
MATH. SCAND. 104 (2009), 108–116

PUSHING DOWN INFINITE LOEB MEASURES

DAVID A. ROSS

Abstract

Sufficient conditions are given under which the standard part map on an arbitrary Hausdorff space
can be used to push down an infinite nonstandard measure. This makes it easier to construct
standard infinite Borel measures using nonstandard techniques.

1. Introduction

A common way nonstandard analysis is used to construct a Borel measure on
a topological space X is to first construct a Loeb measure μL on a companion
space � (usually a subset of ∗X), and then ‘push’ μL down to X using the
standard part map st. This requires that st be measurable from the (complete)
Loeb σ -algebra on � to the Borel σ -algebra on X. The question of when st
is measurable has been extensively studied; see [4] and [9] for early papers
on the question, and the discussion following Theorem 3.2 of [16] for more
recent results. The reader is also referred to [8], [2], [11], [12], as well as to
[5] and [6] for a functional approach.

Infinite measures have traditionally been especially problematic. Reasons
include greater difficulty in proving that st is measurable, and difficulty in
keeping mass in μL from escaping to infinity. For example, in the recent paper
[10], had the authors attempted to simply push the measure down with the
standard part with respect to the product topology, then every nonempty set
would have received infinite measure. On the other hand, the standard part
map with respect to the box topology would in some cases have assigned zero
measure to any compact set. As a result, some results which would have been
natural in the setting of an infinite measure have been stated and proved just
for finite measures. Examples include the author’s results [14] and [15].

This paper adapts a technique from [10] to prove a pushing down result for
infinite Loeb measures. To illustrate how this theorem can be used in practice,
the proof from [15] is revisited and generalized to construct a (possibly infinite)
measure on a space which need not be compact.
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2. Preliminaries

Assume that the nonstandard model is as saturated as it needs to be to carry
out all constructions; in particular, it is κ-saturated for some κ larger than the
cardinality of any standard set that we might encounter.
(�,A, μ)will always denote an internal, *finitely-additive *measure space.

We recall the existence of the Loeb completion of ◦μ (see [16] or [18]). ◦μ is
a standard, extended-real-valued finitely-additive measure on the algebra A ,
even if μ(�) is externally infinite. Moreover, by saturation ◦μ is automatically
countably additive on A , so the machinery of the usual Carathéodory con-
struction now applies. In particular, ◦μ extends to a measure on a σ -algebra
containing A (see [17] Chapter 12, Theorem 8). Note that the construction
holds for externally infinite measures, though it will only be applied in this
paper to subsets of � with externally finite measure. Some of the technical
issues that arise when starting with an externally infinite measure are detailed
in [18].

Lemma 1. There is a complete measure space (�,AL, μL) such that:

(i) A ⊆ AL;

(ii) For every A ∈ A , μL(A) = ◦μ(A) (where by convention ◦μ(A) = ∞ if
μ(A) is infinite);

(iii) For every E ∈ AL with μL(E) finite, μL(E) = sup{◦μ(A) : A ⊆
E,A ∈ A }

The next lemma, for the special case of Ai ∈ A , was proved in [7] using
an idea from [4].

Lemma 2. Let {Ai}i∈I be a family of internal sets such that each Ai ∈ AL

and card(I ) < κ . Suppose ◦μ(�) < ∞. Then
⋃
i Ai ∈ AL and

⋂
i Ai ∈ AL.

