ON THE *KK*-THEORY OF STRONGLY SELF-ABSORBING *C**-ALGEBRAS

MARIUS DADARLAT and WILHELM WINTER*

Abstract

Let \mathscr{D} and A be unital and separable C^* -algebras; let \mathscr{D} be strongly self-absorbing. It is known that any two unital *-homomorphisms from \mathscr{D} to $A \otimes \mathscr{D}$ are approximately unitarily equivalent. We show that, if \mathscr{D} is also K_1 -injective, they are even asymptotically unitarily equivalent. This in particular implies that any unital endomorphism of \mathscr{D} is asymptotically inner. Moreover, the space of automorphisms of \mathscr{D} is compactly-contractible (in the point-norm topology) in the sense that for any compact Hausdorff space X, the set of homotopy classes $[X, \operatorname{Aut}(\mathscr{D})]$ reduces to a point. The respective statement holds for the space of unital endomorphisms of \mathscr{D} . As an application, we give a description of the Kasparov group $KK(\mathscr{D}, A \otimes \mathscr{D})$ in terms of *-homomorphisms and asymptotic unitary equivalence. Along the way, we show that the Kasparov group $KK(\mathscr{D}, A \otimes \mathscr{D})$ is isomorphic to $K_0(A \otimes \mathscr{D})$.

0. Introduction

A unital and separable C^* -algebra $\mathcal{D} \neq C$ is strongly self-absorbing if there is an isomorphism $\mathcal{D} \xrightarrow{\sim} \mathcal{D} \otimes \mathcal{D}$ which is approximately unitarily equivalent to the inclusion map $\mathcal{D} \rightarrow \mathcal{D} \otimes \mathcal{D}$, $d \mapsto d \otimes \mathbf{1}_{\mathcal{D}}$ ([15]). Strongly self-absorbing C^* -algebras are known to be simple and nuclear; moreover, they are either purely infinite or stably finite. The only known examples of strongly selfabsorbing C^* -algebras are the UHF algebras of infinite type (i.e., every prime number that occurs in the respective supernatural number occurs with infinite multiplicity), the Cuntz algebras \mathcal{O}_2 and \mathcal{O}_∞ , the Jiang-Su algebra \mathcal{Z} and tensor products of \mathcal{O}_∞ with UHF algebras of infinite type, see [15]. All these examples are K_1 -injective, i.e., the canonical map $\mathcal{U}(\mathcal{D})/\mathcal{U}_0(\mathcal{D}) \rightarrow K_1(\mathcal{D})$ is injective.

It was observed in [15] that any two unital *-homomorphisms $\sigma, \gamma : \mathcal{D} \to A \otimes \mathcal{D}$ are approximately unitarily equivalent, were A is another unital and separable C*-algebra. If \mathcal{D} is K_1 -injective, the unitaries implementing the equivalence may even be chosen to be homotopic to the unit. When \mathcal{D} is \mathcal{O}_2 , \mathcal{O}_∞ , it was known that σ and γ are even asymptotically unitarily equivalent –

^{*} The first named author was partially supported by NSF grant #DMS-0500693. The second named author was supported by the DFG (SFB 478).

Received April 4, 2007.

i.e., they can be intertwined by a continuous path of unitaries, parametrized by a half-open interval. Up to this point, it was not clear whether the respective statement holds for the Jiang-Su algebra \mathscr{Z} . Theorem 2.2 below provides an affirmative answer to this problem. Even more, we show that the path intertwining σ and γ may be chosen in the component of the unit.

We believe this result, albeit technical, is interesting in its own right, and that it will be a useful ingredient for the systematic further use of strongly selfabsorbing C^* -algebras in Elliott's program to classify nuclear C^* -algebras by K-theory data. In fact, this point of view is our main motivation for the study of strongly self-absorbing C^* -algebras; see [8], [11], [17], [18], [19] and [16] for already existing results in this direction.

For the time being, we use Theorem 2.2 to derive some consequences for the Kasparov groups of the form $KK(\mathcal{D}, A \otimes \mathcal{D})$. More precisely, we show that all the elements of the Kasparov group $KK(\mathcal{D}, A \otimes \mathcal{D})$ are of the form $[\varphi] - n[\iota]$ where $\varphi : \mathcal{D} \to \mathcal{K} \otimes A \otimes \mathcal{D}$ is a *-homomorphism and $\iota : \mathcal{D} \to A \otimes \mathcal{D}$ is the inclusion $\iota(d) = \mathbf{1}_A \otimes d$ and $n \in \mathbb{N}$. Moreover, two non-zero *homomorphisms $\varphi, \psi : \mathcal{D} \to \mathcal{K} \otimes A \otimes \mathcal{D}$ with $\varphi(\mathbf{1}_{\mathcal{D}}) = \psi(\mathbf{1}_{\mathcal{D}}) = e$ have the same *KK*-theory class if and only if there is a unitary-valued continuous map u : $[0, 1) \to e(\mathcal{H} \otimes A \otimes \mathcal{D})e, t \mapsto u_t$ such that $u_0 = e$ and $\lim_{t\to 1} ||u_t \varphi(d) u_t^* - \psi(d)|| = 0$ for all $d \in \mathcal{D}$. In addition, we show that $KK_i(\mathcal{D}, \mathcal{D} \otimes A) \cong K_i(\mathcal{D} \otimes A), i = 0, 1$.

One may note the similarity to the descriptions of $KK(\mathcal{O}_{\infty}, \mathcal{O}_{\infty} \otimes A)$ ([8],[11]) and $KK(\mathsf{C}, \mathsf{C} \otimes A)$. However, we do not require that \mathcal{D} satisfies the universal coefficient theorem (UCT) in *KK*-theory. In the same spirit, we characterize \mathcal{O}_2 and the universal UHF algebra \mathcal{D} using *K*-theoretic conditions, but without involving the UCT.

