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CLASSIFICATION OF RATIONAL SURFACES
OF DEGREE 11 AND SECTIONAL

GENUS 11 IN P4

HANS-CHRISTIAN GRAF V. BOTHMER and KRISTIAN RANESTAD∗

Abstract
We use the BGG-correspondence to show that there are at most three possible Hilbert functions for
smooth rational surfaces of degree 11 and sectional genus 11. Surfaces with one of these Hilbert
functions have been classified by Popescu. The classification for a second one is done in this paper.
For the third Hilbert function the classification is still open.

1. Introduction

In the classification of smooth embedded varieties a natural start is to determine
which Hilbert polynomials occur. Next one can classify the possible Hilbert
functions. A bold aim is to determine the irreducible components of the Hil-
bert scheme representing smooth varieties and give a description of a general
member in each component.

For space curves the first question was answered by Gruson and Peskine
[10], while the second and third are only partially answered. For smooth sur-
faces in P4 there are even fewer results. The only general ones are the bounds
of Ellingsrud and Peskine [6] that give asymptotic restrictions on the Hilbert
polynomials that occur. Most work has concentrated on small invariants, and
even here the results are only partial: The first question is only completely
answered up to degree 10, on the other hand in this case also the second and
third question is completely answered, although not explicitly.

The techniques involved in the classification of surfaces with small invari-
ants have developed considerably over time. The only common feature is that
the combination of different approaches required often give the arguments a
certain ad hoc flavor. While proving that certain components are nonempty,
i.e. to give examples, can often be done transparently, it is the converse result,
that a component is empty, that seems to require a combination of techniques.
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In this paper we use the Tate resolution of the ideal sheaf I := IS of a
smooth surface S in P4 with Hilbert polynomial PS(n) = 11

2 n
2 − 9

2n + 1 to
determine the Hilbert function of S. The main new idea is to study complexes
on the Grassmannian of linear subspaces of P4, as introduced by [7], that are
analogs of the Beilinson Monad. The degeneracy loci of the maps of these
complexes define special linear subspaces in P4.

Special linear subspaces are those where the cohomology of the restricted
ideal sheaf differs from the cohomology of a general restriction. Lines in the
surface and lines that intersect the surface S in a scheme of large length are
special. A special plane intersects the surface S in a curve, or in 11 points in
special position. A special hyperplane intersects the surface in a space curve
which lies on more surfaces of small degree than the general one. The geometry
of special linear subspaces allows us to determine which maps can occur in
the Tate resolution.

The main results and the organization of the paper is as follows: In Section
2 we recall the basic facts about the Tate resolution of I (n), its relation to the
Beilinson Monad and the corresponding complexes on the Grassmannians as
explained by Eisenbud and Schreyer [7]. When the intersection between the
linear subspace and the surface is improper, then the ideal sheaf of the inter-
section is not the restriction of the ideal sheaf. The difference is made precise
by the excess conormal sheaf. (cf. Fulton [8]). In Sections 3 and 4 we use this
excess sheaf to study the restriction of the ideal of the surface to special lines
and planes respectively. In the Section 5 we recall how the diagrams of generic
initial ideals, as introduced by Green [11], can be applied to classify plane
sections of S. Section 6 is then devoted to determining the Hilbert function of
S. We show that only three different functions are possible. They differ from
the Hilbert polynomial only in degrees n = 1, . . . , 5, where their values are
(5, 15, 35, 70, 116), (5, 15, 35, 69, 116) and (5, 15, 35, 69, 115) respectively.
Popescu showed that the first function occurs with three different irreducible
families. In [16] v. Bothmer, Erdenberger and Ludwig give an example with the
second function which was found by a random search over F2. In Section 7 and
8 we show that all smooth surfaces with this second Hilbert function belong to
the same irreducible and unirational family. This is Theorem 8.4. In Section 9
we a geometric construction of the surfaces in this family (Theorem 9.2).

The third Hilbert function also occurs for an irreducible family of surfaces,
but we are not able to determine whether any of the surfaces belonging to
that family are smooth. This reflects the nature of our methods. The exterior
algebra methods we employ do not distinguish between smooth and singular
irreducible surfaces. It is in combination with geometric arguments that we
are sometimes able to make that distinction. On the other hand the constructed
examples needed to eventually prove that a component is nonempty are of-
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ten so rigid that Bertini type theorems do not easily apply. Therefore, explicit
examples of smooth surfaces are constructed using the computer algebra pro-
gram Macaulay2 [13]. Scripts are provided and documented on our website
[17]. These examples are constructed algebraically over Z, and computed over
a finite field, so by the openness condition of smoothness they are smooth over
the rational numbers, and hence also over C. (cf. [4], Appendix A).

2. Preliminaries

Notation 2.1.
W a vector space of dimension 5
E = ∧

W ∗ the exterior algebra over its dual space, with grading given
by deg(W ∗) = −1

P4 = P(W) the Grothendieck projectivisation of W
Gl the Grassmannian of codim l linear subspaces in P4

Fl the Flag variety of points in codim l linear subspaces of P4

In this paper we use the BGG-correspondence of Bernšteı̆n, Gel’fand and
Gel’fand [2] in an explicit version described by Eisenbud, Fløystad and Schr-
eyer in [5]. For every sheaf F on P(W) one can construct a canonical exact
complex T (F ) over the exterior algebraE. This complex is called the Tate res-
olution, see [5, Section 4] for the construction. The terms of the Tate resolution
can be explicitly described:

Theorem 2.2 (Bernšteı̆n, Gel’fand and Gel’fand; Eisenbud, Fløystad and
Schreyer). If F is a coherent sheaf on P(W), then the e-th term of the Tate
resolution is

T (F )e =
⊕
j

HomK(E,H
j (F (e − j))) ∼=

⊕
j

H j (F (e − j))⊗ E(j − e).

Proof. [5, Theorem 4.1].

Now consider the incidence correspondence

Fl
π2−−−−−→ Gl

↓
π1

P4

and the tautological sequence

0 −→ Ul −→ W ⊗ OGl
−→ Ql −→ 0.



classification of rational surfaces of degree 11 and . . . 63

In [7] Eisenbud and Schreyer define an additive functor Ul from graded free
modules over E to locally free sheaves on Gl by taking Ul(E(p)) = ∧p

Ul

and sending a map η:E(q) → E(q−p) to the mapUl(η):
∧q

Ul → ∧q−p
Ul

defined by the element of
∧p

W ∗ corresponding to η [7, Proposition 1.1]. We
write Ul(F ) for Ul(T (F )).

Theorem 2.3 (Beı̆linson; Eisenbud and Schreyer). If F is a sheaf on Pn

then
Ul(F ) = Rπ2∗(π∗

1 F )

in the derived category.

Proof. [7, Theorem 1.2].

Remark 2.4. Notice thatU4(F ) is the Beı̆linson-Monad [1]. In this case F

appears as the homology in step 0. For l ≥ dim supp F one can recover F from
Ul(F ). [7, Proposition 1.3] In this paper we also use the partial information
contained in Ul(F ) for l ≤ dim supp F .

We now consider the twisted ideal sheaf IS(n) of a smooth surface in P4

and want to determine its Tate resolution T (IS(n)). Its terms

T (IS(n))
e =

4∑
j=0

Hj(IS(n+ e − j))⊗ E(j − e)

are given by Theorem 2.2. To determine its maps we apply the functor Ul and
use the geometry of S to analyze the complexes Ul(F ). For fixed l we use the
notation

Fe := Ul(F )e =
4∑

j=0

Hj(IS(n+ e − j))⊗
j−e∧

Ul .

Notice that only the termsF−l ...F 4 are nonzero, so the complexUl(F ) reduces
to

0 → F−l ψ−l+1−−−−→ F−l+1 ψ−l+2−−−−→ . . .
ψ3−−→ F 3 ψ4−−→ F 4 −→ 0.

Notice furthermore that each cohomology groupHi(IS(k)) appears in at most
one Fe.

In the following tables the entry Fe in the row of hj and column k indicates
thatHj(IS(k))⊗∧n−k

Ul is a summand of Fe. For convenience we indicate∧n−k
Ul in the first row.
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For hyperplanes (l = 1): For planes (l = 2):

O (−1) O

h4 F 3 F 4

h3 F 2 F 3

h2 F 1 F 2

h1 F 0 F 1

h0 F−1 F 0

n− 1 n

O (−1) U2 O

h4 F 2 F 3 F 4

h3 F 1 F 2 F 3

h2 F 0 F 1 F 2

h1 F−1 F 0 F 1

h0 F−2 F−1 F 0

n− 2 n− 1 n

For lines (l = 3): For points (l = 4):

O (−1)
∧2

U3 U3 O

h4 F 1 F 2 F 3 F 4

h3 F 0 F 1 F 2 F 3

h2 F−1 F 0 F 1 F 2

h1 F−2 F−1 F 0 F 1

h0 F−3 F−2 F−1 F 0

n− 3 n− 2 n− 1 n

O (−1)
∧3

U4
∧2

U4 U4 O

h4 F 0 F 1 F 2 F 3 F 4

h3 F−1 F 0 F 1 F 2 F 3

h2 F−2 F−1 F 0 F 1 F 2

h1 F−3 F−2 F−1 F 0 F 1

h0 F−4 F−3 F−2 F−1 F 0

n− 4 n− 3 n− 2 n− 1 n

We mainly use this setup to calculate the cohomology of hyperplane, plane
and line sections of S via the following propositions:

Proposition 2.5. Let L be a linear subspace of codimension l in P4 and
σ ∈ Gl the corresponding point in the Grassmannian. If ψi+1 = 0 then

Hi(IS(n)|L) = cokerψi |σ .
In particular ifF i = 0 thenHi(IS(n)|L) = 0 for all linear subspacesL ⊂ P4.