Proof. It suffices to prove that
⋂
i Ai ∈ AL. We may suppose that {Ai}i∈I

is closed under finite intersection. Let r = inf i μL(Ai), let Ain, n ∈ N be a
decreasing sequence with limn μ(Ain) = r , and put A∞ = ⋂

n Ain .
Let s < r , and i1, i2, . . . , in ∈ I . For some j ∈ I ,Aj = Ai1 ∩· · ·∩Ain , and

μL(Aj ) ≥ r > s. By Lemma 1 there is aBs ∈ A withBs ⊆ Aj andμL(Bs) >
s. By κ-saturation there is a Bs ∈ A for which Bs ⊆ Ai for every i ∈ I , and
μL(Bs) > s. Put B∞ = ⋃

s∈Q,s<r Bs . Then B∞ ⊆ ⋂
i Ai ⊆ ⋂

n Ain = A∞,
and μL(B∞) = r = μL(A∞).
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Let X be a Hausdorff space, K = KX = {K ⊆ X : K compact}, BX be
the Borel σ -algebra on X, and NS(X) the set of nearstandard elements of ∗X.
The following is a straightforward exercise.

Lemma 3. If K is locally compact then NS(X) = ⋃
K∈K

∗K

The first theorem is mainly contained in already-known results. For ex-
ample, see the remarks following Proposition 3.4.7 of [1], and the discussion
following Theorem 3.2 of [16].

Theorem 1. Suppose X is a locally compact Hausdorff space, � ⊆ ∗X,
◦μ� < ∞, and ∗E ∩� ∈ AL for every open E ⊆ X. Then the restriction st�
of st to � ∩NS(X) is AL–BX measurable.

Note (as a consequence of this theorem ) that (i) μL can be pushed down to
a measurem = μL ◦ st−1

� on (X,BX); (ii)�∩NS(X) ∈ AL; and (iii)μL� =
m(X) precisely when μL(� \NS(X)) = 0. By (3) of Lemma 1, μL is inner-
regular with respect to the internal sets. (Recall that a measure ν is inner-
regular with respect to a family F provided that for every measurable set E
with ν(E) < ∞, ν(E) = sup{ν(F ) : F ⊆ E,F ∈ F }.) For locally-compact
X the image of an internal subset of NS(X) under the standard part map is
compact; it follows that the measure m constructed in this way will be Radon
(that is, inner-regular with respect to compact sets).

Proof. If K ∈ KX then ∗K ∩� ∈ AL by hypothesis, so by Lemma 2,

� ∩NS(X) =
⋃

{� ∩ ∗K : K ∈ KX} ∈ AL

Let C ⊆ X be closed. Since
⋂{� ∩ ∗U : C ⊆ U ⊆ X,U open} ∈ AL, it

suffices to show that st−1
� C = � ∩NS(X) ∩ ⋂{∗U : C ⊆ U ⊆ X,U open}.

If ◦ω ∈ C and U is an open superset of C then ω ∈ ∗U ; this proves the
inclusion ⊆. For ⊇, if ◦ω = x /∈ C then for some open neighborhood v of x
with compact closure v̄, v̄ ∩ C = ∅. Then ω ∈ ∗v but ω /∈ ∗v̄�, proving ⊇.

The following is the main result of the paper.

Theorem 2. Suppose X is a Hausdorff space, � ⊆ ∗X, ∗E ∩ � ∈ AL

for every open E ⊆ X, and for every K ∈ KX, μL(∗K ∩ �) < ∞. Then for
every K ∈ KX, mK(E) := μL(

∗K ∩ st−1
� E) defines a Borel measure on X.

Moreover, m(E) := supK∈KX
mK(E) defines a Borel measure on X, and for

every K ∈ KX, m and mK agree on the interior of K .

Note that there is no requirement here thatμ(�) be finite. As in Theorem 1,
the measures mK and m will be Radon.
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Proof. For any K ∈ KX, K is a compact Hausdorff space, so by the
previous theorem the restriction st∗K∩� is measurable from ∗K ∩ � to K . If
E ∈ BX then st−1

∗K∩� E = st−1
∗K∩�(E ∩K), so mK defines a Borel measure on

all of X.
Evidently for any E ∈ BX, mKE is monotone in K .
To see that m is a measure, let {An}∞n=1 be a sequence of pairwise disjoint

Borel subsets of X, and put A = ⋃∞
n=1Ai . It suffices to show that mA =∑

n mAn. One direction is easy: if K ∈ KX then mKA = ∑
n mKAn ≤∑

n mAn. Since K was arbitrary, mA ≤ ∑
n mAn. (In particular, if mA = ∞

then mA = ∞ = ∑
n mAn.)