As another application of Theorem 2.2 (and the results of [7]), we prove in [4] an automatic trivialization result for continuous fields with strongly self-absorbing fibres over finite dimensional spaces.

The second named author would like to thank Eberhard Kirchberg for an inspiring conversation on the problem of proving Theorem 2.2.

1. Strongly self-absorbing C*-algebras

In this section we recall the notion of strongly self-absorbing C^* -algebras and some facts from [15].

DEFINITION 1.1. Let *A*, *B* be *C*^{*}-algebras and σ , $\gamma : A \rightarrow B$ be ^{*}-homomorphisms. Suppose that *B* is unital.

(i) We say that σ and γ are approximately unitarily equivalent, $\sigma \approx_u \gamma$, if there is a sequence $(u_n)_{n \in \mathbb{N}}$ of unitaries in *B* such that

$$\|u_n\sigma(a)u_n^*-\gamma(a)\|\stackrel{n\to\infty}{\longrightarrow} 0$$

for every $a \in A$. If all u_n can be chosen to be in $\mathcal{U}_0(B)$, the connected component of $\mathbf{1}_B$ of the unitary group $\mathcal{U}(B)$, then we say that σ and γ are strongly approximately unitarily equivalent, written $\sigma \approx_{su} \gamma$.

(ii) We say that σ and γ are asymptotically unitarily equivalent, $\sigma \approx_{uh} \gamma$, if there is a norm-continuous path $(u_t)_{t \in [0,\infty)}$ of unitaries in *B* such that

$$\|u_t \sigma(a) u_t^* - \gamma(a)\| \xrightarrow{t \to \infty} 0$$

for every $a \in A$. If one can arrange that $u_0 = \mathbf{1}_B$ and hence $(u_t \in \mathcal{U}_0(B)$ for all t), then we say that σ and γ are strongly asymptotically unitarily equivalent, written $\sigma \approx_{\text{sub}} \gamma$.

The concept of strongly self-absorbing C^* -algebras was formally introduced in [15, Definition 1.3]:

DEFINITION 1.2. A separable unital C^* -algebra \mathcal{D} is strongly self-absorbing, if $\mathcal{D} \neq \mathsf{C}$ and there is an isomorphism $\varphi : \mathcal{D} \rightarrow \mathcal{D} \otimes \mathcal{D}$ such that $\varphi \approx_{\mathrm{u}} \mathrm{id}_{\mathcal{D}} \otimes \mathbf{1}_{\mathcal{D}}$.

Recall [15, Corollary 1.12]:

PROPOSITION 1.3. Let A and \mathcal{D} be unital C^* -algebras, with \mathcal{D} strongly selfabsorbing. Then, any two unital *-homomorphisms $\sigma, \gamma : \mathcal{D} \to A \otimes \mathcal{D}$ are approximately unitarily equivalent. In particular, any two unital endomorphisms of \mathcal{D} are approximately unitarily equivalent.

We note that the assumption that A is separable which appears in the original statement of [15, Corollary 1.12] is not necessary and was not used in the proof.

LEMMA 1.4. Let \mathscr{D} be a strongly self-absorbing C^* -algebra. Then there is a sequence of unitaries $(w_n)_{n\in\mathbb{N}}$ in the commutator subgroup of $\mathscr{U}(\mathscr{D}\otimes\mathscr{D})$ such that for all $d \in \mathscr{D} ||w_n(d \otimes \mathbb{1}_{\mathscr{D}})w_n^* - \mathbb{1}_{\mathscr{D}} \otimes d|| \to 0$ as $n \to \infty$.

PROOF. Let $\mathscr{F} \subset \mathscr{D}$ be a finite normalized set and let $\varepsilon > 0$. By [15, Prop. 1.5] there is a unitary $u \in \mathscr{U}(\mathscr{D} \otimes \mathscr{D})$ such that $||u(d \otimes \mathbf{1}_{\mathscr{D}})u^* - \mathbf{1}_{\mathscr{D}} \otimes d|| < \varepsilon$ for all $d \in \mathscr{F}$. Let $\theta : \mathscr{D} \otimes \mathscr{D} \to \mathscr{D}$ be a *-isomorphism. Then $||(\theta(u^*) \otimes \mathbf{1}_{\mathscr{D}})u(d \otimes \mathbf{1}_{\mathscr{D}})u^*(\theta(u) \otimes \mathbf{1}_{\mathscr{D}}) - \mathbf{1}_{\mathscr{D}} \otimes d|| < \varepsilon$ for all $d \in \mathscr{F}$. By Proposition $1.3 \theta \otimes \mathbf{1}_{\mathscr{D}} \approx_{\mathbf{u}} \mathrm{id}_{\mathscr{D} \otimes \mathscr{D}}$ and so there is a unitary $v \in \mathscr{U}(\mathscr{D} \otimes \mathscr{D})$ such that $||\theta(u^*) \otimes \mathbf{1}_{\mathscr{D}} - vu^*v^*|| < \varepsilon$ and hence $||(\theta(u^*) \otimes \mathbf{1}_{\mathscr{D}})u - vu^*v^*u|| < \varepsilon$. Setting $w = vu^*v^*u$ we deduce that $||w(d \otimes \mathbf{1}_{\mathscr{D}})w^* - \mathbf{1}_{\mathscr{D}} \otimes d|| < 3\varepsilon$ for all $d \in \mathscr{F}$.

REMARK 1.5. In the situation of Proposition 1.3, suppose that the commutator subgroup of $\mathcal{U}(\mathcal{D})$ is contained in $\mathcal{U}_0(\mathcal{D})$. This will happen for instance if \mathcal{D} is assumed to be K_1 -injective. Then one may choose the unitaries $(u_n)_{n \in \mathbb{N}}$ which implement the approximate unitary equivalence between σ and γ to lie in $\mathcal{U}_0(A \otimes \mathcal{D})$. This follows from [15, (the proof of) Corollary 1.12], since the unitaries $(u_n)_{n \in \mathbb{N}}$ are essentially images of the unitaries $(w_n)_{n \in \mathbb{N}}$ of Lemma 1.4 under suitable unital *-homomorphisms.