Proof. By Theorem 2.3 we have a right exact sequence

F i−1 ψi−−→ F i −→ Riπ2∗(π∗
1 IS(n)) −→ 0.

Restricting to σ we obtain

F i−1|σ ψi |σ−−−→ F i |σ −→ Hi(IS(n)|L)) −→ 0.

Remark 2.6. Notice that this proposition gives in a compact way the in-
formation one would get by repeatedly using the restriction sequence.



classification of rational surfaces of degree 11 and . . . 65

We compare the restriction of the ideal sheaf to the ideal sheaf of the re-
striction:

Proposition 2.7. Let σ ∈ Gl be a linear subspace of codimension l, which
does not intersect S properly, but is not contained in S. Let Z ⊂ S ∩ σ the
union of those components that are of codimension 1 in σ . Then there exists a
locally free sheaf JZ on Z such that

0 −→ JZ −→ IS |σ −→ IS∩σ −→ 0.

Furthermore JZ completes the diagram

0 0

↓ ↓
0 −−→ JZ −−→ N∗

σ/P4 |Z −−→ N∗
Z/S −−→ 0

↓ ↓
0 −−→ N∗

S/P4 |Z −−→ N∗
Z/P4 −−→ N∗

Z/S −−→ 0

↓ ↓
0 −−→ N∗

Z/σ ��� N∗
Z/σ

↓ ↓
0 0

of conormal sheaves.

Proof. Locally at a point z ∈ Z, let I = IS,z be the ideal of S and J = Iσ,z
the ideal of σ . Then the restriction I |σ is given by I

IJ
, since it is the ideal I

tensored by the local coordinate ringRσ of σ at z. The ideal of the intersection
is I+J

J
inside Rσ . Furthermore there is a natural surjective map I

IJ
→ I+J

J
of

Rσ modules. The kernel is easily identified in the exact sequence:

0 −→ I ∩ J
IJ

−→ I

IJ
−→ I + J

J
−→ 0.

Notice that the kernel is supported where the intersection is not proper, i.e. on
Z. In particular there is a short exact sequence

0 −→ JZ −→ IS |σ −→ IS∩σ −→ 0.
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Now sinceZ has pure codimension 1 in σ it is a local complete intersection.
Also σ and S are smooth, so we have an exact sequence

0 −→ I ∩ J
IJ

−→ I

I 2
⊗ RP4,z

J
−→ J

J 2
−→ 0.

This proves that JZ is locally free and fits into the proposed diagram.

Remark 2.8. In Fulton’s notation [9, Section 6.3], the dual of JZ is called
the excess normal bundle of the fiber product

Z −−−→ S

↓ ↓
σ −−−→ P4.

3. Lines

We consider multi-secants and lines in S.

Proposition 3.1. Let L be a k-secant line to S. Then

h1(IS(n)|L) =
{

0 if n > k − 2

k − n− 1 if n ≤ k − 2

Proof. We are in the situation of Proposition 2.7 withZ a scheme of length
k and an exact sequence

0 −→ JZ −→ IS(n)|L −→ IZ(n) −→ 0.

Since JZ has no H 1 we obtain h1(IS(n)|L) = h1(IZ(n)) = h1(OP1(n− k)).

Proposition 3.2. Let L ⊂ S be a (−k)-line. Then

IS |L = O (−a)⊕ O (−b)
with a + b = k + 3 and 0 < a, b < k + 3.

Proof. If L is contained in S, then IS |L is the conormal bundle of S
restricted to L and fits into the conormal bundle sequence

0 −→ N∗
S/P4 |L −→ N∗

L/P4 −→ N∗
L/S −→ 0

which reduces to

0 −→ N∗
S/P4 |L −→ 3OP1(−1) −→ OP1(k) −→ 0,
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from which the proposition follows.

Corollary 3.3. Let L ⊂ S be a (−k)-line. If n ≥ k + 1 then

h0(IS(n)|L)− h0(OL(n)) = n− k − 2.

On the other hand, if h1(IS(n)|L) �= 0 then k ≥ n.

Proof. IS(n)|L = O (n − a) ⊕ O (n − b) with a, b < k + 3 by Proposi-
tion 3.2. For n ≥ k+1 we haveh1(IS(n)|L) = 0 andh0(IS(n)|L) = 2n−k−1
since a + b = k + 3.

Proposition 3.4. Let L ⊂ P4 be any line.

(1) If h1(IS(n)|L) = 1 then either L is a n + 2-secant line or L ⊂ S and
L2 ≤ −n.

(2) If h1(IS(n)|L) = 0 and h0(IS(n)|L)− h0(OL(n)) = 1 then L ⊂ S with
L2 = 3 − n.

Proof. From Proposition 3.1 and Corollary 3.3 we obtain (1). For L �⊂ S

one always has h0(IS(n)|L) ≤ h0(OL(n)), so claim (2) follows.

4. Planes

Throughout this section let P ⊂ P4 be a plane and C ⊂ P ∩ S be the 1-
dimensional component. By Proposition 2.7 we have the exact sequence

0 −→ JC −→ N∗
P/P4 |C −→ N∗

C/S −→ 0

which reduces to

0 −→ JC −→ 2OC(−1) −→ OC(−C) −→ 0

and shows JC = OC(C − 2H).
We can read off the degree of C from the cohomology of either IS∩P or

IS |P :

Proposition 4.1. Let P ⊂ P4 be any plane and C the curve component of
P ∩ S.

(1) If n ≥ −2 then h2(IS(n)|P ) = h2(IP∩S(n)) = (degC−n−1
2

)
.

(2) If h1(OC(C + (n− 2)H)) = 0 then h1(IS(n)|P ) = h1(IP∩S(n)).

Proof. First we consider the cohomology of the short exact sequence

0 −→ OC(C + (n− 2)H) −→ IS(n)|P −→ IS∩P (n) −→ 0.
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Since h2(OC(C + (n − 2)H)) = 0, we get h2(IS(n)|P ) = h2(IP∩S(n)). In
the second case h1(OC(C + (n − 2)H)) = h2(OC(C + (n − 2)H)) = 0 and
the second part of the proposition follows.

From the sequence

0 → IP∩S(n) → OP (n) → OP∩S(n) → 0

we obtain h2(IP∩S)(n) = h1(OP∩S(n)) if n ≥ −2. Furthermore

h1(OP∩S(n)) = h1(OC(n)) = h0(OC(degC − 3 − n)) =
(

degC − n− 1

2

)

5. Diagrams

In the previous section we compared the restriction of the ideal of a surface
in P4 to a plane with the ideal of the intersection of the surface and the plane.
In this section we will concentrate on the latter. We recall from [11] how the
different Hilbert functions of plane algebraic sets are read off from certain
diagrams representing the generic initial ideals of their ideals.

Notation 5.1. Consider

K[a, b, c] the coordinate ring of P2

gin I the generic initial ideal of I with respect to the
reverse lexicographic order with a < b < c.

Remark 5.2.

(1) I is saturated if and only if gin I is saturated.

(2) if gin I is saturated an aibj ck ∈ gin I then also aibj ∈ gin I .

(3) The Hilbert function and Hilbert polynomial of I and gin I are the same.

Definition 5.3. Let I ⊂ K[a, b, c] be a saturated ideal. We represent the
generic initial ideal gin I by a diagram of x’s and 0’s in N0 × N0. An x in the
point (i, j) means that aibj ∈ gin I and a 0 means aibj �∈ gin I .

We also set
d(I ) = min{i | ∃aibj ∈ gin I }
e(I ) = #{aibj �∈ gin I | i ≥ d}
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Example 5.4. gin I = (a4, a3b, a2b3) is represented by

...
...

...

0 0 x x x

0 0 x x x

j 0 0 0 x x · · ·
0 0 0 x x

0 0 0 0 x

i

We have d(I ) = 2 and e(I ) = 4. Notice that d(I ) is the number of columns
with only 0’s and e is the number of 0’s outside of these columns.

Remark 5.5. Since gin I is an ideal we have 0’s left and below each 0, and
x’s right and above of each x. Also generic initial ideals are Borel-fixed, i.e.
for i ≥ 1 we have

aibj ∈ gin I �⇒ ai+1bi−1 ∈ gin I.

This means that we also have x’s on the diagonal right and below of each x.

Proposition 5.6. Let I be an ideal sheaf on P2 and I = ⊕
H 0(I (n)) the

corresponding saturated ideal. Let HI(n) = h0(OP2(n)) − h0(I (n)) be the
Hilbert function of V (I). Then

HI(n) = #{0’s below and on the diagonal i+ j = n in the diagram of gin I }.

Proof. The monomials not contained in gin I form a basis ofK[a, b, c]/I .

Proposition 5.7. Let I ⊂ K[a, b, c] be a saturated ideal. Then d(I ) as
defined above is the degree of the curve components of V (I).

Proof. For large n the number of 0’s on and below i + j = n increases
by d(I ) in each step, so the linear term of the Hilbert polynomial of V (I) has
coefficient d(I ).

Proposition 5.8. Let I ⊂ K[a, b, c] be a saturated ideal. Then e(I ) as
defined above is the degree of the dimension 0 component of V (I).

Proof. The difference of the constant in the Hilbert polynomial of V (I)
and that of a plane curve of degree d(I ) is precisely e.

