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INEQUALITIES FOR PRODUCTS OF POLYNOMIALS I

I. E. PRITSKER and S. RUSCHEWEYH∗

Abstract
We study inequalities connecting the product of uniform norms of polynomials with the norm of
their product. This circle of problems include the Gelfond-Mahler inequality for the unit disk and
the Kneser-Borwein inequality for the segment [−1, 1]. Furthermore, the asymptotically sharp
constants are known for such inequalities over arbitrary compact sets in the complex plane. It is
shown here that this best constant is smallest (namely: 2) for a disk. We also conjecture that it
takes its largest value for a segment, among all compact connected sets in the plane.

1. The problem and its history

Let E be a compact set in the complex plane C. For a function f : E → C
define the uniform (sup) norm as follows:

‖f ‖E = sup
z∈E

|f (z)|.

Clearly ‖f1f2‖E ≤ ‖f1‖E ‖f2‖E , but this inequality is not reversible, in gen-
eral, not even with a constant factor in front of the right hand side. Indeed,
‖f1‖E ‖f2‖E ≤ C ‖f1f2‖E does not hold for functions with disjoint sup-
ports in E, for example. However, the situation is quite different for algebraic
polynomials {pk(z)}mk=1 and their product p(z) := ∏m

k=1 pk(z). Polynomial
inequalities of the form

(1.1)

m∏
k=1

‖pk‖E ≤ C‖p‖E,

exist and are readily available. One of the first results in this direction is due to
Kneser [19], for E = [−1, 1] and m = 2 (see also Aumann [1]), who proved
that
(1.2)

‖p1‖[−1,1]‖p2‖[−1,1] ≤ K�,n‖p1p2‖[−1,1], deg p1 = �, deg p2 = n − �,
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where

(1.3) K�,n := 2n−1
�∏

k=1

(
1 + cos

2k − 1

2n
π

) n−�∏
k=1

(
1 + cos

2k − 1

2n
π

)
.

Note that equality holds in (1.2) for the Chebyshev polynomial

t (z) = cos n arccos z = p1(z)p2(z),

with a proper choice of the factors p1(z) and p2(z). P. B. Borwein [7] gener-
alized this to the multifactor inequality

(1.4)

m∏
k=1

‖pk‖[−1,1] ≤ 2n−1

[ n
2 ]∏

k=1

(
1 + cos

2k − 1

2n
π

)2

‖p‖[−1,1].

He also showed that

(1.5) 2n−1

[ n
2 ]∏

k=1

(
1 + cos

2k − 1

2n
π

)2

∼ (3.20991 . . .)n as n → ∞.

A different version of inequality (1.1) for E = D, where D := {w : |w| ≤
1} is the closed unit disk, was considered by Gelfond [15, p. 135] in connection
with the theory of transcendental numbers:

(1.6)

m∏
k=1

‖pk‖D ≤ en‖p‖D.

The latter inequality was improved by Mahler [23], who replaced e by 2:

(1.7)

m∏
k=1

‖pk‖D ≤ 2n‖p‖D.

It is easy to see that the base 2 cannot be decreased, if m = n and n → ∞.
However, (1.7) has recently been further improved in two directions. D. W.
Boyd [9], [10] showed that, given the number of factors m in (1.7), one has

(1.8)

m∏
k=1

‖pk‖D ≤ (Cm)n‖p‖D,

where

(1.9) Cm := exp

(
m

π

∫ π/m

0
log

(
2 cos

t

2

)
dt

)
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is asymptotically best possible for each fixed m, as n → ∞. Kroó and Pritsker
[20] showed that, for any m ≤ n,

(1.10)

m∏
k=1

‖pk‖D ≤ 2n−1‖p‖D,

where equality holds in (1.10) for each n ∈ N, with m = n and p(z) = zn −1.
Inequalities (1.2)–(1.10) clearly indicate that the constant C in (1.1) grows

exponentially fast with n, with the base for the exponential depending on the
set E. A natural general problem arising here is to find the smallest constant
ME > 0, such that