2. Asymptotic vs. approximate unitary equivalence

It is the aim of this section to establish a continuous version of Proposition 1.3.

LEMMA 2.1. Let \mathcal{D} be a separable unital strongly self-absorbing C^* algebra. For any finite subset $\mathcal{F} \subset \mathcal{D}$ and $\varepsilon > 0$, there are a finite subset $\mathcal{G} \subset \mathcal{D}$ and $\delta > 0$ such that the following holds:

If A is another unital C*-algebra and $\sigma : \mathcal{D} \to A \otimes \mathcal{D}$ is a unital *homomorphism, and if $w \in \mathcal{U}_0(A \otimes \mathcal{D})$ is a unitary satisfying

$$\|[w,\sigma(d)]\| < \delta$$

for all $d \in \mathcal{G}$, then there is a continuous path $(w_t)_{t \in [0,1]}$ of unitaries in $\mathcal{U}_0(A \otimes \mathcal{D})$ such that $w_0 = w$, $w_1 = \mathbf{1}_{A \otimes \mathcal{D}}$ and

$$\|[w_t, \sigma(d)]\| < \varepsilon$$

for all $d \in \mathcal{F}$, $t \in [0, 1]$.

PROOF. We may clearly assume that the elements of \mathcal{F} are normalized and that $\varepsilon < 1$. Let $u \in \mathcal{D} \otimes \mathcal{D}$ be a unitary satisfying

(1)
$$\|u(d \otimes \mathbf{1}_{\mathscr{D}})u^* - \mathbf{1}_{\mathscr{D}} \otimes d\| < \frac{\varepsilon}{20}$$

for all $d \in \mathcal{F}$. There exist $k \in \mathbb{N}$ and elements $s_1, \ldots, s_k, t_1, \ldots, t_k \in \mathcal{D}$ of norm at most one such that

(2)
$$\left\|u-\sum_{i=1}^{k}s_{i}\otimes t_{i}\right\|<\frac{\varepsilon}{20}.$$

Set

(3)
$$\delta := \frac{\varepsilon}{k \cdot 10}$$

and

(4)
$$\mathscr{G} := \{s_1, \ldots, s_k\} \subset \mathscr{D}.$$

Now let $w \in \mathcal{U}_0(A \otimes \mathcal{D})$ be a unitary as in the assertion of the lemma, i.e., w satisfies

$$\|[w,\sigma(s_i)]\| < \delta$$

for all i = 1, ..., k. We proceed to construct the path $(w_t)_{t \in [0,1]}$. By [15, Remark 2.7] there is a unital *-homomorphism

$$\varphi: A \otimes \mathscr{D} \otimes \mathscr{D} \to A \otimes \mathscr{D}$$

such that

(6)
$$\|\varphi(a\otimes \mathbf{1}_{\mathscr{D}}) - a\| < \frac{\varepsilon}{20}$$

for all $a \in \sigma(\mathscr{F}) \cup \{w\}$.

Since $w \in \mathcal{U}_0(A \otimes \mathcal{D})$, there is a path $(\bar{w}_t)_{t \in [\frac{1}{2}, 1]}$ of unitaries in $A \otimes \mathcal{D}$ such that

(7)
$$\bar{w}_{\frac{1}{2}} = w$$
 and $\bar{w}_1 = \mathbf{1}_{A \otimes \mathscr{D}}.$

For $t \in \left[\frac{1}{2}, 1\right]$ define

(8)
$$w_t := \varphi((\sigma \otimes \operatorname{id}_{\mathscr{D}})(u)^*(\bar{w}_t \otimes \mathbf{1}_{\mathscr{D}})(\sigma \otimes \operatorname{id}_{\mathscr{D}})(u)) \in \mathscr{U}(A \otimes \mathscr{D});$$

then $(w_t)_{t \in [\frac{1}{2}, 1]}$ is a continuous path of unitaries in $A \otimes \mathscr{D}$. For $t \in [\frac{1}{2}, 1]$ and $d \in \mathscr{F}$ we have (9) $\|[w_t, \sigma(d)]\|$ $= \|w_t \sigma(d)w_t^* - \sigma(d)\|$ $\stackrel{(6)}{\leq} \|w_t \varphi(\sigma(d) \otimes \mathbf{1}_{\mathscr{D}})w_t^* - \varphi(\sigma(d) \otimes \mathbf{1}_{\mathscr{D}})\| + 2 \cdot \frac{\varepsilon}{20}$ $\stackrel{(8)}{\leq} \|((\sigma \otimes \mathrm{id}_{\mathscr{D}})(u))^*(\bar{w}_t \otimes \mathbf{1}_{\mathscr{D}})((\sigma \otimes \mathrm{id}_{\mathscr{D}})(u(d \otimes \mathbf{1}_{\mathscr{D}})u^*))(\bar{w}_t^* \otimes \mathbf{1}_{\mathscr{D}})$ $\cdot ((\sigma \otimes \mathrm{id}_{\mathscr{D}})(u)) - ((\sigma \otimes \mathrm{id}_{\mathscr{D}})(d \otimes \mathbf{1}_{\mathscr{D}}))\| + \frac{\varepsilon}{10}$ $\stackrel{(1)}{\leq} \|((\sigma \otimes \mathrm{id}_{\mathscr{D}})(u))^*(\bar{w}_t \otimes \mathbf{1}_{\mathscr{D}})((\sigma \otimes \mathrm{id}_{\mathscr{D}})(\mathbf{1}_{\mathscr{D}} \otimes d))(\bar{w}_t^* \otimes \mathbf{1}_{\mathscr{D}})$ $\cdot ((\sigma \otimes \mathrm{id}_{\mathscr{D}})(u)) - ((\sigma \otimes \mathrm{id}_{\mathscr{D}})(d \otimes \mathbf{1}_{\mathscr{D}}))\| + \frac{\varepsilon}{10} + \frac{\varepsilon}{20}$ $= \|(\sigma \otimes \mathrm{id}_{\mathscr{D}})(u^*(\mathbf{1}_{\mathscr{D}} \otimes d)u - d \otimes \mathbf{1}_{\mathscr{D}})\| + \frac{\varepsilon}{10} + \frac{\varepsilon}{20}$ $< \frac{\varepsilon}{20} + \frac{\varepsilon}{10} + \frac{\varepsilon}{20}$ $< \frac{\varepsilon}{3},$ where for the last equality we have used that the \bar{w}_t are unitaries and that σ is a unital *-homomorphism. Furthermore, we have

