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A NOTE ON IRRATIONALITY MEASURES

JAROSLAV HANČL and JAN ŠTĚPNIČKA∗

Abstract

The paper deals with lower estimates for the irrationality measure of the sum of a special series.
The result depends only on the form of convergence and does not make use of divisibility properties
of integers or any algebraic identities.

1. Introduction

Let a and b be positive integers with b ≤ a such that a and b are coprime. Also
let {fn}∞n=1 denote the Fibonacci sequence and let {ln}∞n=1 denote the Lucas
sequence. Matala-Aho and Prévost [3] found interesting results concerning
the irrationality measures of the sums of the series

∑∞
n=1

1
fan+b

and
∑∞

n=1
1

lan+b
.

Results concerning lower bounds for the irrationality measure of the sum of
an infinite series whose terms are rational numbers appear also in Duverney
[1] or Hančl and Filip [2] for instance. Recently Sondow [4] has given a new
estimate for the irrationality measure of the number e. In the sequel, for a real
number x we will use [x] to denote the greatest integer less than or equal x.

We prove the following.

Proposition 1. Let x
2+4(eπ −1)

(eπ −1) > 3. Then the sum of the series

∞∑
n=1

1[
2x(3+sin log n)n

]

has irrationality measure greater or equal to x
2+4(eπ −1)

(eπ −1) − 1 > x4 − 1.

It is unclear to the authors if there exists a sequence {an}∞n=1 of positive

integers with lim supn→∞ a
1

3n

n = 1 such that for every sequence of positive
integers {cn}∞n=1 the sum of the series

∑∞
n=1

1
ancn

has irrationality measure
greater than 2.
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2. Main results

The following theorem is used in the estimation of irrationality measures of
series for which the terms have large denominators.

Theorem 1. Let α, β, γ , ν and m be real numbers such that 0 < γ ,
0 ≤ ν < 1, 0 < β < α < log2

(
m

1−ν
+ 1

)
and 2 ≤ m. Let n0 be a positive

integer. Assume that {an}∞n=1 and {bn}∞n=1 are sequences of positive integers,
with {an}∞n=n0

increasing, such that for every n ≥ n0

(1) bn < aν
n logγ

2 an

and

(2) an > 2n.

Suppose that there exists positive real number k with

(3) k <
(α − β)

log2

(
m

1−ν
+ 1

) − α

such that for infinitely many n

(4) an < 22βn

and

(5) an+[kn] > 22α(n+[kn])
.

Then the number
∑∞

n=1
bn

an
is irrational and its irrationality measure is greater

than or equal to m.

Example 2.1. As an immediate consequence of Theorem 1 we obtain that
the sum of the series ∞∑

n=1

21010n−1 + 3

2[10(10+|cos log n|)n] + 5

has irrationality measure greater or equal to 9
10

(
10

1+11(eπ/2−1)

(eπ/2−1) − 1
)

> 9 · 1010.

If the numerators of the terms of the series are not large then we can use
the following corollary to estimate the measure of irrationality.

Corollary 1. Let α, β, γ and m be real numbers with 0 < β < α < 1,
0 < γ and 2 ≤ m. Let n0 be a positive integer. Assume that {an}∞n=1 and
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{bn}∞n=1 are sequences of positive integers, with {an}∞n=n0
is increasing, such

that for every n ≥ n0
bn < logγ

2 an

and
an > 2n.

Suppose that there exists a positive real number k with

k <
(α − β)

1 − α

such that for infinitely many n

an < 2(m+1)βn

and an+[kn] > 2(m+1)α(n+[kn])
.

Then the number
∑∞

n=1
bn

an
is irrational and its irrationality measure is greater

than or equal to m.

Example 2.2. As an immediate consequence of Corollary 1 we obtain that
the sum of the series ∞∑

n=1

1[
210(10+cos log n)n

]

has irrationality measure greater or equal to 10
2+11(eπ −1)

(eπ −1) − 1 > 1011.