(1.11)

m∏
k=1

‖pk‖E ≤ Mn
E‖p‖E

for arbitrary algebraic polynomials {pk(z)}mk=1 with complex coefficients,
where p(z) = ∏m

k=1 pk(z) and n = deg p. The solution of this problem is
based on the logarithmic potential theory (cf. [36] and [35]). Let cap(E) be
the logarithmic capacity of a compact set E ⊂ C. For E with cap(E) > 0,
denote the equilibrium measure of E by μE . We remark that μE is a positive
unit Borel measure supported on ∂E (see [36, p. 55]). Define

(1.12) dE(z) := max
t∈E

|z − t |, z ∈ C,

which is clearly a positive and continuous function in C. It is easy to see that
the logarithm of this distance function is subharmonic in C. Furthermore, it
has the following integral representation

log dE(z) =
∫

log |z − t |dσE(t), z ∈ C,

where σE is a positive unit Borel measure in C with unbounded support, see
Lemma 5.1 of [31] and [22]. For further in-depth analysis of the representing
measure σE , we refer to the recent paper of Gardiner and Netuka [14]. This
integral representation is the key fact used by the first author to prove the
following result [31].

Theorem 1.1. Let E ⊂ C be a compact set, cap(E) > 0. Then the best
constant ME in (1.11) is given by

(1.13) ME =
exp

(∫
log dE(z)dμE(z)

)

cap(E)
.
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Theorem 1.1 is applicable to any compact set with a connected component
consisting of more than one point (cf. [36, p. 56]). In particular, if E is a
continuum, i.e., a connected set, then we obtain a simple universal bound for
ME [31]:

Corollary 1.2. Let E ⊂ C be a bounded continuum (not a single point).
Then we have

(1.14) ME ≤ diam(E)

cap(E)
≤ 4,

where diam(E) is the Euclidean diameter of the set E.

On the other hand, for non-connected sets E the constants ME can be arbit-
rarily large. For example, consider Ek = [−√

k + 4, −√
k] ∪ [

√
k,

√
k + 4],

so that cap(Ek) = 1 [35] and

ME = exp

(∫
log dEk

(z) dμEk
(z)

)
≥ elog(2

√
k) → ∞ as k → ∞.

For the closed unit disk D, we have that cap(D) = 1 [36, p. 84] and that

(1.15) dμD = dθ

2π
,

where dθ is the arclength on ∂D. Thus Theorem 1.1 yields
(1.16)

MD = exp

(
1

2π

∫ 2π

0
log dD(eiθ ) dθ

)
= exp

(
1

2π

∫ 2π

0
log 2 dθ

)
= 2,

so that we immediately obtain Mahler’s inequality (1.7).
If E = [−1, 1] then cap([−1, 1]) = 1/2 and

(1.17) dμ[−1,1] = dx

π
√

1 − x2
, x ∈ [−1, 1],

which is the Chebyshev (or arcsin) distribution (see [36, p. 84]). Using The-
orem 1.1, we obtain
(1.18)

M[−1,1] = 2 exp

(
1

π

∫ 1

−1

log d[−1,1](x)√
1 − x2

dx

)
= 2 exp

(
2

π

∫ 1

0

log(1 + x)√
1 − x2

dx

)

= 2 exp

(
2

π

∫ π/2

0
log(1 + sin t)dt

)
≈ 3.2099123,

which gives the asymptotic version of Borwein’s inequality (1.4)–(1.5).



inequalities for products of polynomials i 151

Considering the above analysis of Theorem 1.1, it is natural to conjecture
that the sharp universal bounds for ME are given by

(1.19) 2 = MD ≤ ME ≤ M[−1,1] ≈ 3.2099123,

for any bounded non-degenerate continuum E, see [33].
It follows directly from the definition that ME is invariant with respect to

the similarity transformations of the plane. Thus we can normalize the problem
by setting cap(E) = 1. Thus, equivalently, we want to find the maximum and
the minimum of the functional

(1.20) τ (E) :=
∫

log dE(z)dμE(z)

over all compact connected sets E in the plane satisfying the above normal-
ization. These questions are addressed in Section 2 of the paper. Section 3
discusses a more refined version of our problem on the best constant in (1.1).
All proofs are given in Section 4.