For the opposite inequality, fix N ∈ N+, let K1, . . . , KN ∈ KX, and put
K = K1 ∪ · · · ∪KN . Then

N∑
n=1

mKnAn ≤
N∑
n=1

mKAn = mK

( N⋃
n=1

An

)
≤ mA

Since K1, . . . , KN were arbitrary,
N∑
n=1

mAn ≤ mA, so
∞∑
n=1

mAn ≤ mA.

Finally, let K,M ∈ KX, and E ⊆ U where U is the interior of K . Note

∗M ∩ st−1
� E = ∗M ∩ st−1

� (E ∩ U)
= ∗M ∩ st−1

� (E) ∩ st−1
� (U)

⊆ ∗M ∩ st−1
� (E) ∩ ∗U

⊆ ∗M ∩ st−1
� (E) ∩ ∗K

⊆ st−1
� (E) ∩ ∗K

so
mME ≤ mKE ≤ mE.

Taking the supremum over all M ∈ KX, we obtain

mE ≤ mKE ≤ mE,

as desired.
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3. Applications

3.1. Riesz Representation Theorem

The utility of Theorem 2 is illustrated in this section by employing it to extend
the nonstandard proof of the Riesz Representation Theorem from [15] to spaces
which are not necessarily compact.

LetX be a locally compact Hausdorff space, andCc(X) be the vector space
of continuous real functions on X with compact support. Let T : Cc(X) → R
be a positive linear functional.

Theorem 3. There is a Radon measure m on X such that
∫
f dm = Tf

for every f ∈ Cc(X)
Proof. Write C = Cc(X). Put Ker+(T ,C ) = {f ∈ C : f ≥ 0, Tf = 0}.

First, consider the case where Ker+(T ,C ) = {0}. (The author notes that this
is the only case that was considered in [15].) ForA ⊆ X and f ∈ C write f |A
for the restriction of f to A.

Let D ⊆ C be a basis for C (as a vector space over R). By saturation there is
a hyperfinite � = {ω1, . . . , ωH } ⊆ ∗X with x ∈ � for every standard x ∈ X.
Let {f1, . . . , fk} be an arbitrary finite subset of D .

Consider the internal system of linear equations in p ∈ ∗RH :

⎡
⎢⎢⎢⎣

∗f1(ω1)
∗f1(ω2) · · · ∗f1(ωH )

∗f2(ω1)
∗f2(ω2) · · · ∗f2(ωH )

...
...

...

∗fk(ω1)
∗fk(ω2) · · · ∗fk(ωH )

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

p1

p2
...

pH

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Tf1

Tf2
...

Tfk

⎤
⎥⎥⎥⎦

By the Farkas Lemma from linear algebra [13], there are two mutually
exclusive alternatives:

(a) For some α1, α2, . . . , αk ∈ ∗R,

∗∑
i

αi(
∗fi |�) ≥ 0 but ∗∑

i

αi(Tfi) < 0.

Without loss of generality maxi{|αi |} = 1. If x ∈ X is standard, then x ∈ �,
so ∑

i

(◦αi)fi(x) ≈
∑
i

αi
∗fi(x) ≥ 0,

so
∑

i (
◦αi)fi(x) ≥ 0. By positivity of T ,

0 ≤ T
(∑

i

(◦αi)fi
)