$$\begin{split} \|w_{\frac{1}{2}} - w\| \stackrel{(7),(8)}{=} \|\varphi(((\sigma \otimes \mathrm{id}_{\mathscr{D}})(u))^{*}(w \otimes \mathbf{1}_{\mathscr{D}})((\sigma \otimes \mathrm{id}_{\mathscr{D}})(u))) - w\| \\ \stackrel{(2)}{\leq} \|\varphi\Big(((\sigma \otimes \mathrm{id}_{\mathscr{D}})(u))^{*}(w \otimes \mathbf{1}_{\mathscr{D}})\Big(\sum_{i=1}^{k} \sigma(s_{i}) \otimes t_{i}\Big)\Big) - w\Big\| + \frac{\varepsilon}{20} \\ & \leq \|\varphi\Big(((\sigma \otimes \mathrm{id}_{\mathscr{D}})(u))^{*}\Big(\sum_{i=1}^{k} \sigma(s_{i}) \otimes t_{i}\Big)(w \otimes \mathbf{1}_{\mathscr{D}})\Big) - w\Big\| \\ & + \sum_{i=1}^{k} \|[w, \sigma(s_{i})]\| \cdot \|t_{i}\| + \frac{\varepsilon}{20} \\ \stackrel{(5),(4),(2)}{\leq} \|\varphi(w \otimes \mathbf{1}_{\mathscr{D}}) - w\| + k \cdot \delta + 2 \cdot \frac{\varepsilon}{20} \\ \stackrel{(6),(3)}{\leq} \frac{\varepsilon}{20} + \frac{\varepsilon}{10} + 2 \cdot \frac{\varepsilon}{20} \\ & < \frac{\varepsilon}{3}. \end{split}$$

The above estimate allows us to extend the path $(w_t)_{t \in [\frac{1}{2},1]}$ to the whole interval [0, 1] in the desired way: We have $||w_{\frac{1}{2}}w^* - \mathbf{1}_{\mathscr{D}}|| < \frac{\varepsilon}{3} < 2$, whence -1 is not in the spectrum of $w_{\frac{1}{2}}w^*$. By functional calculus, there is $a = a^* \in A \otimes \mathscr{D}$ with ||a|| < 1 such that $w_{\frac{1}{2}}w^* = \exp(\pi i a)$. For $t \in [0, \frac{1}{2})$ we may therefore define a continuous path of unitaries

$$w_t := (\exp(2\pi i ta)) w \in \mathcal{U}(A \otimes \mathcal{D}).$$

It is clear that $w_0 = w$ and $w_t \to w_{\frac{1}{2}}$ as $t \to (\frac{1}{2})_-$, whence $(w_t)_{t \in [0,1]}$ is a continuous path of unitaries in A satisfying $w_0 = w$ and $w_1 = \mathbf{1}_A \otimes \mathcal{D}$. Moreover, it is easy to see that

$$||w_t - w|| \le ||w_{\frac{1}{2}} - w|| < \frac{\varepsilon}{3}$$

for all $t \in [0, \frac{1}{2})$, whence

$$\|[w_t,\sigma(d)]\| < \|[w_{\frac{1}{2}},\sigma(d)]\| + \frac{2}{3}\varepsilon \stackrel{(9)}{<}\varepsilon$$

for $t \in [0, \frac{1}{2}), d \in \mathcal{F}$.

We have now constructed a path $(w_t)_{t \in [0,1]} \subset \mathcal{U}(A)$ with the desired properties.

THEOREM 2.2. Let A and \mathcal{D} be unital C*-algebras, with \mathcal{D} separable, strongly self-absorbing and K_1 -injective. Then, any two unital *-homomorphisms $\sigma, \gamma : \mathcal{D} \to A \otimes \mathcal{D}$ are strongly asymptotically unitarily equivalent. In particular, any two unital endomorphisms of \mathcal{D} are strongly asymptotically unitarily equivalent.

PROOF. Note that the second statement follows from the first one with $A = \mathcal{D}$, since $\mathcal{D} \cong \mathcal{D} \otimes \mathcal{D}$ by assumption.

Let *A* be a unital *C**-algebra such that $A \cong A \otimes \mathcal{D}$ and let $\sigma, \gamma : \mathcal{D} \to A$ be unital *-homomorphisms. We shall prove that σ and γ are strongly asymptotically unitarily equivalent. Choose an increasing sequence

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots$$

of finite subsets of \mathscr{D} such that $\bigcup \mathscr{F}_n$ is a dense subset of \mathscr{D} . Let $1 > \varepsilon_0 > \varepsilon_1 > \cdots$ be a decreasing sequence of strictly positive numbers converging to 0.

For each $n \in \mathbb{N}$, employ Lemma 2.1 (with \mathscr{F}_n and ε_n in place of \mathscr{F} and ε) to obtain a finite subset $\mathscr{G}_n \subset \mathscr{D}$ and $\delta_n > 0$. We may clearly assume that

(10)
$$\mathscr{F}_n \subset \mathscr{G}_n \subset \mathscr{G}_{n+1}$$
 and that $\delta_{n+1} < \delta_n < \varepsilon_n$

for all $n \in N$.