Useful for the geometric interpretation is the following
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Remark 5.9. It follows from a theorem of Ellia and Peskine [11, The-
orem 4.4] that one can sometimes read off special positions of points in V (I)
according to the following rule:

If in the i’th column we have at least three x’s to the right of three 0’s in
column i − 1, then there exists a curve of degree i − d(I ) passing through n
points of V (I), where n is the number of 0’s in columns d(I )+ 1, . . . , i − 1.
The converse of this is not true in general.

Proposition 5.10. Let I be an ideal sheaf on P2, I = ⊕
H 0(I (n)) the

corresponding saturated ideal and r the number of 0’s with i ≥ d(I ) lying
above the diagonal i + j = n, then

h1(I (n)) = r

Proof. The number r is the difference between the Hilbert function and
the Hilbert polynomial of V (I) at n.

We again turn to our smooth surface S of degree 11 in P4.

Remark 5.11. Since the degree of the curve component of a plane section
S ∩P is bounded by the degree of S, it follows that for h1(IS∩P (n)) = r there
are only finitely many saturated generic initial ideals.

Example 5.12. Let X ⊂ P2 be a finite subscheme of degree 11 that is not
contained in any conic section. For the diagram of X this means that we must
have no x’s on and below the i + j = 2 line, and eleven 0’s altogether. The
possible such diagrams are

0 x x x

0 x x x

0 x x x

0 x x x

0 x x x

0 x x x

0 0 x x

0 0 0 x

0 x x x

0 x x x

0 x x x

0 x x x

0 0 x x

0 0 x x

0 0 0 x

0 x x x

0 x x x

0 0 x x

0 0 x x

0 0 x x

0 0 0 x

and
0 x x x

0 x x x

0 x x x

0 0 x x

0 0 0 x

0 0 0 x

x x x x

0 x x x

0 0 x x

0 0 x x

0 0 0 x

0 0 0 x

x x x x

0 x x x

0 x x x

0 0 x x

0 0 0 x

0 0 0 0
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In the first case X contains a subscheme of length 8 on a line, in the second
caseX contains a subscheme of length 7 on a line, in the third caseX contains
a subscheme of length 10 on a conic, in the fourth caseX contains a subscheme
of length 6 on a line, in the first five cases X is contained in a cubic, while in
the last case X is not contained in any cubic curve. Notice that each case is
also distinguished by the corresponding values of h1(IX(n)) for n = 3, 4, 5. In
fact, we get the following triples (4, 3, 2), (3, 2, 1), (3, 1, 0), (2, 1, 0), (2, 0, 0)
and (1, 0, 0) respectively.

Example 5.13. Let X ⊂ P2 be the union of a quartic curve and a scheme
of length 3. In the diagram ofX this means that the first four columns have all
0’s, and that there are three more 0’s. There are two possible diagrams:

0 0 0 0 x x

0 0 0 0 x x

0 0 0 0 x x

0 0 0 0 x x

0 0 0 0 0 x

0 0 0 0 0 x

0 0 0 0 0 x

0 0 0 0 x x

0 0 0 0 x x

0 0 0 0 x x

0 0 0 0 x x

0 0 0 0 x x

0 0 0 0 0 x

0 0 0 0 0 0

In both cases we have h1(IX(4)) = 3. But only in the first case is the length
3-subscheme on a line and only in this case is h1(IX(6)) = 1.

6. Rational Surfaces with d = 11, π = 11

Let S ⊂ P4 be a rational surface of degree d = 11 an section genus π = 11.
In this section we determine the possible Hilbert functions that S can have
and find restrictions on the maps in the Tate resolution. By Popescu [14], such
surfaces have the following cohomology table for the ideal sheaf IS

h4

h3 11

h2 3 1

h1 2 1 + a b c

h0 a 10 + b 38 + c

IS(−1) IS(0) IS(1) IS(2) IS(3) IS(4) IS(5) IS(6)

We now consider the Tate resolution of IS(n). The most interesting part for
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our purposes is

· · · −→ 3E(n− 1) −→

E(n− 2)
⊕

2E(n− 3)
⊕

aE(n− 4)

−→
(a + 1)E(n− 4)

⊕
(10 + b)E(n− 5)

−→
bE(n− 5)

⊕
(38 + c)E(n− 6)

−→ · · ·

and in particular the subcomplex

3E(n− 1)
α−→

E(n− 2)
⊕

2E(n− 3)

β−→ (a + 1)E(n− 4)
γ−→ bE(n− 5).

Applying the functorUl for l = 1, 2, 3 we get complexesUl(IS(n))with maps
Ul(α), Ul(β) and Ul(γ ). By abuse of notation we often drop the functor. First
we use Proposition 2.5 to compute the possible cohomology groups for the
restriction of IS(n) to linear subspaces:

Proposition 6.1. Let σ ∈ Gl be a linear subspace of codimension l =
1, 2, 3. Then the cohomology table of IS(n)|σ for n = 2, 3, 4 may have the
following entries:

for l = 1 (hyperplanes): for l = 2 (planes):

0/1

2/3 3 a − 1/a/a + 1

a/a + 1/a + 2

0/1

? 1 . . . 4 a − 4 . . . a + 1

? ?

for l = 3 (lines):

0

? 0 . . . 5 8 − a . . . a + 1

? ?

where empty boxes stand for cohomologies that must be zero and question
marks stand for cohomologies for which we have no restrictions so far.
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Proof. We use the first part of Proposition 2.5 repeatedly, and indicate the
ranks of the vector bundles in the source and in the target to find the possible
coranks of the maps. The cohomology group H 2(IS(2)|σ ) is the cokernel of
Ul(α) whose source and target have ranks 3 → 1, 3 · 2 → 1 and 3 · 3 → 1 for
l = 1, 2, 3 respectively. In addition we must have h2(IS(2)|σ ) = 0 for lines.

Similarly the cohomology groups H 1(IS(3)|σ ) are cokernels of Ul(α)
whose source and target have ranks 0 → 1+2, 3 → 1·2+2 and 3·3 → 1·3+2
respectively. Since the map aO → (a + 1)O is always zero, the cohomology
groupsH 1(IS(4)|σ ) are cokernels ofUl(β)whose source and target have ranks
2 → 1 + a, 1 + 2 · 2 → 1 + a and 1 · 3 + 2 · 3 → 1 + a respectively.

For hyperplanes the intersection S ∩ σ is always a curve of degree 11
and arithmetic genus 11. The possible cohomology dimensions h1(IS(2)|σ ),
h0(IS(3)|σ ) and h0(IS(4)|σ ) are therefore determined by Riemann-Roch.

The empty boxes of the proposition follow from the second part of Propos-
ition 2.5.

Consider the linear part α1 of α in the Tate resolution. It is given by a (3×1)
matrix with entries in W ∗. These entries can be interpreted as points in P4.

Proposition 6.2. Let σ be the linear space spanned by the entries of α1

in the Tate resolution of I . Then σ = P is a plane and P ∩ S contains the
unique plane quintic curve on S.

Proof. If σ = P is a plane, we consider the map

3U2
α1−−→ O

on G2. It drops rank only on P ∈ G2. By Proposition 2.5 and 4.1 this happens
if and only if P ∩ S contains a plane quintic.

If σ is not a plane, we choose a line L that contains σ and consider the map

3U3
α1−−→ O

on G3. If we restrict to L, this map vanishes and we obtain h2(IS(2)|σ ) = 1
by Proposition 2.5. This is impossible on a line.

Let C be the unique plane quintic curve on S, let P be its span, and let
D = H − C be the residual curve to C in a hyperplane section. Then |D| is a
pencil and D2 is the length of the subscheme R residual to C in P ∩ S.

Lemma 6.3. 0 ≤ D2 ≤ 2 and a general member of |D| is a smooth curve
of genus g(D) = D2.

Proof. Since |D| has no fixed componentD2 ≥ 0. It remains to show that
D2 ≤ 2.
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Consider the short exact sequences of Proposition 2.7:

0 −→ JC(3) −→ IS |P (3) −→ IS∩P (3) −→ 0.

and
0 −→ JC(3) −→ 2OC(2) −→ OC(3H − C) −→ 0.

Notice that h0(IS∩P (3)) = 0, so taking cohomology in the former sequence
yields h1(IS |P (3)) = h1(JC(3))+h1(IS∩P (3)). Furthermore h1(IS∩P (3)) =
h1(IR(−2)) = D2. Therefore

h1(IS |P (3)) = h1(JC(3))+ h1(IS∩P (3)) = h1(JC(3))+D2.

On the other handh1(IS |P (3)) ≤ 4 by Proposition 6.1, soh1(JC(3))+D2 ≤ 4.
First, this implies that D2 ≤ 4, which means that D · C = (H −D)D = 6 −
D2 ≥ 2. But OC(3H−C) = OC(2H+D) = ωC(D), soh1(OC(3H−C)) = 0.
Secondly, taking cohomology in the second sequence we get h1(JC(3)) ≥
2h1(OC(2)) = 2, so 2 +D2 ≤ h1(JC(3))+D2 ≤ 4, i.e. D2 ≤ 2.