3. Proofs

Proof of Theorem 1. Assume that δ is a sufficiently small positive real
number. Set M = m − 2δ(1 − ν). Let N = N(δ) be a positive integer greater
than n0, satisfying (4), (5). Also assume N is large enough to ensure that the

function logγ

2 x

x1−ν is decreasing for x > aN , that

(6) aN
N ≥

N∏
n=1

an

that for every R ≥ N

(7)
∑

log2 aR<n

nγ

2n(1−ν)
≤ log1+γ

2 aR

a1−ν
R

and

(8)
2 log1+γ

2 aR

a

δ2

M2 (1−ν)3

(1+ δ
M

(1−ν))
2

R

< 1
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and that

(9)
(α − β)

log2

(
m

1−ν
+ 1

) − α
<

(α − β) − log2 N

N

log2

(
m

1−ν
+ 1 − δ

) − α
.

Observe that we can suppose (6) is true because from (2) we know that we
have limn→∞ an = ∞ and from the fact that {an}∞n=n0

is increasing and the fact
that n0 < N we obtain that an0 ≤ aN ≤ aN+1 ≤ · · ·.

Note that for each δ there are infinitely many N with the properties (4)–(9),

N > n0 and with the fact that the function logγ

2 x

x1−ν is decreasing for x > aN . Fix

N and let us define the finite sequence {ct }N+[kN ]
t=N as follows

ct =
⎧⎨
⎩

at
t , if t = N

a

1

( M
1−ν

+1+δ)
t−N

t , if t = N + 1, N + 2, . . . , N + [kN ].

Set

(10) cT = max
t=N,N+1,...,N+[kN]

ct .

Note that T = T (N). If cT = cN then from (4) and (5) we obtain that

2N2βN

> aN
N = cN ≥ cN+[kN] = a

1

( M
1−ν

+1+δ)
[kN ]

N+[kN]

> 2
2α(N+[kN ])

( M
1−ν

+1+δ)
[kN ] = 22α(N+[kN ])−[kN ] log2( M

1−ν
+1+δ)

.

Applying log2 twice to the above inequality we get

log2 N + βN > α(N + [kN ]) − [kN ] log2

(
M

1 − ν
+ 1 + δ

)
.

Thus

− log2 N

N
+ (α − β) <

[kN ]

N

(
log2

(
M

1 − ν
+ 1 + δ

)
− α

)

= [kN ]

N

(
log2

(
m

1 − ν
+ 1 − δ

)
− α

)

< k ·
(

log2

(
m

1 − ν
+ 1 − δ

)
− α

)
.
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Hence
(α − β) − log2 N

N

log2

(
m

1−ν
+ 1 − δ

) − α
< k.

This and (9) are in contradiction to (3). Therefore cT �= cN and

cT ≥ max
j=N,N+1,...,T −1

cj .

From this and from the fact that the sequence {an}∞n=n0
is increasing we obtain

that

(11)

aT ≥ (
max

j=N,N+1,...,T −1
cj

)( M
1−ν

+1+δ)
T −N

>

T −1∏
i=N

(
max

j=N,N+1,...,T −1
cj

)( M
1−ν

+δ)·( M
1−ν

+1+δ)
i−N

where the second inequality comes from the fact that
(

M
1−ν

+ 1 + δ
)T −N

(
M

1−ν
+ 1 + δ

) − 1
>

(
M

1−ν
+ 1 + δ

)T −N − 1(
M

1−ν
+ 1 + δ

) − 1
=

(
M

1 − ν
+ 1 + δ

)T −N−1

+
(

M

1 − ν
+ 1 + δ

)T −N−2

+ · · · + 1.

Because {an}∞n=n0
is increasing, N is large and greater than n0 and inequalities

(6) and (11) yield

aT >

(T −1∏
i=N

(
max

j=N,N+1,...,T −1
cj

)( M
1−ν

+1+δ)
i−N

) M
1−ν

+δ

≥
(T −1∏

i=N

c
( M

1−ν
+1+δ)

i−N

i

) M
1−ν

+δ

=
(

aN
N

T −1∏
i=N+1

ai

) M
1−ν

+δ

≥
(T −1∏

i=1

ai

) M
1−ν

+δ

.

This implies that

(12) a1−ν
T =

(
a

1+ δ
M

(1−ν)

1+ δ
M

(1−ν)

T

)1−ν

= a

1−ν

1+ δ
M

(1−ν)

T · a
δ
M

(1−ν)2

1+ δ
M

(1−ν)

T > a

δ
M

(1−ν)2

1+ δ
M

(1−ν)

T ·
(T −1∏

i=1

ai

)M

.