Since σ and γ are strongly approximately unitarily equivalent by Proposition 1.3 and Remark 1.5, there is a sequence of unitaries $(u_n)_{n \in \mathbb{N}} \subset \mathcal{U}_0(A)$ such that

(11)
$$\|u_n\sigma(d)u_n^* - \gamma(d)\| < \frac{\delta_n}{2}$$

for all $d \in \mathcal{G}_n$ and $n \in \mathbb{N}$. Let us set

$$w_n := u_{n+1}^* u_n, \qquad n \in \mathbf{N}.$$

Then $w_n \in \mathcal{U}_0(A)$ and

$$\begin{aligned} \|[w_n, \sigma(d)]\| &= \|w_n \sigma(d) w_n^* - \sigma(d)\| \\ &\leq \|u_{n+1}^* u_n \sigma(d) u_n^* u_{n+1} - u_{n+1}^* \gamma(d) u_{n+1}\| \\ &+ \|u_{n+1}^* \gamma(d) u_{n+1} - \sigma(d)\| \\ &< \frac{\delta_n}{2} + \frac{\delta_{n+1}}{2} \\ &< \delta_n \end{aligned}$$

for $d \in \mathcal{G}_n$, $n \in \mathbb{N}$. Now by Lemma 2.1 (and the choice of the \mathcal{G}_n and δ_n), for each *n* there is a continuous path $(w_{n,t})_{t \in [0,1]}$ of unitaries in $\mathcal{U}_0(A)$ such that $w_{n,0} = w_n$, $w_{n,1} = \mathbf{1}_A$ and

(12)
$$\|[w_{n,t},\sigma(d)]\| < \varepsilon_n$$

for all $d \in \mathcal{F}_n, t \in [0, 1]$.

Next, define a path $(\bar{u}_t)_{t \in [0,\infty)}$ of unitaries in $\mathcal{U}_0(A)$ by

$$\bar{u}_t := u_{n+1} w_{n,t-n}$$
 if $t \in [n, n+1)$.

We have that

(13)
$$\bar{u}_n = u_{n+1}w_n = u_n$$

and that

$$\bar{u}_t \rightarrow u_{n+1}$$

as $t \to n+1$ from below, which implies that the path $(\bar{u}_t)_{t \in [0,\infty)}$ is continuous in $\mathcal{U}_0(A)$. Furthermore, for $t \in [n, n+1)$ and $d \in \mathcal{F}_n$ we obtain

$$\|\bar{u}_{t}\sigma(d)\bar{u}_{t}^{*}-\gamma(d)\| = \|u_{n+1}w_{n,t-n}\sigma(d)w_{n,t-n}^{*}u_{n+1}^{*}-\gamma(d)\|$$

$$\stackrel{(12)}{<} \|u_{n+1}\sigma(d)u_{n+1}^{*}-\gamma(d)\| + \varepsilon_{n}$$

$$\stackrel{(11),(10)}{<} \frac{\delta_{n+1}}{2} + \varepsilon_{n}$$

$$\stackrel{(10)}{<} 2\varepsilon_{n}.$$

Since the \mathscr{F}_n are nested and the ε_n converge to 0, we have

(14)
$$\|\bar{u}_t \sigma(d)\bar{u}_t^* - \gamma(d)\| \stackrel{t \to \infty}{\longrightarrow} 0$$

for all $d \in \bigcup_{n=0}^{\infty} \mathscr{F}_n$; by continuity and since $\bigcup_{n=0}^{\infty} \mathscr{F}_n$ is dense in \mathscr{D} , we have (14) for all $d \in \mathscr{D}$. Since $\bar{u}_0 \in \mathscr{U}_0(A)$ we may arrange that $\bar{u}_0 = \mathbf{1}_A$.

3. The group $KK(\mathcal{D}, A \otimes \mathcal{D})$ and some applications

For a separable C^* -algebra \mathcal{D} we endow the group of automorphisms Aut(\mathcal{D}) with the point-norm topology.

COROLLARY 3.1. Let \mathcal{D} be a separable, unital, strongly self-absorbing and K_1 -injective C^* -algebra. Then $[X, \operatorname{Aut}(\mathcal{D})]$ reduces to a point for any compact Hausdorff space X.

PROOF. Let $\varphi, \psi : X \to \operatorname{Aut}(\mathcal{D})$ be continuous maps. We identify φ and ψ with unital *-homomorphisms $\varphi, \psi : \mathcal{D} \to \mathscr{C}(X) \otimes \mathcal{D}$. By Theorem 2.2, φ is strongly asymptotically unitarily equivalent to ψ . This gives a homotopy between the two maps $\varphi, \psi : X \to \operatorname{Aut}(\mathcal{D})$.

REMARK 3.2. The conclusion of Corollary 3.1 was known before for \mathscr{D} a UHF algebra of infinite type and X a CW complex by [14], for $\mathscr{D} = \mathscr{O}_2$ by [8] and [11], and for $\mathscr{D} = \mathscr{O}_\infty$ by [2]. It is new for the Jiang-Su algebra.

For unital C^* -algebras \mathcal{D} and B we denote by $[\mathcal{D}, B]$ the set of homotopy classes of unital *-homomorphisms from \mathcal{D} to B. By a similar argument as above we also have the following corollary.

COROLLARY 3.3. Let \mathcal{D} and A be unital C^{*}-algebras. If \mathcal{D} is separable, strongly self-absorbing and K_1 -injective, then $[\mathcal{D}, A \otimes \mathcal{D}]$ reduces to a singleton.