The pencil of curves |D| has a base locus of length at most 2. By Bertini’s
Theorem the general member has singularities only in this base locus. But if
the general D is singular in the base locus, then D2 ≥ 4, so we conclude
thatD is smooth. Furthermore, |D| is complete as a linear system, in fact |H |
is complete by Severi’s Theorem and embeds C, so D = H − C can only
move in a pencil. But the general member of a complete pencil of curves on
a rational surface, that does not have a fixed component, must be irreducible:
In fact, the connected fibers of the Stein factorization of the map defined by
|D| are already linearly equivalent. Consequently, if the general elementD is a
multiple of fibers, one could move one fiber while fixing the rest, contradicting
the assumption that |D| has no fixed component. Therefore the general member
D of the pencil |D| is a smooth and irreducible curve of genus

g(D) = 1

2
(D2 +D ·K)+ 1 = 1

2
(D2 − 2 +D2)+ 1 = D2.

We take a closer look at the subcomplex

3E(n− 1)
α−→

E(n− 2)
⊕

2E(n− 3)

β−→ (a + 1)E(n− 4)
γ−→ bE(n− 5).

of the Tate resolution of IS(n). The maps α, β and γ can be given by matrices
with entries of the following degrees:

A =
( 1 2 2

1 2 2
1 2 2

)
B =

( 2 · · · 2
1 · · · 1
1 · · · 1

)

 =

⎛⎝ 1 · · · 1
...

...

1 · · · 1

⎞⎠ .
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Notice that A, B and 
 do not depend on the twist n. If σ ∈ Gl is a point in
a Grassmannian, L ⊂ P4 the corresponding linear subspace of codimension l
and M a matrix representing a morphism μ of graded free E algebras, then
we call

M|L := Ul(μ)|σ
the restriction ofM to L. We will say thatM drops rank on L ifM|L does not
have maximal rank.

Proposition 6.4. Let Ci(B) = (q, l1, l2)
T be a column of B. Then after

coordinate changes and row operations we have one of following possibilities:

(1) Ci(B) = (e3 ∧ e2, e1, e0)
T

(2) Ci(B) = (0, e1, e0)
T

(3) Ci(B) = (e4 ∧ e3 + e2 ∧ e1, e0, 0)T

(4) Ci(B) = (e2 ∧ e1, e0, 0)T

(5) Ci(B) = (0, e0, 0)T

(6) Ci(B) = (e3 ∧ e2 + e1 ∧ e0, 0, 0)T

(7) Ci(B) = (e1 ∧ e0, 0, 0)T

(8) Ci(B) = (0, 0, 0)T

with e0 . . . e4 a basis of V = W ∗.

Proof. We collect the coefficients of q in a skew symmetric 5 × 5 matrix
M . We say that q has rank r if M has rank 2r .

If the linear forms are independent, we can assume that q involves only the
remaining 3 variables. Consequently we have rank q ≤ 1. This gives the cases
(1) and (2).

If the linear forms span a 1 dimensional space, we can assume that q involves
only the remaining 4 variables and rank q ≤ 2. This gives the cases (3), (4)
and (5).

If both linear forms are zero, q can involve all 5 variables and rank q ≤ 2.
This gives the last three cases

Proposition 6.5. Let Ci(B) be a column of B. Then after row operations
and coordinate changes one of the following holds

(1) Ci(B) = (e3 ∧ e2, e1, e0)
T and P is contained in the P3 spanned by e0,

e1, e2 and e3. Furthermore the line L though e0 and e1 either intersects
S in a scheme of length at least 5 or L ⊂ S with L2 ≤ −3. If L lies in
P then Ci(B) vanishes on P .

(2) Ci(B) = (e2∧e1, e0, 0)T andP is spanned by e0, e1 and e2. Furthermore
each line L that passes through e0 and lies in P either intersects S in a
scheme of length at least 6 or L ⊂ S with L2 ≤ −4.
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(3) Ci(B) = (0, e1, e0)
T and the line L though e0 and e1 either intersects S

in a scheme of length at least 6 or L ⊂ S with L2 ≤ −4.

Proof. First we look at the three possible cases and afterwards we exclude
all other possibilities in Proposition 6.4. In both parts we use on the one hand
the fact that AB = 0 in the exterior algebra to obtain information about the
matrix A and on the other hand the geometric interpretation of A and B for
various l.

The syzygy matrix of Ci(B) = (e3 ∧ e2, e1, e0)
T is( 0 0 0 e3 e2 −e1 −e0

0 e1 e0 0 0 e3 ∧ e2 0
e0 0 e1 0 0 0 e3 ∧ e2

)T

therefore the linear part of A contains linear combinations of e0 . . . e3. This
proves that P lies in the P3 spanned by these points in P4. Since the line L also
lies in this P3 it is either contained in P and A drops rank on L or it intersects
P in a point λe1 + μe0. On L we then obtain

A|L =
(
e3 ∧ e1 ∧ e0 e2 ∧ e1 ∧ e0 0

0 0 λe3 ∧ e2 ∧ e1 ∧ e0

0 0 μe3 ∧ e2 ∧ e1 ∧ e0

)T
which also has submaximal rank. This implies the geometric properties of (1)
by Proposition 3.4. If L lies in P then P = e0 ∧ e1 ∧ (λe2 + μe3) which
annihilates all entries of Ci(B).

The syzygy matrix of Ci(B) = (e2 ∧ e1, e0, 0)T is( 0 0 e1 e2 −e0

0 e0 0 0 e2 ∧ e1

1 0 0 0 0

)T

and P is therefore spanned by e2, e1 and e0. On the other hand Ci(B) vanishes
on all lines L = (λe1 + μe2) ∧ e0 and consequently B drops rank there. This
implies (2) by Proposition 3.4.

If Ci(B) = (0, e1, e0)
T this column vanishes on L = e1 ∧ e0 and this

implies (3).
Now we consider the other cases in Proposition 6.4.
The syzygy matrix Ci(B) = (e4 ∧ e3 + e2 ∧ e1, e0, 0)T is⎛⎝ 0 0 −e0 e3 ∧ e1 e4 ∧ e1 e3 ∧ e2 e4 ∧ e2 e4 ∧ e3 − e2 ∧ e1

0 e0 e4 ∧ e3 + e2 ∧ e1 0 0 0 0 0

1 0 0 0 0 0 0 0

⎞⎠T

and therefore P must be spanned by e0 which is impossible.
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The column Ci(B) = (0, e0, 0)T and Ci(B) = (0, 0, 0) vanish on e0 which
is impossible since no sheaf on a point can have nonvanishing H 1.

The column Ci(B) = (e3 ∧ e2 + e1 ∧ e0, 0, 0)T has syzygy matrix( 0 0 e2 ∧ e0 e3 ∧ e0 e2 ∧ e1 e3 ∧ e1 e3 ∧ e2 − e1 ∧ e0

0 1 0 0 0 0 0
1 0 0 0 0 0 0

)T

and there are no linear forms to span P .
Finally the syzygy matrix of Ci(B) = (e1 ∧ e0, 0, 0)T is( 0 0 e0 e1

0 1 0 0
1 0 0 0

)T

and P must be spanned by e0 and e1 which is again impossible.

Remark 6.6. Since B has corank 1 on any 6-secant there is a unique
column of type (2) or (3) for each such line. Furthermore B vanishes on a
7-secant line.

Remark 6.7. Except for the observation that A drops rank on L in the first
case, this classification was already obtained by Popescu in [14].

We now consider the case of several columns in the matrix B, and start
by focusing on the linear part B1 and the span of its entries Pspan ⊂ P4. We
denote by Pac the column space and by P1

r the row space of B1. The Segre
variety P1

r × Pac ⊂ P2a+1 is described by a 2 × (a + 1) matrix and B1 defines
a birational map

p: P1
r × Pac −→ Pspan ⊂ P4

which can be interpreted as the projection from a linear space P⊥ ⊂ P2a+1

which is the space of linear relations between the entries of B1. Denote by T
the image of p.

Lemma 6.8. Any quartic X4 containing S also contains T .

Proof. If a column of B is of type (1) or (3) then the span L of its linear
entries is either contained in S or at least a 5-secant to S by Proposition 6.5.
It is therefore contained in X4. If a column of B is of type (2) it has only one
linear entry which represents a point of S ⊂ X4 by Proposition 6.5.

Corollary 6.9. dim T ≤ 2.

Proof. If dim T > 2 then by construction a ≥ 2 and S is contained in
at least 2 independent quartics. Since these also contain T by Lemma 6.8 we
obtain a contradiction.
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Lemma 6.10. The intersection Z = P⊥ ∩ P1
r × Pac is finite.

Proof. A point (r, c) ⊂ P1
r × Pac is in P⊥ if and only if the entry of B1 in

the corresponding generalized row and column is zero. If Z is infinite, one of
the following happens

(1) a column of B1 vanishes. This is impossible by Proposition 6.5

(2) several columns of B1 have rank 1. Each of them gives a residual point
in P .

(a) If this point moves, we obtain infinitely many residual points in P
which is impossible.

(b) If this point does not move, we obtain at least two columns that
span only a point. Denote byB ′ the corresponding two columns of
B and by B ′

1 their linear part. Since there can be no zero column
in B ′

1 we obtain

B ′
1 =

(
e1 0
0 e1

)
after row and column operations. By Proposition 6.5 the point e1

lies in P . If P is spanned by e1, e2 and e3 the same proposition
shows that the 2-forms of B ′ are linear combinations of e2 ∧ e3

and terms of the form e1 ∧ ∗. After eliminating the e1-terms with
column operations we obtain

B ′ =
(
λe2 ∧ e3 e1 0
μe2 ∧ e3 0 e1

)T
.

By Proposition 6.5 again the coefficients λ andμmust be nonzero,
but then we obtain the column (0, μe1,−λe1)

T as a linear com-
bination contradicting Proposition 6.5.