=
∑
i

(◦αi)Tfi ≈ ∗∑
i

αi(Tfi) < 0;
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it follows that
∑

i (
◦αi)fi ∈ Ker+(T ,C ) = {0}, contradicting linear independ-

ence of D .
Therefore, the following alternative must hold.
(b) There is a solution p ∈ ∗RH of the system with pi ≥ 0, 1 ≤ i ≤ H .
By saturation in the cardinality of D , there must be such a p such that for

every f ∈ D , hence every f ∈ C , Tf = ∗∑
i pi

∗f (ωi). Define an internal
measure μ on (�,P(�)) by putting μ({ωi}) = pi . Note that P(�) contains
every set of the form ∗E ∩ � for standard E. If K ∈ KX, then by local
compactness of X there is an f ∈ C , f ≥ 0, such that f ≥ 1 on K , so

μ(∗K ∩�) = ∗∑
ω∈∗K∩�

1μ({ω}) ≤ ∗∑
ω∈∗K∩�

f (ω)μ({ω})

≤ ∗∑
ω∈�

f (ω)μ({ω}) = Tf < ∞

This verifies the conditions of Theorem 2. Let m andmK (K ∈ KX) be the
Radon measures on X given in the conclusion of that theorem.

If f ∈ C , let U be an open set containing the support of f such that U has
compact closure K . Then∫

f dm =
∫
f dmK (since m = mK on the support of f )

=
∫

∗K∩�
◦∗f dμL

(since f (◦ω) = ◦∗f (ω) on ∗K and

st∗K∩� is measure-preserving)

≈
∫

∗K∩�
∗f dμ (since f is bounded)

=
∫
�

∗f dμ = Tf

This proves Theorem 3 in the case that Ker+(T ,C ) = {0}. For the more
general case, observe first that the proof does not require that C be all ofCc(X),
only a linear subspace over R with the the property that if K ⊆ X is compact
then there is a nonnegative f ∈ C with f > 0 on K .

Put

U = {x ∈ X : f (x) > 0 for some f ∈ Ker+(T , Cc(X))}
It is easy to see thatU is open. PutX′ = X \U and C ′ = {f |X′ : f ∈ Cc(X)}.

Proposition 1. If f, g ∈ Cc(X) and f = g on X′ then Tf = T g.

Assuming this proposition is true, we may define a positive linear functional
T ′ on C ′ by T ′(f |X′) = T (f ). Note that Ker+(T ′,C ′) = {0}, so by the
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previous case of the theorem there is a measure μ′ on X′ with T ′(f |X′) =∫
X′ f |X′ dμ′ for f ∈ Cc(X). Extend μ′ to μ on X by μE = μ′(E ∩X′), and

observe that for f ∈ Cc(X), Tf = T ′(f |X′) = ∫
X′ f |X′ dμ′ = ∫

f dμ, as
desired

It remains to prove Proposition 1. By considering |f −g| it suffices to show
that if f ≥ 0 on X and f = 0 on X′ then Tf = 0. Let K be a compact set
containing the support of f , and let γ be a nonnegative function in Cc(X)
which is strictly positive on K . By saturation there is a φ ∈ ∗Ker+(T , Cc(X))
such that φ ≥ ∗h for every h ∈ Ker+(T , Cc(X)). It is easy to verify that for
any δ ∈ R+, ∗f ≤ φ + δ∗γ . Then T (f ) ≤ ∗T (φ)+ ∗T (δ∗γ ) = δT (γ ). Since
δ is arbitrary, T (f ) = 0, proving the proposition and completing Theorem 3.

3.2. A Theorem of Choquet

This argument extends to a variant of Theorem 3 due to Choquet. (The au-
thor thanks the referee for suggesting this extension.) If f, g are nonnegative
continuous functions on X, say that g dominates f if for every ε > 0 there
is some h ∈ Cc(X) with f ≤ εg + h on X. Note that this h may always be
chosen so that 0 ≤ h ≤ f . (To clarify the meaning of domination, the reader
is invited to show that g dominates f if and only if for every x ∈ ∗X which is
not nearstandard, either ∗f (x) = 0 or

∗g(x)
∗f (x) is infinite.) Let H be a linear space

of continuous functions on X, and let H + be the nonnegative elements of H .
Call H adapted provided

(i) H = H + − H +;

(ii) For every x ∈ X there is an f ∈ H + with f (x) > 0; and

(iii) For every f ∈ H + there is a g ∈ H + which dominates f .