For separable unital C^* -algebras \mathscr{D} and B, let $\chi_i : KK_i(\mathscr{D}, B) \rightarrow KK_i(\mathsf{C}, B) \cong K_i(B), i = 0, 1$ be the morphism of groups induced by the unital inclusion $v : \mathsf{C} \rightarrow \mathscr{D}$.

THEOREM 3.4. Let \mathcal{D} be a unital, separable and strongly self-absorbing C^* -algebra. Then for any separable C^* -algebra A, the map $\chi_i : KK_i(\mathcal{D}, A \otimes \mathcal{D}) \rightarrow K_i(A \otimes \mathcal{D})$ is bijective, for i = 0, 1. In particular both groups $KK_i(\mathcal{D}, A \otimes D)$ are countable and discrete with respect to their natural topology.

PROOF. Since \mathscr{D} is *KK*-equivalent to $\mathscr{D} \otimes \mathscr{O}_{\infty}$, we may assume that \mathscr{D} is purely infinite and in particular K_1 -injective by [12, Prop. 4.1.4]. Let $C_v \mathscr{D}$ denote the mapping cone C^* -algebra of v. By [3, Cor. 3.10], there is a bijection $[\mathscr{D}, A \otimes \mathscr{D}] \to KK(C_v \mathscr{D}, SA \otimes \mathscr{D})$ and hence $KK(C_v \mathscr{D}, SA \otimes \mathscr{D}) = 0$ for all separable and unital C^* -algebras A as a consequence of Corollary 3.3. Since $KK(C_v \mathscr{D}, A \otimes \mathscr{D})$ is isomorphic to $KK(C_v \mathscr{D}, S^2 A \otimes \mathscr{D})$ by Bott periodicity and the latter group injects in $KK(C_v \mathscr{D}, SC(\mathsf{T}) \otimes A \otimes \mathscr{D}) = 0$, we have that $KK_i(C_v \mathscr{D}, \mathscr{D} \otimes A) = 0$ for all unital and separable C^* -algebras A and i = 0, 1. Since $KK_i(C_v \mathscr{D}, \mathscr{D} \otimes A)$ is a subgroup of $KK_i(C_v \mathscr{D}, \mathscr{D} \otimes A) = 0$ (where \widetilde{A} is the unitization of A) we see that $KK_i(C_v \mathscr{D}, \mathscr{D} \otimes A) = 0$ for all separable C^* -algebras A. Using the Puppe exact sequence, where $\chi_i = v^*$,

$$\begin{array}{ccc} KK_{i+1}(C_{\nu}\mathscr{D}, A\otimes\mathscr{D}) \longrightarrow KK_{i}(\mathscr{D}, A\otimes\mathscr{D}) \\ & \stackrel{\chi_{i}}{\longrightarrow} KK_{i}(\mathsf{C}, A\otimes\mathscr{D}) \longrightarrow KK_{i}(C_{\nu}\mathscr{D}, A\otimes\mathscr{D}) \end{array}$$

we conclude that χ_i is an isomorphism, i = 0, 1. The map $\chi_i = \nu^*$ is continuous since it is given by the Kasparov product with a fixed element (we

refer the reader to [13], [10] or [1] for a background on the topology of the Kasparov groups). Since the topology of K_i is discrete and χ_i is injective, it follows that the topology of $KK_i(\mathcal{D}, A \otimes D)$ is also discrete. The countability of $KK_i(\mathcal{D}, A \otimes D)$ follows from that of $K_i(A \otimes D)$, as $A \otimes \mathcal{D}$ is separable.

REMARK 3.5. In contrast to Theorem 3.4, if \mathcal{D} is the universal UHF algebra, then $KK(\mathcal{D}, C) \cong Ext(Q, Z) \cong Q^N$ has the power of the continuum [6, p. 221].

Let \mathscr{D} and A be as in Theorem 3.4 and assume in addition that \mathscr{D} is K_1 -injective and A is unital. Let $\iota : \mathscr{D} \to A \otimes \mathscr{D}$ be defined by $\iota(d) = \mathbf{1}_A \otimes d$.

COROLLARY 3.6. If $e \in \mathcal{K} \otimes A \otimes \mathcal{D}$ is a projection, and $\varphi, \psi : \mathcal{D} \rightarrow e(\mathcal{K} \otimes A \otimes \mathcal{D})e$ are two unital *-homomorphisms, then $\varphi \approx_{\text{sub}} \psi$ and hence $[\varphi] = [\psi] \in KK(\mathcal{D}, A \otimes \mathcal{D})$. Moreover:

$$KK(\mathcal{D}, A \otimes \mathcal{D}) = \{ [\varphi] - n[\iota] \mid \varphi : \mathcal{D} \\ \to \mathcal{H} \otimes A \otimes \mathcal{D} \text{ is } a^* \text{-homomorphism, } n \in \mathsf{N} \}.$$

PROOF. Let φ , ψ and e be as in the first part of the statement. By [15, Cor. 3.1], the unital C^* -algebra $e(\mathscr{K} \otimes A \otimes \mathscr{D})e$ is \mathscr{D} -stable, being a hereditary subalgebra of a \mathscr{D} -stable C^* -algebra. Therefore $\varphi \approx_{\text{sub}} \psi$ by Theorem 2.2.

Now for the second part of the statement, let $x \in KK(\mathcal{D}, A \otimes \mathcal{D})$ be an arbitrary element. Then $\chi_0(x) = [e] - n[\mathbf{1}_{A \otimes \mathcal{D}}]$ for some projection $e \in \mathcal{K} \otimes A \otimes \mathcal{D}$ and $n \in \mathbb{N}$. Since $e(\mathcal{K} \otimes A \otimes \mathcal{D})e$ is \mathcal{D} -stable, there is a unital *-homomorphism $\varphi : \mathcal{D} \to e(\mathcal{K} \otimes A \otimes \mathcal{D})e$. Then

$$\chi_0([\varphi] - n[\iota]) = [\varphi(\mathbf{1}_{\mathscr{D}})] - n[\iota(\mathbf{1}_{\mathscr{D}})] = [e] - n[\mathbf{1}_{A\otimes\mathscr{D}}] = \chi_0(x),$$

and hence $[\varphi] - n[\iota] = x$ since χ_0 is injective by Theorem 3.4.