Corollary 6.11. In the above notation:

(1) a ≤ dim Pspan

(2) a ≤ dim T ≤ a + 1

(3) a ≤ 2.

Proof. If dim Pspan < a we have codim P⊥ ≤ a and therefore

dimZ = dim(P⊥ ∩ P1
r × Pac ) ≥ 1.

This contradicts Lemma 6.10. The variety T is the image of the projection
from P⊥ and P⊥ ∩ P1

r × Pac is finite, so the fibers of the projection are at most
1-dimensional and the second part follows. The third part now follows from
the second and Corollary 6.9.
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We now turn to the case of dim Pspan = 2 and we denote byC ′ the dimension
1 component of Pspan ∩ S. The P3’s containing Pspan generate a pencil of space
curves |D′| residual to C ′. Notice that since plane curves in S have degree at
most 5 we have degD′ ≥ 6.

Proposition 6.12. LetD′ ⊂ P3 be an irreducible space curve of degree at
least 6 that is contained in no quadric but in a a3-dimensional space of cubics,
with a3 ≥ 3. Then D′ is either a septic of arithmetic genus 5 and a3 = 3 or a
sextic of arithmetic genus a3 − 1 with a3 ≤ 4.

Proof. Let Z be the curve component of the intersection of cubics that
contain D′. Then degZ ≤ 7: Since Z lies in the complete intersection of two
cubics, degZ′ ≤ 9. But degree 9 is impossible since such a curve only lies
on two cubics. Degree 8 is also impossible since Z would be linked (3, 3) to
a line. Any curve linked (3, 3) to a line is contained in precisely a pencil of
cubics. This latter result has a geometric version: If the line is reduced in the
complete intersection, then it intersects the linked curve in a scheme of length
4. Thus by Bezout’s Theorem, the line is contained in every cubic that contains
the linked curve.

Since D′ ⊂ Z is irreducible and the residual part D′ − Z is at most a line,
Z is reduced. Now, by assumption there are at least a net of pencils of cubic
surfaces that contain Z. So we consider the curve E linked to Z in a general
such pencil. By Bertini’s Theorem E is singular only in the singular part of Z.
Therefore E must be reduced.

If degZ = 7 then E must be a plane conic or two skew lines. If E is two
skew lines, then at least one of them, sayL, is not contained inZ. The union of
Z and the other line, say L′, is linked (3, 3) to L. By the geometric property of
linkage above, L intersects Z in a scheme of length 4, so it must be contained
in Z, contrary to the above. Therefore E must be a plane conic and Z has
arithmetic genus 5 by the liaison formula. Furthermore, in this case a3 = 3.
In particular, if a3 > 3, then degD′ ≤ degZ < 7. This proves our claim if
degD′ = 7.

If degD′ = 6, a3 ≥ 3 then either D′ = Z or D′ = Z + L where L is an
additional line. In the latter case Z = D′ ∪ L is reduced, and linked (3, 3) to
a plane conic E by the previous argument. In particularD′ ∪L has arithmetic
genus 5. If the line L lies in the plane of E, then D′ is linked (3, 3) to a plane
cubic, so it is contained in a quadric, contrary to the assumption. If LmeetsM
in a point, thenL∪E has arithmetic genus 0, and by liaison,D′ has arithmetic
genus 3 and lies in 4 cubics. If L does not meet E, then D′ ∪ E is linked to
the line L, so as above, L intersectsD′ in a scheme of length 4. ThusD′ must
have arithmetic genus 2 and a3 = 3.

If, on the other hand, D′ = Z, then E is a reduced curve of degree 3. If
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E is not connected, then it has a line component that must intersect D′ in a
scheme of length 4 as above. So this line would be contained in Z, contrary to
our assumption. Therefore E is connected. It is a plane cubic curve or a space
curve of arithmetic genus 0. In the first case D′ would be linked (3, 3) to a
plane cubic, and hence lie in a quadric hypersurface, against our assumption.
In the second case, D′ has arithmetic genus 3 and a3 = 4.

Proposition 6.13. In the above notation, a ≤ 1

Proof. If a = 2 we have dim Pspan ≥ 2 by Corollary 6.11.
If Pspan is a plane, then we consider the pencil of residual space curves

|D′| introduced above. As in the proof of Lemma 6.3 we may assume that the
general member D′ is a reduced and irreducible curve.

By Corollary 6.11(2) the projection p is surjective. By Lemma 6.8 all a +
2 = 4 quartics in the ideal ofC ′∪D′ also containT = Pspan. By Proposition 6.1
the curve C ′ ∪D′ lies on no cubic. This implies thatD′ lies on 4 cubics and no
quadric. ThereforeD′ has degree 6 and arithmetic genus 3 by Proposition 6.12.
In this case we must haveC ′ = C, Pspan = P andD′ = D sinceS contains only
one plane quintic by Proposition 6.2. But from Lemma 6.3 we know thatD is
in fact smooth and irreducible of genus at most 2, so we get a contradiction.

If Pspan = P3, i.e. P⊥ = P1 the projection p is surjective: Every fiber is
the intersection of a plane with P1

r × Pac which contains at least 3 points, and
these points could not lie in P⊥ since the Segre variety has no 3-secant lines.
If Pspan = P4 and P⊥ is a point, then T is a threefold since P1

r × Pac ⊂ P5 is not
a cone. If P⊥ is outside of Pac × P1

r , we have deg T = 3 otherwise deg T = 2.
In total T is a threefold of degree at most 3 contradicting Lemma 6.8

From now on we may assume a = 0 or 1.

Proposition 6.14. If a = 0, then b = 0.

Proof. If a = 0, then B = (q, l1, l2)
t has to be one of the types in Propos-

ition 6.5. None of them has linear exterior syzygies.

Proposition 6.15. If a = 1 and c = (l1, l2)
t is a column of 
, then the

linear forms l1 and l2 are independent.

Proof. If c = (0, 0)t , then the restriction of c to any point p vanishes, and
h1(IS(5)|p) ≥ 1. This is impossible. If after coordinate changes c = (e0, 0)t ,
then the restriction to e0 vanishes and we obtain a contradiction as before.

Proposition 6.16. If a = 1 and b ≥ 1 then Pspan = P1.

Proof. Since B
 = 0 the rows of B have to be syzygies of the transpose
of any column of 
. The syzygies of ct = (l1, l2) with l1 and l2 independent
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are generated by (
l1 0 l2
0 l2 l1

)
.

So the linear forms in B must all lie in the span of the li , i.e. Pspan ⊂ 〈l1, le〉.
Since by Corollary 6.11 the dimension of Pspan is at least one in this case, the
proposition follows.

Corollary 6.17. If a = 1 then b ≤ 1.

Proof. If Pspan �= P1, then b = 0. If Pspan = P1 we consider the linear
part B1 of B. Possible columns of 
 must be among the syzygies of B1. After
coordinate changes there are only two possibilities for B1:

(1) If B1 =
(
e0 0
0 e1

)
then the syzygies of B1 are generated by

(
e0 0
0 e1

)
, so

b ≤ 2. If b = 2 then 
 =
(
e0 0
0 e1

)
and some columns do not have full

rank. This is impossible by Proposition 6.15.

(2) If B1 =
(
e1 0
e0 e1

)
then the syzygies of B1 are generated by

(
e1 0
e0 e1

)
. As

before we obtain b ≤ 1

Corollary 6.18. The regularity of IS is at most 7.

Proof. If b = 0 then then the regularity of IS is 6. If b = 1 then the
regularity of IS is 7 since C = (l1, l2)

t does not have any linear syzygies,
when the li are linearly independent.

Recall the well known fact

Lemma 6.19. Let E ⊂ P3 be a non degenerate pure 1-dimensional scheme
lying on a 3-dimensional set of quadrics. ThenE is defined by the 2×2 minors
of a 2 × 3 matrix of linear form, i.e. a curve of degree 3 and arithmetic genus
0.

Proof. Let X be the scheme cut out by the 3 quadrics. First we prove that
X can not contain a surface. Assume it does, then this surface must be a plane
P ′ and the residual scheme in X is cut out by 3 independent linear forms.
So X is P ′ union a point. E then must be contained in P contradicting our
assumptions.

So a general quadric in the ideal of E is irreducible. The only curve on an
irreducible quadric cut out by exactly 3 quadrics is a curve linked to a line in
two quadrics, i.e. a cubic curve as described in the statement of the lemma.
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Proposition 6.20. dim Pspan �= 2.

Proof. Assume that Pspan is a plane. Note that in this case only a = 1
is possible. Let C ′ be the curve component of Pspan ∩ S and consider the
pencil of residual space curves |D′| introduced above. Again, as in the proof
of Lemma 6.3, we may assume that a general member D′ is reduced and
irreducible.

Since we consider H := P3 containing Pspan, the matrix B1 vanishes on H
and the ideal of S ∩H = C ′ ∪D′ contains a 3-dimensional space of quartics
by Proposition 2.5 and no cubics by Proposition 6.1.

The projection p is surjective, since the preimage of a point is a line in P3

intersecting P1
r × P1

c in at least 2 points that can not both be contained in the
projection center P⊥ = P0. So Pspan is contained in all 3 quartics of IC ′∪D′ and
thereforeD′ lies on three cubics and no quadrics. On the other hand, S has no
plane curves of degree more than 5, so degD′ ≥ 6.

SinceD′ is reduced and irreducible, Proposition 6.12 applies, and so either
D′ has degree 7 and arithmetic genus 5, or D′ has degree 6 and arithmetic
genus 2.

