is a non null homotopic
map from S to S2. Hence, all the results from [7] can be applied to describe
the homotopy type of these components of the spaces m(S, RP 2). It is easy to
see that this is compatible with our calculation.
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