4. Characterizing \mathcal{O}_2 and the universal UHF algebra

In the remainder of the paper we give characterizations for the Cuntz algebra \mathcal{O}_2 and for the universal UHF-algebra which do not require the UCT. The latter result is a variation of a theorem of Effros and Rosenberg [5]. The results of this section do not depend on those of Section 2.

PROPOSITION 4.1. Let \mathcal{D} be a separable unital strongly self-absorbing C^* algebra. If $[\mathbf{1}_{\mathcal{D}}] = 0$ in $K_0(\mathcal{D})$, then $\mathcal{D} \cong \mathcal{O}_2$.

PROOF. Since \mathscr{D} must be nuclear (see [15]), \mathscr{D} embeds unitally in \mathscr{O}_2 by Kirchberg's theorem. \mathscr{D} is not stably finite since $[\mathbf{1}_{\mathscr{D}}] = 0$. By the dichotomy of [15, Thm. 1.7] \mathscr{D} must be purely infinite. Since $[\mathbf{1}_{\mathscr{D}}] = 0$ in $K_0(\mathscr{D})$, there is a unital embedding $\mathscr{O}_2 \to \mathscr{D}$, see [12, Prop. 4.2.3]. We conclude that \mathscr{D} is isomorphic to \mathscr{O}_2 by [15, Prop. 5.12].

PROPOSITION 4.2. Let \mathcal{D} , A be separable, unital, strongly self-absorbing C^* -algebras. Suppose that for any finite subset \mathcal{F} of \mathcal{D} and any $\varepsilon > 0$ there is a u.c.p. map $\varphi : \mathcal{D} \to A$ such that $\|\varphi(cd) - \varphi(c)\varphi(d)\| < \varepsilon$ for all $c, d \in \mathcal{F}$. Then $A \cong A \otimes \mathcal{D}$.

PROOF. By [15, Thm. 2.2] it suffices to show that for any given finite subsets \mathscr{F} of \mathscr{D} , \mathscr{G} of A and any $\varepsilon > 0$ there is u.c.p. map $\Phi : \mathscr{D} \to A$ such that (i) $\|\Phi(cd) - \Phi(c)\Phi(d)\| < \varepsilon$ for all $c, d \in \mathscr{F}$ and (ii) $\|[\Phi(d), a]\| < \varepsilon$ for all $d \in \mathscr{F}$ and $a \in \mathscr{G}$. We may assume that $\|d\| \leq 1$ for all $d \in \mathscr{F}$. Since A is strongly self-absorbing, by [15, Prop. 1.10] there is a unital *-homomorphism $\gamma : A \otimes A \to A$ such that $\|\gamma(a \otimes \mathbf{1}_A) - a\| < \varepsilon/2$ for all $a \in \mathscr{G}$. On the other hand, by assumption there is a u.c.p. map $\varphi : \mathscr{D} \to A$ such that $\|\varphi(cd) - \varphi(c)\varphi(d)\| < \varepsilon$ for all $c, d \in \mathscr{F}$. Let us define a u.c.p. map $\Phi : \mathscr{D} \to A$ by $\Phi(d) = \gamma(\mathbf{1}_A \otimes \varphi(d))$. It is clear that Φ satisfies (i) since γ is a *-homomorphism. To conclude the proof we check now that Φ also satisfies (ii). Let $d \in \mathscr{F}$ and $a \in \mathscr{G}$. Then

$$\begin{split} \|[\Phi(d), a]\| &\leq \|[\Phi(d), a - \gamma(a \otimes \mathbf{1}_A)]\| + \|[\Phi(d), \gamma(a \otimes \mathbf{1}_A)]\| \\ &\leq 2\|\Phi(d)\| \|a - \gamma(a \otimes \mathbf{1}_A)\| + \|[\gamma(\mathbf{1}_A \otimes \varphi(d)), \gamma(a \otimes \mathbf{1}_A)]\| \\ &< 2\varepsilon/2 + 0 \\ &= \varepsilon. \end{split}$$

PROPOSITION 4.3. Let \mathscr{D} be a separable, unital, strongly self-absorbing C^* algebra. Suppose that \mathscr{D} is quasidiagonal, it has cancellation of projections and that $[\mathbf{1}_{\mathscr{D}}] \in nK_0(\mathscr{D})^+$ for all $n \ge 1$. Then \mathscr{D} is isomorphic to the universal UHF algebra \mathscr{D} with $K_0(\mathscr{D}) \cong \mathbf{Q}$.

PROOF. Since \mathscr{D} is separable unital and quasidiagonal, there is a unital *-representation $\pi : \mathscr{D} \to B(H)$ on a separable Hilbert space H and a sequence of nonzero projections $p_n \in B(H)$ of finite rank k(n) such that $\lim_{n\to\infty} \|[p_n, \pi(d)]\| = 0$ for all $d \in \mathscr{D}$. Then the sequence of u.c.p. maps $\varphi_n : \mathscr{D} \to p_n B(H) p_n \cong M_{k(n)}(\mathsf{C}) \subset \mathscr{D}$ is asymptotically multiplicative, i.e $\lim_{n\to\infty} \|\varphi_n(cd) - \varphi_n(c)\varphi_n(d)\| = 0$ for all $c, d \in \mathscr{D}$. Therefore $\mathscr{D} \cong \mathscr{D} \otimes \mathscr{D}$ by Proposition 4.2.