In the second case of degC ′ = 11 −6 = 5 and we have C ′ = C, Pspan = P

and D′ = D. By Lemma 6.3, the general curve D is smooth and irreducible
of genus D2 = 2. In particular the intersection of S with P is the union of C
and a scheme of length 2. Therefore the ideal of S is not generated by sextics.
Hence b ≥ 1 and Pspan = P1 by Proposition 6.16.

This leaves us with the first case, where D′ has degree 7 and arithmetic
genus 5 and degC ′ = 11 − 7 = 4. In this case (D′)2 = 3, so the pencil of
curves |D′| has a baselocus of length three in the plane Pspan. In addition Pspan

intersects S in the quartic curve C ′, so if the baselocus of |D′| is disjoint from
C ′, then we may conclude from Example 5.13 that h1(IPspan∩S(4)) = 3. Now
(C ′)2 = 0, so h1(OC ′(C ′ + 2H)) = 0, therefore, by Proposition 4.1(2), we
may compute the cohomology h1(IS(4)|Pspan) = h1(IPspan∩S(4)) = 3. But by
Proposition 6.1, h1(IS(4)|Pspan) ≤ a + 1 = 2, which is in contradiction with
the above. What remains is to show that the baselocus of |D′| is disjoint from
C ′ in Pspan.

The proof is rather roundabout, and we start by considering again the pro-
jection p. There are two cases, either the projection center is contained in
P1
r × P1

c or not. If not, then the pencil of lines given by the columns of B1 does
not have a basepoint. Since each of these line is at least a 5 secant line to S,
the curve C ′ must be the plane quintic contrary to the above. If the projection
center is contained in P1

r ×P1
c , then two lines are blown down by the projection.

The image of one of them is a basepoint of the pencil given by the columns of
B1, say e0. The other one corresponds to a column of B1 whose entries only
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span a P0 say e1. Therefore after a coordinate change we can assume

B =
(
q1 q2

e0 0
e2 e1

)

Now consider the plane P of the plane quintic. In the second column of B we
know by Proposition 6.5 (2) that e1 lies in P . Furthermore, by this proposition,
we know that q2 �= 0. Therefore a general linear combination of columns must
be of type (1) in Proposition 6.5. Without loss of generality we can assume
this to be the first column.

By Proposition 6.5 (1) we know that the line through e0 and e2 lies in a P3

that also contains P . Therefore we have at least one point of P on this line.
This point can not be e1 since e0, e1 and e2 span P2. Therefore P intersects
Pspan in at least two distinct points i.e. in a line. If P = Pspan we are again
in the case above. If P �= Pspan their span H is a P3. The intersection curve
E = H ∩ S then lies on 3 quartics and no cubics. The quartics contain Pspan

as argued above and P , since P contains a plane quintic. Finally we have two
possibilities; either the line of intersection L = P ∩ Pspan is contained in S, or
it is not.

In the latter case, the residual curveE−C−C ′ has degree deg(E−C−C ′) =
11−5−4 = 2 and must lie on 3 quadrics and no plane. This contradicts Lemma
6.19.

Lemma 6.21. If L = P ∩ Pspan is contained in S, then the baselocus of |D′|
in Pspan is disjoint from C ′.

Proof. The proof follows from a careful analysis of the reducible hyper-
plane section E.

Notice first that the second column of B vanishes on L, so, by Proposition
6.5 (2), the selfintersection L2 ≤ −4. The doubling of L on S is not contained
in any of the planes P or Pspan, since such a doubling would mean that L2 = 1
on S. Therefore A = C ′ − L is a plane cubic with no component along
L, and B = C − L is a plane quartic curve with no component along L.
The two curves A and B can only intersect on L, but if they do, then this
intersection point would be a singular point on S, a contradiction. Therefore
A ·B = 0. On the other hand,A ·L = 3 andB ·L = 4, so the arithmetic genus
p(A+B+L) = p(A+L)+p(B)+ (A+L) ·B−1 = 9. The residual curve
G = E −A−B −L lies on 3 quadrics and in no plane, so by Lemma 6.19 is
has degree 3 and arithmetic genus p(G) = 0.

The union G + B lies in the pencil |D′| = |H − C ′|. Therefore p(D′) =
p(G+B) = p(G)+p(B)+G ·B−1 = 5, while p(E) = p(G)+p(A+B+
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L)+G · (A+ B + L)− 1 = 11. Combined we get the intersection numbers
G · B = 3 and G · (A+ L) = 0.

If G has a component along L, then A+ B + 2L is contained in the union
of the two planes P and Pspan, and G− L has degree two and is contained in
at least 4 quadrics. This means that E is contained in 4 quartics, contrary to
the above.

If G has a component in common with B, then this component must have
degree one or two. In the latter case, the residual part of G would be a line
that intersects the first component. But then it could not be a component of A,
since A and B cannot intersect. So 0 = (A + L) · G ≥ L · G = 2, which is
absurd.

The former case is similar if G does not have a component in A. If G has
a component in A, then it must be a line LA, that does not intersect the line
component LB of G in B. Thus G = LA + L0 + LB , and 3 = G · B =
(L0 +LB) ·B ≤ 1 +LB ·B, so LB ·B ≥ 2. But (LB)2 = LB ·B −LB · (B −
LB) ≥ 2 − 3 = −1. On the other hand the intersection (H − 2LB) ∩ LB =
(A+L+ (B −LB)+LA +L0)∩LB = (L+ (B −LB)+L0)∩LB is finite
of length at least five, while the intersection number (H − 2LB) · LB ≤ 3, a
contradiction.

Therefore G has no component in P and intersect B and P in a scheme
of length 3. In particular G does not intersect L, so G has no component in
common with A and, since A ·G = 0, does not intersect A. In conclusion G
intersect Pspan in a scheme of length three outside A ∪ L.

The lemma concludes the proof of the proposition.

Proposition 6.22. If a = 1 and Pspan = L is a line, then b = 1.

Proof. We treat the possible matrices B1 case by case:

If B1 =
(
e0 0
0 e1

)
, then by Proposition 6.5 the plane P contains e0 and e1.

Furthermore any line in P though one of these points is either contained in S
or intersects S in a scheme of length at least 6. Since P ∩ S contains a plane
quintic C but no plane sextic e0 and e1 must be residual to C.

If B1 =
(
e1 0
e0 e1

)
, then by Proposition 6.5 the point e1 is residual to C in P .

There are two cases

(1) e0 ∈ P . Then B1 vanishes on every P3 containing P . As in the proof of
Proposition 6.20 the general residual space curve D must be of degree
6 and genus 2. This implies that the residual scheme in P has length 2.

(2) e0 �∈ P . In this case we can assume P = e1 ∧ e2 ∧ e3 and

B =
(

e3 ∧ e2 e1 e0

e3 ∧ e2 + e1 ∧ ∗ 0 e1

)T
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by Proposition 6.5. Furthermore B must have a syzygy a = (e1, q1, q2)

with q1 and q2 forms of degree 2. Equivalently

B ′ =
(
e3 ∧ e2 ∧ e1 e1 e0

e3 ∧ e2 ∧ e1 0 e1

)T
must have a syzygy (1, q1, q2) which is impossible since the first row of
B ′ is independent of the last two.

In both case we therefore have a length 2 scheme R residual to C in P . There-
fore S is not cut out by sextics and b = 1.

Remark 6.23. If a = 1 and b = 1, then L = Pspan is a line in P that
contains a length two subscheme residual to C. The line L is either a 7-secant
or L ⊂ S with L2 ≤ −5.

We may summarize our results

Corollary 6.24. Any smooth surfaces in P4 with Hilbert polynomial
PS(n) = 11/2n2 − 9/2n + 1 is rational and has one of three possible Hil-
bert functions distinguished by their B matrices. They differ from the Hilbert
polynomial only in the degrees n = 1, . . . , 5 where they take the values

(1) (5, 15, 35, 70, 116) and B = (e3 ∧ e2, e1, e0)
T , B = (e2 ∧ e1, e0, 0)T ,

or B = (0, e1, e0)
T ;

(2) (5, 15, 35, 69, 116) and B =
(
q1 e0 e3

q2 e1 e4

)T
;

(3) (5, 15, 35, 69, 115) and B = ( q1 e0 0
q2 0 e1

)T
or B =

(
q1 e1 e0

q2 0 e1

)T
.

Proof. First, any smooth surface with this Hilbert polynomial has degree
11, sectional genus 11, K2

S = −11 and Euler characteristic χS = 1. Such a
surface is nonrational if only if 2KS is effective, by Castelnuovo’s criterion.
But since any minimal surface has K2

S ≥ 0, any curve in |2KS | has at least 11
exceptional −1-curves with multiplicity 2 as components. Now, H · KS = 9
so this is clearly impossible, and we conclude that any smooth surface with
the given Hilbert polynomial is rational.

The Hilbert function HS(n) is, of course, computed by h0(OP4(n) −
h0(IS(n)) so the difference to the Hilbert polynomial is the dimensions of
the higher cohomology groups of IS(n). The different possibilities for these
groups are determined in Propositions 6.1, 6.13, 6.14 and Corollary 6.17, and
correspond to the following values of a = h1(IS(4))− 1 and b = h1(IS(5)),
namely a = b = 0, a = 1 and b = 0, and a = b = 1. The values of h0(IS(n))

and consequently of the Hilbert function then follows from the diagram of
Proposition 6.1.
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Surfaces with the first Hilbert function were treated by Popescu in [14].
Examples of surfaces with the second Hilbert function were found by v. Both-
mer, Erdenberger and Ludwig [16]. We treat this case in more detail in the
next sections, both giving two different new constructions of such surfaces,
and showing that they belong to a unique irreducible and unirational family. In
the third case there are irreducible surfaces with this Hilbert function that are
singular along Pspan. We have not found any smooth surface with this Hilbert
function, but also cannot rule it out.