Choquet has proved the following ([3], Theorem 34.6):

Theorem 4. Let X be a locally compact Hausdorff space, H an adapted
space of continuous functions on X, and T a positive linear functional on H .
There is then a Radon measure m on X such that every f ∈ H is integrable
with

∫
f dm = Tf

Assume first that Ker+(T ,H ) = {0}.
As in the proof of Theorem 3, there is a hyperfinite� = {ω1, . . . , ωH } ⊆ ∗X

and a nonnegative p ∈ ∗RH such that for every f ∈ H , Tf = ∗∑
i pi

∗f (ωi).
Let H # be the set of continuous functions f with ∗∑

i pi
∗f (ωi) finite, and for

such f put T #f = ◦∗∑
i pi

∗f (ωi). Evidently H ⊆ H #, and T # is a positive
linear functional on H #.

Suppose f ∈ Cc(X), and K is a compact set containing the support of f .
By property (ii) of ‘adapted’, compactness ofK , and linearity of H , there is an



pushing down infinite loeb measures 115

element g of H + with g(x) > 0 onK . We may choose g so that the minimum
of g on K is greater than the maximum of |f | on K . Then

∣∣∗∑
i pi

∗f (ωi)
∣∣ ≤

∗∑
i pi |∗f (ωi)| ≤ ∗∑

i pi
∗g(ωi) = T g < ∞; it follows that Cc(X) ⊆ H #.

By Theorem 3, there is a Radon measure m on X such that
∫
f dm = Tf

for every f ∈ Cc(X). It remains to verify this equality more generally for
f ∈ H . Since H = H + − H +, it suffices to consider f ∈ H +.

Since m is Radon,
∫
f dm = sup{∫ g dm : 0 ≤ g ≤ f, g ∈ Cc(X)} =

sup{T g : 0 ≤ g ≤ f, g ∈ Cc(X)} ≤ Tf . For the opposite inequality, let
g ∈ H + dominatef , let ε > 0, andh ∈ Cc(X)withf ≤ εg+h and 0 ≤ h ≤ f

onX. Then Tf ≤ T (εg+h) = εT g+T h = εT g+∫
h dm ≤ εT g+∫

f dm.
Since T g is finite and ε is arbitrary, Tf ≤ ∫

f dm.
This proves Theorem 3 in the case that Ker+(T ,H ) = {0}. For the more

general case, put U = {x ∈ X : f (x) > 0 for some f ∈ Ker+(T ,H )},
X′ = X \ U , and C ′ = {f |X′ : f ∈ H }. As in the proof of Theorem 3, it
suffices to show that if f ∈ H and f = 0 on X′ then Tf = 0. Let f + ∈ H +
(respectively, f − ∈ H −) with f = f + − f −. Let g+ ∈ H + (respectively,
g− ∈ H +) dominatef + (f −), let ε > 0, and find nonnegativeh+, h− ∈ Cc(X)
with f + ≤ εg+ + h+ and f − ≤ εg− + h−. Put h = h+ + h− ∈ Cc(X),
g = g+ + g− ∈ H +, then |f | = f + + f − ≤ εg + h, and we may assume
h ≤ |f |.

Let K be a compact set containing the support of h; by the hypothesis that
H is adapted, there is an element γ of H + which is strictly positive onK . By
saturation there is a φ ∈ ∗Ker+(T ,H ) such that φ ≥ ∗ψ for every ψ ∈ H +.
It is easy to verify that ∗h ≤ φ + ε∗γ , so T (h) ≤ ∗T (φ)+ ∗T (ε∗γ ) = εT (γ ).

Now, T (f ) ≤ T (εg + h) = εT (g) + T (h) ≤ εT (g) + εT (γ ). Since ε is
arbitrary, T (f ) = 0.
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