In the second part of the proof we show that $\mathscr{D} \cong \mathscr{D} \otimes \mathscr{Q}$. Let $E_n : \mathscr{Q} \to M_{n!}(\mathsf{C}) \subset \mathscr{Q}$ be a conditional expectation onto $M_{n!}(\mathsf{C})$. Then $\lim_{n\to\infty} ||E_n(a) - a|| = 0$ for all $a \in \mathscr{Q}$.

By assumption, for each *n* there is a projection e in $\mathcal{D} \otimes M_m(\mathsf{C})$ (for some *m*) such that $n![e] = [\mathbf{1}_{\mathcal{D}}]$ in $K_0(\mathcal{D})$. Let $\varphi : M_{n!}(\mathsf{C}) \to M_{n!}(\mathsf{C}) \otimes e(\mathcal{D} \otimes M_m(\mathsf{C}))e$ be defined by $\varphi(b) = b \otimes e$. Since \mathcal{D} has cancellation of projections and since $n![e] = [\mathbf{1}_{\mathcal{D}}]$, there is a partial isometry $v \in M_{n!}(\mathsf{C}) \otimes D \otimes M_m(\mathsf{C})$ such that

 $v^*v = \mathbf{1}_{M_n!(\mathsf{C})} \otimes e$ and $vv^* = e_{11} \otimes \mathbf{1}_{\mathscr{D}} \otimes e_{11}$. Therefore $b \mapsto v \varphi(b) v^*$ gives a unital embedding of $M_n!(\mathsf{C})$ into \mathscr{D} . Finally, $\psi_n(a) = v (\varphi \circ E_n(a)) v^*$ defines a sequence of asymptotically multiplicative u.c.p. maps $\mathscr{Q} \to \mathscr{D}$. Therefore $\mathscr{D} \cong \mathscr{D} \otimes \mathscr{Q}$ by Proposition 4.2.

REMARK 4.4. Let \mathscr{D} be a separable, unital, strongly self-absorbing and quasidiagonal C^* -algebra. Then $\mathscr{D} \otimes \mathscr{Q} \cong \mathscr{Q}$ by the first part of the proof of Proposition 4.3. In particular $K_1(\mathscr{D}) \otimes \mathbf{Q} = 0$ and $K_0(\mathscr{D}) \otimes \mathbf{Q} \cong \mathbf{Q}$ by the Künneth formula (or by writing \mathscr{Q} as an inductive limit of matrices).

NOTE ADDED IN PROOF. Theorem 2.2 answers a question of Kirchberg, cf. [9], under the additional hypothesis that the algebra \mathcal{D} is K_1 -injective. In view of Remark 1.5 this condition can be replaced by the (possibly weaker) condition that the commutator subgroup of the unitary group of \mathcal{D} is contained in $\mathcal{U}_0(\mathcal{D})$.

REFERENCES

- Dadarlat, M., On the topology of the Kasparov groups and its applications, J. Funct. Anal. 228 (2005), 394–418.
- Dadarlat, M. Continuous fields of C*-algebras over finite dimensional spaces, arXiv preprint math.OA/0611405 (2006).
- 3. Dadarlat, M., *The homotopy groups of the automorphism group of Kirchberg algebras*, J. Noncommut. Geom. 1 (2007), 113–139.
- Dadarlat, M., and Winter, W., *Trivialization of C(X)-algebras with strongly self-absorbing fibres*, Bull. Soc. Math. France 136 (2008), 173–204.
- Effros, E. G., and Rosenberg, J., C*-algebras with approximately inner flip, Pacific J. Math. 77 (1978), 417–443.
- 6. Fuchs, L., Infinite Abelian Groups, vol. 1, Academic Press, New York and London, 1970.
- Hirshberg, I., Rørdam, M., and Winter, W., C₀(X)-algebras, stability and strongly selfabsorbing C*-algebras, Math. Ann. 339 (2007), 695–732.
- Kirchberg, E., The classification of purely infinite C*-algebras using Kasparov's theory, preprint (1994).
- Kirchberg, E., Central sequences in C*-algebras and strongly purely infinite algebras, Operator Algebras: The Abel Syposium 2004, 175–231, Abel Symp. 1, Springer, Berlin, 2006.
- 10. Pimsner, M. V., A topology on the Kasparov groups, draft.
- Phillips, N. C., A classification theorem for nuclear purely infinite simple C*-algebras, Doc. Math. 5 (2000), 49–114.
- 12. Rørdam, M., Classification of Nuclear C*-Algebras, Encyclopaedia Math. Sci. 126 (2002).
- 13. Schochet, C., *The fine structure of the Kasparov groups I. Continuity of the KK-pairing*, J. Funct. Anal. 186 (2001), 25–61.
- Thomsen, K., The homotopy type of the group of automorphisms of a UHF-algebra, J. Funct. Anal. 72 (1987), 182–207.
- Toms, A., and Winter, W., Strongly self-absorbing C*-algebras, Trans. Amer. Math. Soc. 359 (2007), 3999–4029.
- 16. Toms, A., and Winter, W., *2-stable ASH algebras*, Canad. J. Math. 60 (2008), 703-720.

ON THE *KK*-theory of strongly self-absorbing C^* -algebras 107

- 17. Winter, W., On the classification of simple *X*-stable C*-algebras with real rank zero and finite decomposition rank, J. London Math. Soc. 74 (2006), 167–183.
- Winter, W., Simple C*-algebras with locally finite decomposition rank, J. Funct. Anal. 243 (2007), 394–425.
- 19. Winter, W., *Localizing the Elliott conjecture at strongly self-absorbing C*-algebras*, with an appendix by H. Lin, preprint math.OA/0708.0283 (2007).

DEPARTMENT OF MATHEMATICS PURDUE UNIVERSITY WEST LAFAYETTE, IN 47907 USA *E-mail:* mdd@math.purdue.edu MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNSTER EINSTEINSTR. 62 D-48149 MÜNSTER GERMANY *E-mail:* wwinter@math.uni-muenster.de