7. Rational Surfaces with d = 11, π = 11, a = 1, b = 0

Recall that, in the notation of the previous section, when a = 1 and b = 0 we
have that B1 is a 2 × 2 matrix and its entries span a P3.

Proposition 7.1. Let Pspan = P3 and consider the smooth quadric Q :=
P1
r × P1

c ⊂ Pspan. Then the generic line P1
r ×{c} in the pencil parameterized by

the columns of B1 intersects S in a scheme of length at least 5 and the special
plane P in one point. Furthermore D2 < 2.

Proof. SinceQ can not be contained in S the generic line must intersect S
in a scheme of finite length. By Proposition 6.5 this length is at least 5. Since
Q is smooth, P can not be contained in Q and the intersection of the generic
line with P must be proper. Finally,D2 ≤ 2 by Lemma 6.3. But equality here
means that S intersects P in a scheme of length two residual to C, so S is not
cut out by sextics and b > 0.

We denote CSP , CSQ and CPQ the curve components of S ∩ P , S ∩Q and
P ∩Q respectively. Also we set H = Pspan ∩ S and E = H − CSQ.

Proposition 7.2. CSQ is of type (5, 3) on Q and P intersects Q in a line
of type (1, 0).

Proof. Since B1 vanishes on Pspan the curve H = S ∩ Pspan lies on 3
quartics and no cubic by Proposition 2.5. Since the general line in one of
the rulings of Q is at least a 5-secant all quartics must contain Q. Therefore
the residual curve E = H − CSQ lies on exactly 3 quadrics and no cubic.
By Lemma 6.19 we obtain that E is determinantal of degree 3 and arithmetic
genus 0. ConsequentlyCSQ has degree 8 = 11−3. Now the number of quintics
independent of the quartics is at least

h0(OP3(5))− h0(OCSQ(5))− 3 · 4 + s = 56 − (55 + 1 − 11)− 12 + s = s − 1

where s is the number of linear syzygies between the quartics. Since the ideal
of D has 2 linear syzygies between the 3 quadrics, so do the three quartics
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obtained by multiplying with Q. Therefore the ideal of H contains at least
one independent quintic. This shows that CSQ is contained in a divisor of type
(5, 5). So CSQ is of type (5, 3) or (4, 4). Since every line of type (0, 1) on Q
is at least a 5-secant, the second choice is not possible.

Now consider the intersection P ∩ Pspan. If P is a subset of Pspan, H must
contain a plane quintic. Since Q is smooth, Q ∩ P must be a plane conic in
this case and consequently E a plane cubic. This contradicts Lemma 6.19.
So L = P ∩ Pspan is a line. By Proposition 6.5 it must intersect all 5-secants
on Q. Since the general divisor of type (0, 1) must be such a 5-secant by the
arguments above, we obtain that L is of type (1, 0).

Recall that reducible surface is called Zappatic if its components and the
pairwise intersections of two components are smooth. [3].

Proposition 7.3. The union S ∪Q ∪ P is linked (4, 5) to a surface B of
degree d = 6 sectional genus π = 3. If S ∪ Q ∪ P is Zappatic, then B is
locally Cohen-Macaulay with χB = 1.

Proof. First we note that any quintic hypersurface that contains S∪P also
containsQ. The reason is simply that the intersection (S∪P)∩Q = CSQ∪CPQ
is a curve of type (6, 3) on the quadric. Since the intersection CSP is a quintic
curve, the space of quintics in the ideal of S that contains S ∪ P ∪ Q has
codimension at most one in the space of all quintics in this ideal. Since S
lies on a unique quartic and on 10 quintics, this means that there is at least a
4-dimensional space of quintics that contains S ∪ P ∪Q independent of the
quartic.

Thus in the intersection of the unique quartic and a general quintic in its
ideal, the surface S ∪ P ∪Q is linked to a surface B of degree 6.

The arithmetic genus πU of the union U = S ∪ P ∪Q is computed by the
formula

πU = πS + πP + πQ + deg(CSP )+ deg(CSQ)+ deg(CPQ)− 2

= 11 + 5 + 8 + 1 − 2 = 23

The arithmetic genus πB of B is computed by the formula for liaison [15] of
space curves:

πU − πB = 4 + 5 − 4

2
(deg(U)− deg(B)) = 5 · (14 − 6)

2
= 20,

so πB = 3.
Now assume thatU is Zappatic. In particular we assume that the three curves

CSP , CSQ and CPQ are smooth. Furthermore we assume that the intersection
S ∩ P ∩Q consists of 5 distinct points on the line of intersection between P
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andQ. In three of these points all three components meet pairwise in a curve,
so the tangent cone of the union is three planes that meet pairwise in a line.
These points are Zappatic singularities of type E3 in the notation of [3].

In the remaining two points, the isolated intersection points of S ∩Q, the
plane P intersect both S and Q along a curve. Therefore the tangent cone to
the union of the three surfaces at each of these points is the cone over three
lines that form a cubic space curve of arithmetic genus 0. So these points are
Zappatic singularities of type R3. Let f = 3 be the number of E3 singularities
of the Zappatic surface U . Then

χU = χS + χQ + χP − χCSP − χ(CSQ)− χ(CPQ)+ f

= 1 + 1 + 1 + 5 + 7 − 1 + 3 = 17

by the formula (3.16) of [3]. Now we are in a position to compute χB . We
already computed dB = 6 and πB = 3, so χ(O (dH)) = 3d2 + d + χB . By
the liaison exact sequence

0 −→ ωU −→ ωU∪B −→ OB(4) −→ 0

we have χU∪B − χU = 3 · 42 + 4 + χB . But U ∪ B is a complete intersection
of type (4, 5) and therefore has χU∪B = 70. Thus χB = 1.

Finally a Zappatic surface is locally Cohen-Macaulay so by linkage B is
also locally Cohen-Macaulay.

8. Counting dimensions

Proposition 8.1. Let S ⊂ P4 be a smooth surface of degree d, sectional genus
π and Euler characteristic χS and N the normal bundle on S in P4. Then

χ(N ) = d(10 − d)+ 5(π − 1)+ 2χS

Proof. By Hirzebruch-Riemann-Roch we have

χ(N ) = 1

2
(c1(N )2 − 2c2(N ))− 1

2
c1(N )KS + 2χS

on a surface. Substituting c1(N ) = 5H + K and c2(N ) = d2 and applying
the adjunction formula 2π − 2 = H(H −K), we obtain the formula above.

Remark 8.2. Since h2(N ) = 0 for a rational surface, χ(N ) is the expected
dimension of the component of the Hilbert scheme on which S lies. [12]. In
case S is rational of degree 11 and sectional genus 11, we obtain

χ(N ) = −11 + 5 · 10 + 2 · 1 = 41.
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In the previous sections we analyzed smooth rational surfaces of degree 11
and sectional genus 11 that lie on a quartic hypersurface and whose ideal is
generated in degree 6, i.e. has Hilbert function HS(n) = {1, 5, 15, 35, 69,
11/2n2 − 9/2n+ 1}. More precisely we determined the possible linear parts
of the maps of the Tate resolution T (IS)

· · · −→ 3E(−1) α−→ E(−2)⊕ 2E(−3)⊕ E(−4) β−→ 2E(−4) −→ · · ·
of such surfaces.

The entries of these maps are forms on (P4)∗, so the pure forms correspond
to linear subspaces of P4. In particular, the entries of the linear parts of the maps
are points in P4. We determined that the linear part of α has three entries that
span a plane P = P2, while the linear part of β is a 2 ×2-matrix whose entries
span Pspan = P3 and where the columns (and rows) span the vertical (and
horizontal lines) of a smooth quadric surface Q. In this notation we count the
parameters for the corresponding Tate resolutions and find that they coincide
with the expected dimension.

Proposition 8.3. The family F of minimal complexes

3E(−1) α−→ E(−2)⊕ 2E(−3)⊕ E(−4) β−→ 2E(−4),

such that the linear part of β determine a smooth quadric surfaceQ ⊂ Pspan =
P3 and the linear part of α spans P = P2 with P ∩Q a line defined by a row
of B1, is irreducible, rational and of dimension 41.

Proof. First we can choose a planeP ⊂ P4 and a smooth quadratic surface
Q ⊂ P3 ⊂ P4 such that L = P ∩ P3 = P ∩Q is a line. For each such choice
we can represent α and β by matrices of the form

A =
(
e0 q1 q4 r1
e1 q2 q5 r2
e2 q3 q6 r3

)
B =

⎛⎜⎝
p1 p2

e0 e1

e3 e4

0 0

⎞⎟⎠
whereP = 〈e0, e1, e2〉,L = 〈e0, e1〉 and Pspan = 〈e0, e1, e3, e4〉. The entriespi
and qi are 2-forms and ri are 3-forms. Notice that the relationAB = 0 is linear
in the coefficients of the 2-forms. In the corresponding linear system, we have
80 coefficients of 2-forms in A and B and six 3-forms with 10 coefficients in
AB, so we expect a 20-dimensional solution. But in fact the relations ofAB =
0 are dependent and we find a 25-dimensional affine solution space. See [17] for
the calculation. Now the quadratic part of both matrices is only defined modulo
the linear part. Projectively we obtain a 14 = 25−2·5−1 dimensional solution
space. The cubics can be chosen arbitrarily, but are defined only modulo the
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linear and quadratic part of A. Furthermore the two syzygies of A given by
B are degree 3 dependencies between the linear and the quadratic part, so we
obtain a 11 = 30 − 1 · 10 − 2 · 5 − 1 + 2 dimensional space of possible
degree 3 parts of A. In total we have shown that the family of complexes F is
birationally parameterized by an irreducible and Zariski open set

X ⊂ G(2, 5)× (P4)∗ × P6
quadrics × P14

deg2part × P11
deg3part.