In the forthcoming paper [34], we consider various improved bounds of the
constant ME , e.g., bounds for rotationally symmetric sets. From a different
perspective, the results of Boyd (1.8)–(1.9) suggest that for some sets the
constant ME can be replaced by a smaller one, if the number of factors is
fixed. We characterize such sets in [34], and find the improved constant.

The problems considered in this paper have many applications in analysis,
number theory and computational mathematics. We mention specifically ap-
plications in transcendence theory (see Gelfond [15]), and in designing al-
gorithms for factoring polynomials (see Boyd [11] and Landau [21]). A sur-
vey of the results involving norms different from the sup norm (e.g., Bombieri
norms) can be found in [11]. For polynomials in several variables, see the
results of Mahler [24] for the polydisk, of Avanissian and Mignotte [2] for the
unit ball in Ck . Also, see Beauzamy and Enflo [5], and Beauzamy, Bombieri,
Enflo and Montgomery [4] for multivariate polynomials in different norms.

Acknowledgements. The authors wish to express their gratitude to
Richard Laugesen for several helpful discussions about these problems.
Alexander Solynin communicated to the first author a sketch of proof for the
inequality ME ≥ 2 for connected sets. We would like to thank him for the
kind permission to use his argument in the proof of Theorem 2.5. This paper
was written while the first author was visiting the University of Würzburg as
a Humboldt Foundation Fellow. He would like to thank the Department of
Mathematics and the Function Theory research group for their hospitality.
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2. Sharp bounds for the constant ME

We study bounds for the constant ME in this section, where E ⊂ C is a
compact set satisfying cap(E) > 0. Our main goal here is to prove (1.19). It
is convenient to first give some general observations on the properties of ME .

Theorem 2.1. Let I ⊂ E be compact sets in C, cap(I ) > 0. Denote the
unbounded components of C\E and C\I by �E and �I . If dE(z) = dI (z) for
all z ∈ ∂�I then ME ≤ MI , with equality holding only when cap(�I \�E) =
0.

This theorem gives several interesting consequences. In particular, we show
that if the set E is contained in a disk whose diameter coincides with the
diameter of E then its constant ME does not exceed that of a segment. Thus
segments indeed maximize ME among such sets. Denote the closed disk of
radius r centered at z by D(z, r).

Corollary 2.2. Let z, w ∈ E satisfy diam E = |z − w| and [z, w] ⊂ E.
If E ⊂ D

(
z+w

2 , diam E
2

)
then ME ≤ M[z,w] = M[−2,2].

The next result shows that the constant decreases when the set is enlarged
in a certain way.

Corollary 2.3. Let E∗ := ⋂
z∈∂�E

D(z, dE(z)), where E ⊂ C is compact,
cap(E) > 0. If H is a compact set such that E ⊂ H ⊂ E∗, then MH ≤ ME .
Equality holds if and only if cap(�E \ �H) = 0.

Let conv(H) be the convex hull of H . The operation of taking the convex
hull of a set satisfies the assumption of Corollary 2.3 (or Theorem 2.1), which
gives

Corollary 2.4. Let V ⊂ C be a compact set, cap(V ) > 0. If H := C\�V

is not convex, then Mconv(H) < MH .

The above results help us to show that the minimum of ME is attained
for the closed unit disk D, among all sets of positive capacity (connected or
otherwise).

Theorem 2.5. Let E ⊂ C be an arbitrary compact set, cap(E) > 0. Then
ME ≥ 2, where equality holds if and only if C \ �E is a closed disk.

In other words, ME = 2 only for sets whose polynomial convex hull is
a disk. This may also be described by saying that ME = 2 if and only if
∂U ⊂ E ⊂ U , where U is a closed disk.

Proving that the maximum of ME for arbitrary continua is attained for a
segment is a more difficult problem. In fact, it is related to some old open
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problems on the moments of the equilibrium measure (or circular means of
conformal maps), see Pólya and Schiffer [27], and Pommerenke [28]. In par-
ticular, we use the results of [27] and [28] to show that

Theorem 2.6. Let E ⊂ C be a connected compact set, cap(E) > 0.
(i) If the center of mass c := ∫

z dμE(z) for μE belongs to E, then

(2.1) ME < 2 + 4.02/π ≈ 3.279606.