Now we will prove that

(13)

∞∑
n=T

bn

an

<
2 log1+γ

2 aT

a1−ν
T

.
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From (1), (2), (7), the fact that {an}∞n=n0
is an increasing sequence of positive

integers (thus an0 ≤ aN ≤ aT −1 ≤ aT ≤ · · ·) and the fact that the function
logγ

2 x

x1−ν is decreasing for x > aT we obtain that

∞∑
n=T

bn

an

<

∞∑
n=T

logγ

2 an

a1−ν
n

=
∑

T ≤n≤log2 aT

logγ

2 an

a1−ν
n

+
∑

log2 aT <n

logγ

2 an

a1−ν
n

<
log1+γ

2 aT

a1−ν
T

+
∑

log2 aT <n

logγ

2 an

a1−ν
n

<
log1+γ

2 aT

a1−ν
T

+
∑

log2 aT <n

nγ

2n(1−ν)

≤ 2 log1+γ

2 aT

a1−ν
T

.

Thus (13) holds. Now inequalities (12) and (13) imply that
(14)∣∣∣∣

∞∑
n=1

bn

an

−
T −1∑
n=1

bn

an

∣∣∣∣ =
∣∣∣∣∣

∞∑
n=1

bn

an

−
∏T −1

n=1 an

∑T −1
n=1

bn

an∏T −1
n=1 an

∣∣∣∣∣ =
∣∣∣∣

∞∑
n=T

bn

an

∣∣∣∣

≤ 2 log1+γ

2 aT

a1−ν
T

<
2 log1+γ

2 aT

a

δ
M

(1−ν)2

1+ δ
M

(1−ν)

T ·
(T −1∏

i=1

ai

)M
= 2 log1+γ

2 aT

(a1−ν
T )

δ
M

(1−ν)

1+ δ
M

(1−ν) ·
(T −1∏

i=1

ai

)M

<
2 log1+γ

2 aT

a

δ2

M2 (1−ν)3

(1+ δ
M

(1−ν))
2

T ·
(T −1∏

i=1

ai

)M+ δ(1−ν)

1+ δ
M

(1−ν)

.

Let us put qT = ∏T −1
n=1 an, pT = ∏T −1

n=1 an

∑T −1
n=1

bn

an
and ε = δ(1−ν)

1+ δ
M

(1−ν)
. From

(8) and (14) we obtain that

(15)

∣∣∣∣
∞∑

n=1

bn

an

− pT

qT

∣∣∣∣ <
1

qM+ε
T

.

The fact that M + 2δ(1 − ν) = m ≥ 2, where δ is sufficiently small, and
that for each δ we can find infinitely many pairs (pT , qT ) = (pT (N), qT (N))

satisfying (15) imply that the number
∑∞

n=1
bn

an
is irrational and its irrationality

measure is greater than or equal to m.

Proof of Corollary 1. It is enough to set ν = 0, α = αP ·log2(m+1) and
β = βP · log2(m+1) in Theorem 1 where αP , βP are constants in Corollary 1.



a note on irrationality measures 123

Proof of Proposition 1. For the function sin log n we have that
sin log(neπ ) is about − sin log n. Now set k = eπ − 1, α = (1+ε)(4−2ε)(eπ −1)

2+4(eπ −1)

and β = (1+ε)(2+ε)(eπ −1)

2+4(eπ −1)
and m = x

2+4(eπ −1)

eπ −1 · 1
1+ε in Corollary 1. Because we can

take ε sufficiently small we obtain Proposition 1.

Proof of Example 2.1. For the function cos log n we have that
cos log(ne

π
2 ) is about − sin log n. Now set ν = 1

10 , k = e
π
2 − 1, α =

(11 − ε) log2 10 and β = (10 + ε) log2 10 and m = 9
10

(
10

1+11(eπ/2−1)

(eπ/2−1)(1+ε)

)
in The-

orem 1. And let us take ε sufficiently small and the proof is complete.

The arguments in Example 2.2 are similar to the proof of Proposition 1.
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