In particular dimX = 6 + 4 + 6 + 14 + 11 = 41.

Theorem 8.4. The family of smooth rational surfaces of degree 11, sec-
tional genus 11 with Hilbert function HS(n) = {1, 5, 15, 35, 69, 11/2n2 −
9/2n + 1} is unirational, irreducible of dimension 41. The general member
of the family is linked (4, 5) to a Zappatic surface P ∪Q ∪ B, where P is a
plane,Q is a smooth quadric surface and B is a smooth Bordiga surface, such
that L = P ∩Q is a line, B ∩Q consists of three distinct lines that intersect
L, and P ∩ B is the union of a line distinct from L and two points on L. In
particular S ∪ P ∪ Q is an arithmetically Cohen-Macaulay surface defined
by the 4 × 4 minors of a 4 × 5 matrix with 4 columns of linear forms and 1
column of quadratic forms.

Proof. By the previous proposition it remains for the first part to give an
example. This is done by choosing random matrices A and B satisfying the
above conditions, computing the minimal free resolution of IS via the BGG-
Correspondence and checking that this is an ideal sheaf defining a smooth
surface by the Jacobian criterion. An effective procedure is to compute an
example over a finite characteristic. This is done with with Macaulay 2 and
documented at [17]. The fact that the general member is linked (4, 5) to a
Zappatic surface is an open condition that is also checked in an example.
Finally, since a Bordiga surface is an arithmetically Cohen-Macaulay surface
defined by the 3 × 3 minors of a 3 × 4 matrix with linear entries, the linked
surface S ∪P ∪Q is also arithmetically Cohen-Macaulay, and the proposition
follows.

Remark 8.5. The example by v. Bothmer, Erdenberger and Ludwig is a
blowup of the plane in 20 points. In fact the linear system has the form 9L−
3E1 −∑15

i=2 2Ei −∑20
i=16 Ei where L is the pullback of a line from the plane,

while the Ei, i = 1, . . . , 20 are the exceptional divisors of the blowup. From
Theorem 8.4 it follows that the linear system of any smooth surface with the
second Hilbert function has this form. The challenge remains to determine
necessary and sufficient conditions for position of the 20 points in P2.
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9. Construction

We can use the properties of a surface S as in the Theorem 8.4 to give a
geometric construction

Construction 9.1.

(1) Choose a line L in P2

(2) Choose general points P1, P2 and P3 on L

(3) Choose general points P4, . . . , P8 outside of L

(4) Let C be the unique irreducible quartic curve that contains P1, . . . , P8

and is singular in P3, P4 and P5

(5) Choose general points P9 and P10 on C

(6) Let B be the blowup of P2 in P1, . . . , P10 and denote the exceptional
divisors by E1, . . . , E10.

(7) Embed B in P4 with the linear system |H | := |4L−E1 − . . .−E10| the
image will be a Bordiga surface of degree 6 and sectional genus 3

(8) Let Pspan be the hyperplane in P4 corresponding to C ∈ |H |. Since C
is singular in P3, P4 and P5, Pspan contains the exceptional lines E3, E4

and E5.

(9) Let Q ⊂ P3
C be the unique quadric containing these lines.

(10) Let L̃ be the strict transform of L. It is again a line in P4. Let P be the
unique P2 containing L̃ and intersecting E4 and E5.

(11) Let S be a (4, 5) linkage of P ∪Q ∪ B.

Theorem 9.2. The construction 9.1 yields a 41-dimensional unirational,
irreducible family of smooth rational surfaces S of degree 11 and sectional
genus 11 with precisely two 6-secants lying on a unique quartic hypersurface.

Proof. It is straightforward to check that each step of the construction is
possible except the last one. For the last step we need to show that P ∪Q∪B
lies on a quartic and a quintic hypersurface with no common component. For
this we first consider the exact sequence of ideal sheaves

0 −→ IB(2) −→ IB∪Q(3) −→ IB∪Q|H (3) −→ 0

where the first map is multiplication by the linear form defining the hyperplane
H that containsQ. All cohomology groups on the left and on the right vanish:
On the leftB is arithmetically Cohen-Macaulay and does not lie on any quadric,
while on the right IB∪Q|H is the ideal sheaf in OH of the union of Q and the
twisted cubic curve C on B ∩ H residual to Q. Therefore the cohomology
of IB∪Q|H (3) coincides with the cohomology of IC |H (1), which vanishes. We
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conclude that the cohomology groups of the sheaf in the middle also vanishes.
Similarly, twisting with OP4(1), we geth0(IB∪Q(4)) = 7 andh1(IB∪Q(4)) = 0.
Next, consider the exact sequence of ideal sheaves

0 −→ IB∪Q(3) −→ IB∪Q∪P (4) −→ IB∪Q∪P |H ′(4) −→ 0

where the first map is the multiplication by the linear form defining a general
hyperplaneH ′ throughP . By the above,B∪Q∪P lies in a quartic hypersurface
if and only if (B ∪Q∪P)∩H ′ lies on a quartic surface inH ′. But (B ∪Q∪
P)∩H ′ is the union P ∪E ∪L′, of the plane P , an elliptic quintic curve E in
H ′ ∩ B with a trisecant line L in P and a line L′ such that L ∪ L′ = Q ∩H ′.
So (B ∪Q∪ P)∩H ′ is contained in a quartic surface if and only if E ∪L′ is
contained in a cubic surface. Since E ∪ L = H ′ ∩ B lies in 4 cubics, and L′
meets L, there is at least one cubic surface that contains E ∪ L′, and hence at
least one quartic hypersurface that contains B ∪Q ∪ P .

On the other hand, there are 15 quartics that contain E, i.e. 10 quartics that
contain E ∪ L′. Hence, as above,

h0(IB∪Q∪P (5)) = h0(IB∪Q(4))+ h0(IB∪Q∪P |H ′(5)) = 7 + 10 = 17

and B ∪ Q ∪ P lies in 12 quintic hypersurfaces that are independent of the
quartic. Since the Bordiga surface is not contained in any reducible cubic
hypersurface, B ∪Q is not contained in any cubic hypersurface andQ∪ P is
not contained in any hyperplane, any quartic that contains B ∪Q∪P must be
irreducible. Therefore the general quintic and quartic that contains B ∪Q∪B
have no common component and so B ∪Q∪B is linked (4, 5) to a surface S.

The parameters involved in the construction form an open set in

Y ⊂ (P2)∗ × (P1)3 × (P2)5 × (C)2 × Aut(P4)× P11
linkage.

Since C is rational this proves that our family is unirational. To find the di-
mension of the Hilbert scheme component we need to subtract dimension of
the automorphisms of P2 (projective dimension 8) and the dimension of the
space of independent quintic hypersurfaces that contain S ∪P ∪Q (projective
dimension 3 by Theorem 8.4) , i.e. the space of Bordiga surfaces that lead to
the same S. Therefore these surfaces S belong to a

2 + 3 + 10 + 2 + 24 + 11 − 8 − 3 = 41

dimensional family in the Hilbert scheme.
Next we compute the Hilbert polynomial of S.
Of course, the degree of S is 11. The sectional genus is given by the liaison

formula
πS − πB∪P∪Q = 5/2(11 − 9) = 5
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i.e. πS = 11 since the sectional genus of B ∪ Q ∪ P is 6. To get the Euler
characteristic χS we first compute χB∪Q∪P . By construction B ∪ Q ∪ P is
Zappatic, i.e. the three components B, P , Q and their pairwise intersections
are smooth. Furthermore the intersection B ∩ Q ∩ P consists of precisely
three points on the line L = P ∩ Q. At one of them, the point L ∩ L′, the
three surface component intersect pairwise in codimension 1, so this point is
a Zappatic singularity of type E3 on the union. At the two other points, B and
P intersect in codimension 2, while the B and Q and Q and P intersect in
codimension 1, so these points are Zappatic singularities of typeR3. The Euler
characteristic of B ∪Q ∪ P is therefore

χB∪Q∪P = χB + χQ + χP − χL′ − χL − χB∩Q + f

= 1 + 1 + 1 − 1 − 1 − 3 + f = f − 2

by the formula for Zappatic surfaces. Since f = 1 count the number of Zap-
patic singularities of type E3, we get χB∪Q∪P = −1. In the liaison exact
sequence

0 → ωB∪Q∪P → ω(4,5) → OS(4) → 0

The Euler characteristic of the first two sheaves are −1 and 70 respectively,
while the Hilbert polynomial of OS is PS(d) = 11/2d2 − 9/2d + χS . In
particular PS(4) = 70 + χS , so by the exact sequence χS = 1.

To see that the general surface of this family is of the kind found in the
previous section, we have checked one example for smoothness (see [17]).
Since Popescu [14] showed that there are no nonrational surfaces of these in-
variants, S must be rational (cf. also the proof of Corollary 6.24). Furthermore,
by liaison, S ∩Q is a curve of type (3, 5), while L is of type (0, 1). So two of
the three lines in B ∩Q are 6-secants to S.
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