(ii) If E is convex then

(2.2) ME < 2 + 4/π ≈ 3.27324.

This should be compared with M[−2,2] = M[−1,1] ≈ 3.2099123.
After this paper had been written, a new related manuscript [3] appeared.

That manuscript contains a proof of our conjecture ME ≤ M[−2,2] for cent-
rally symmetric continua, as well as another quite general conjecture (if true)
implying ME ≤ M[−2,2] holds for all continua.

3. Refined problem

The constant ME represents the base of rather crude exponential asymptotic
for the constant in inequality (1.1). A more refined question is to find the sharp
constant attained with equality. Such constants are known in the case of a
segment, see (1.4) and [7]; and in the case of a disk, see (1.10) and [20]. Let
E be any compact set in the plane, and let

∏m
k=1 pk(z) = ∏n

j=1(z− zj ), where
pk(z) are arbitrary monic polynomials with complex coefficients. Define the
constant

(3.1) CE(n) := sup
pk

m∏
k=1

‖pk‖E

∥∥∥∥
m∏

k=1

pk

∥∥∥∥
E

= sup
zj ∈C

n∏
j=1

‖z − zj‖E

∥∥∥∥
n∏

j=1

(z − zj )

∥∥∥∥
E

.

If cap(E) > 0 then it follows from Theorem 1.1 that 1 ≤ CE(n) ≤ Mn
E . The

refined version of our conjecture in (1.19) is as follows:
(3.2)

2n−1 = CD(n) ≤ CE(n) ≤ C[−2,2](n) = 2n−1
[n/2]∏
k=1

(
1 + cos

2k − 1

2n
π

)2

for any connected compact set E of positive capacity.



154 i. e. pritsker and s. ruscheweyh

4. Proofs

Proof of Theorem 2.1. Since I ⊂ E, we have that cap(E) ≥ cap(I ) > 0.
Let gE(z, ∞) and gI (z, ∞) be the Green’s functions for �E and �I , with
poles in infinity. We follow the standard convention by setting gE(z, ∞) = 0,
z �∈ �E and gI (z, ∞) = 0, z �∈ �I . It follows from the maximum principle
that gE(z, ∞) ≤ gI (z, ∞) for all z ∈ C. Furthermore, this inequality is strict
in �E , unless cap(�I \ �E) = 0.

Using the integral representation for dE(z) from Lemma 5.1 of [31] (see
also [22] and [14]) and the Fubini theorem, we obtain that

log ME =
∫

log dE(z) dμE(z) − log cap(E)

=
∫∫

log |z − t | dσE(t) dμE(z) − log cap(E)

=
∫ (∫

log |z − t | dμE(z) − log cap(E)

)
dσE(t)

=
∫

gE(t, ∞) dσE(t),

where the last equality follows from the well known identity gE(t, ∞) =∫
log |z − t | dμE(z) − log cap(E) [35]. It is clear that

∫
gE(t, ∞) dσE(t) ≤

∫
gI (t, ∞) dσE(t),

with equality possible if and only if cap(�I \ �E) = 0. Indeed, if we have
equality in the above inequality, thengE(z, ∞) = gI (z, ∞) for all z ∈ supp σE .
But supp σE is unbounded, so that gE(z, ∞) = gI (z, ∞) in �E by the max-
imum principle. Hence we obtain that

log ME ≤
∫

gI (t, ∞) dσE(t)

=
∫ (∫

log |z − t | dμI (z) − log cap(I )

)
dσE(t)

=
∫

log dE(z) dμI (z) − log cap(I )

=
∫

log dI (z) dμI (z) − log cap(I ) = log MI,

with equality if and only if cap(�I \ �E) = 0. Note that we used supp μI ⊂
∂�I , so that dE(z) = dI (z) for z ∈ supp μI .
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Proof of Corollary 2.2. Let I = [z, w] be the segment connecting the
points z and w, i.e., the common diameter of E and the disk containing it.
Observe that we have dE(t) = dI (t) for all t ∈ ∂�I = I under the stated
geometric conditions. Since all assumptions of Theorem 2.1 are satisfied, we
obtain that ME ≤ M[z,w] = M[−2,2], where the last equality follows from the
invariance with respect to the similarity transformations of the plane.

Proof of Corollary 2.3. Observe that E ⊂ D(z, dE(z)) for any z ∈ C.
Hence E ⊂ E∗. Since E ⊂ H ⊂ E∗, we immediately obtain that dE(z) ≤
dH (z) ≤ dE∗(z), z ∈ C. On the other hand, the definition of E∗ gives that
dE(z) = dE∗(z) for all z ∈ ∂�E . Therefore dE(z) = dH (z) for all z ∈ ∂�E ,
and the result follows from Theorem 2.1.

Proof of Corollary 2.4. We apply Theorem 2.1 again, with I = H and
E = conv(H). It was shown in [22] that dH (z) = dconv(H)(z) for all z ∈ C,
where H is an arbitrary compact set. Since H is not convex in our case, we
obtain that cap(�I \ �E) > 0 and ME < MI .

For the proof of Theorem 2.5 we need a special case of the following lemma,
which may be of some independent interest. Let 	 := {w : |w| > 1}, and
D := {z : |z| < 1} the unit disk.

Lemma 4.1. Let 
 be a Jordan domain and let �(z) := cw +∑∞
k=0 akw

−k

be a conformal map of 	 onto �
 . Furthermore assume that

(4.1) ∀x, z ∈ ∂	 : |�(z) − �(x)| ≤ |�(z) − �(−z)|.
Then 
 is a disk.

Proof. First note that by Carathéodory’s theorem [30, p. 18] � extends to
a homeomorphism of 	, so that (4.1) makes sense. Also there is no loss of
generality in assuming 0 ∈ 
, so that �(z) �= 0 in 	. Let

g(z) := 1

�(1/z)
, z ∈ D.

Then g(z) = z/c + ∑∞
k=2 bkz

k is a homeomorphism of D onto the closure of
the Jordan domain 
∗, the interior domain of the Jordan curve 1/∂
. Note that
g(0) = 0, g′(0) = 1/c �= 0.

Let 1/z ∈ ∂D, and in (4.1) we replace 1/x ∈ ∂D by −1/xz which is also
in ∂D. Condition (4.1) then becomes

1 ≥
∣∣∣∣∣

1
g(z)

− 1
g(−xz)

1
g(z)

− 1
g(−z)

∣∣∣∣∣ =
∣∣∣∣xg(−z)

g(−xz)

g(−xz) − g(z)

g(−z) − g(z)

∣∣∣∣ , x, z ∈ ∂D.
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Note that the function

F(x, z) := xg(−z)

g(−xz)

g(−xz) − g(z)

g(−z) − g(z)

is analytic in (x, z) ∈ D2, and by the maximum principle, applied to both
variables separately, we find that

|F(x, z)| ≤ 1, x, z ∈ D.

Now fix z0 with 0 < |z0| < 1. Then x �→ F(x, z0) is analytic in D, satisfies
|F(x, z0)| ≤ 1 for x ∈ D, and, in addition, F(1, z0) = 1. The Julia-Wolf
Lemma [30, p. 82] then says that F ′(1, z0) > 0, or

1 + −z0g
′(−z0)

g(−z0)

g(z0)

g(−z0) − g(z0)
> 0.

Obviously this must be true for any z0, and so, by the identity principle, we
are left with the relation

−zg′(−z)

g(−z)

g(z)

g(−z) − g(z)
≡ α, z ∈ D,

where α > −1 is some real constant. Letting z → 0, we find α = − 1
2 . Hence

we are left with the difference-differential equation

(4.2)
zg′(z)
g(z)

g(−z)

g(−z) − g(z)
= 1

2
, z ∈ D.

In terms of � this reads

2w� ′(w) = �(w) − �(−w), w ∈ �
.

From this we conclude that w� ′(w) is an odd function, which, in turn, implies
that (w) := �(w) − a0 is odd as well. For  we then get the equation
w′(w) = (w), or (w) = cw. This implies �(w) = cw+a0 and therefore
that 
 is a disk.

Proof of Theorem 2.5. Note that for any compact set E, we have ME =
MW , where W := C \ �E . This follows because μE = μW [35] and dE(z) =
dW(z), z ∈ C. Corollary 2.4 now implies that

inf{ME : E is compact} = inf{MH : H is convex and compact}.
Hence we can assume that E is convex from the start. We also set cap(E) = 1,
because ME is invariant under similarity transforms. Thus ∂E is a rectifiable
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Jordan curve (or a segment when E = ∂E). The following argument that
shows ME ≥ 2 for all connected sets is due to A. Solynin. Let � : 	 → �E

be the standard conformal map:

�(w) = w + a0 +
∞∑

k=1

ak

wk
, w ∈ 	.

Recall that � can be extended as a homeomorphism of 	 onto �E , with
�(T) = ∂E, T := ∂	. It is clear that

dE(�(eit )) ≥ |�(eit ) − �(−eit )|, t ∈ [0, 2π).

Since �(w) is univalent in 	, the function

H(w) := �(w) − �(−w)

w

is analytic and non-vanishing in 	, including w = ∞. Furthermore, H(∞) :=
lim

w→∞ H(w) = 2. It follows that h(w) := log |H(w)| is harmonic in 	. Recall

that the equilibrium measure μE is the harmonic measure of �E at ∞, which
is invariant under the conformal transformation �, see [35]. Hence

log ME =
∫

log dE(z) dμE(z) = 1

2π

∫ 2π

0
log dE(�(eit )) dt

≥ 1

2π

∫ 2π

0
log

∣∣∣∣�(eit ) − �(−eit )

eit

∣∣∣∣ dt = log 2,

where we used the Mean Value Theorem for h(w) on the last step. Thus we
conclude that ME ≥ 2 = MD holds for all compact sets E.

Recall that ME = MW , where W = C \ �E . If ME = 2 then MW = 2, so
that W must be convex by Corollary 2.4. Since MW > 3.2 for any segment, we
have that W is the closure of a convex domain. We can assume that cap(W) = 1
after a dilation. Repeating the above argument for W instead of E, we obtain
that

log 2 = log MW = 1

2π

∫ 2π

0
log dW(�(eit )) dt

≥ 1

2π

∫ 2π

0
log

∣∣�(eit ) − �(−eit )
∣∣ dt = log 2.

It follows that∫ 2π

0

(
log dW(�(eit )) − log

∣∣�(eit ) − �(−eit )
∣∣) dt = 0,
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and that dW(�(eit )) = ∣∣�(eit ) − �(−eit )
∣∣ a.e. on [0, 2π). But these functions

are clearly continuous, so that

dW(�(eit )) = ∣∣�(eit ) − �(−eit )
∣∣ ∀t ∈ R.

An application of Lemma 4.1 with 
 the interior domain of W shows that
W must be a disk. We would also like to mention that A. Solynin obtained a
different proof of the fact that ME = 2 for a connected set E implies W is a
disk.

Proof of Theorem 2.6. Recall that ME is invariant under similarity trans-
formations. Hence we can assume again that cap(E) = 1 and

∫
z dμE(z) = 0.

The latter condition means that the center of mass for the equilibrium measure
is at the origin. If we introduce the conformal map � : 	 → �E , as in the
previous proof, then this condition translates into a0 = 0, i.e.,

�(w) = w +
∞∑

k=1

ak

wk
, w ∈ 	.

Theorem 1.4 of [29, p. 19] gives that E ⊂ D(0, 2), so that dE(z) ≤ 2 + |z|,
z ∈ E, by the triangle inequality. Note that this is sharp for E = [−2, 2].
Applying Jensen’s inequality, we have

log ME =
∫

log dE(z) dμE(z) ≤
∫

log(2 + |z|) dμE(z)

< log

(
2 +

∫
|z| dμE(z)

)
.

Estimates (2.1) and (2.2) now follow from the results of Pommerenke [28],
and of Pólya and Schiffer [27], who estimated the integral

∫
|z| dμE(z) = 1

2π

∫ 2π

0
|�(eit )| dt < 4.02/π (or ≤ 4/π),

under the corresponding assumptions.
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