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TOPOLOGY AND FACTORIZATION
OF POLYNOMIALS

HANI SHAKER

Abstract
For any polynomial P ∈ C[X1, X2, . . . , Xn], we describe a C-vector space F(P ) of solutions of a
linear system of equations coming from some algebraic partial differential equations such that the
dimension of F(P ) is the number of irreducible factors of P . Moreover, the knowledge of F(P )
gives a complete factorization of the polynomial P by taking gcd’s. This generalizes previous
results by Ruppert and Gao in the case n = 2.

1. Introduction

Let K be the algebraic closure of a field k and let k[X1, X2, . . . , Xn] be
the polynomial ring in n indeterminates. The zero set of a polynomial P ∈
k[X1, X2, . . . , Xn] of deg d > 0 is a hypersurface V (P ) in Kn. As the poly-
nomial ring is a factorial ring, we can write P = ∏s

i=1 Pi , where Pi are the
irreducible factors of P in K[X1, X2, . . . , Xn].

We assume that the factors Pi are distinct, i.e. P is a reduced polynomial.
The prime factorization ofP corresponds to the decomposition into irreducible
components V (P ) = ∏s

i=1 V (Pi) of the hypersurface V (P ).
A natural question to ask is: “How can we compute s, the number of irredu-

cible factors of P (resp. irreducible components of V (P )) from the coefficients
of P?” A variant of this problem (called the absolute factorization problem)
is when P is assumed to be irreducible in k[X1, X2, . . . , Xn], see [1].

In this paper we recall in Section 2 briefly Gao’s results in the case n = 2,
see [3], and then some usual techniques for reducing the case n > 2 to the
case n = 2 by taking generic linear sections, see [1].

Since all these reduction techniques are not easy to use in practice (since the
notion of a generic linear section is quite subtle as we show by some examples),
we develop in Sections 3 and 4 of our note a direct approach to the case n > 2.

Unlike Ruppert-Gao’s approach, which is purely algebraic and works over
any field k of characteristic zero or of relatively large characteristic, our ap-
proach is topological, using de Rham cohomology, and hence works only for
the algebraically closed subfields of the field of complex numbers C.
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2. Ruppert-Gao’s idea and the reduction techniques

Assume that n = 2 and denote by X, Y the two indeterminates. If P(X, Y ) =∏s
i=1 Pi(X, Y ), is the factorization of P into irreducible factors in K[X, Y ],

then by taking the partial derivatives on both sides, we have

(2.1) PX =
s∑
i=1

(∏
j �=i

Pj

)
∂Pi

∂X
=

s∑
i=1

gi where gi =
(∏
j �=i

Pj

)
∂Pi

∂X

and also

(2.2) PY =
s∑
i=1

(∏
j �=i

Pj

)
∂Pi

∂Y
=

s∑
i=1

hi where hi =
(∏
j �=i

Pj

)
∂Pi

∂Y
.

Note that we can write

∂

∂X
(logPi) = 1

Pi

∂Pi

∂X
= gi

P
,

∂

∂Y
(logPi) = 1

Pi

∂Pi

∂Y
= hi

P

which yields

(2.3)
∂

∂Y

(
gi

P

)
= ∂

∂X

(
hi

P

)
for i = 1, . . . , s.

Definition 2.1. Let P(X, Y ) ∈ K[X, Y ] be such that degX(P ) = m1,
degY (P ) = m2. Then the bidegree of P is defined as

bideg(P ) = (
degX(P ), degY (P )

) = (m1,m2).

In our case, we obviously have

bideg(gi) ≤ (m1 − 1,m2) and bideg(hi) ≤ (m1,m2 − 1).

Definition 2.2. Let F(P ) be the K-vector space of solutions (v,w) ∈
K[X, Y ]2 of the partial differential equation

∂

∂Y

(
v

P

)
= ∂

∂X

(
w

P

)

such that bideg(v) ≤ (m1 − 1,m2), bideg(w) ≤ (m1,m2 − 1).

This partial differential equation was first considered by Ruppert [5], [6].
Moreover, it was clear to Ruppert and Gao that this is just the condition that a
certain 1-form is closed, see the comment just before Theorem 2.1 in [3].
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Theorem 2.3 (Gao’s Theorem [3]). If P(X, Y ) = ∏s
i=1 Pi(X, Y ) is the

factorization of P into irreducible factors in K[X, Y ], then s = dimK F(P )

and the set
{(gi, hi) | i = 1, . . . , s}

is a basis for F(P ).

Corollary 2.4. (i) P is irreducible if and only if dimK F(P ) = 1.
(ii) Pi = gcd(P, v−λiPX) where v = ∑s

i=1 λigi is a generic vector in the
vector space E(P ) obtained from F(P ) by projecting on the first factor.

Here λ = (λ1, . . . , λs) ∈ Cs and the genericity means that λ has to avoid a
proper Zariski closed subset of Cs . The first claim is an obvious consequence
of Theorem 2.3 and was obtained already by Ruppert [5]. The second one is
much more subtle and we will discuss this point in the general case in the last
section, see in particular Proposition 4.6.

Now we return to the general case n ≥ 2. Let V (P ) be the affine hyper-
surface defined by P = 0 in the affine space Kn. Let E be an affine plane in
Kn such that V (P ) ∩ E is a curve in E. One may ask “Is there some rela-
tion between the number of irreducible components of V (P ) and V (P ) ∩ E?
or, more precisely: Are these numbers always equal?” The answer is to such
questions depends on the choice of E. Let us look at two examples.

Example 2.5. (i) Consider the Whitney umbrella S : x2 − zy2 = 0,
an irreducible singular surface in C3. Choose two planes E0 : z = 1 and
E1 : y = 1. One can see that S ∩ E0 is the union of two lines, namely
x2 − y2 = 0, and S ∩ E1 is irreducible and isomorphic to C.

(ii) Consider the smooth irreducible surface S ′ : x2y − x − z = 0 in C3.
Choose two planes E0 : z = 0 and E1 : z = 1. One can see that S ′ ∩ E0 has
two components x = 0 and xy − 1 = 0, while S ′ ∩ E1 is irreducible, and
isomorphic to C∗.

By Bertini’s second Theorem we know that the number of irreducible com-
ponents of V (P ) and of V (P ) ∩ E coincide if the the 2-plane E is generic,
see [1], subsection 9.1.3 for an excellent survey of this problem as well as
Section 5 in [3], for relations to an effective Hilbert irreducibility theorem. In
practice it is quite difficult to decide when a given plane E is generic. In the
next section we explain the relation between this genericity and transversality
to some Whitney regular stratifications, but this is not easy to check on explicit
examples.

Moreover, once we have the factorization of P in the plane E (i.e. in a
polynomial ring in two variables), it is a second difficult task to recover the
factorization of P in the polynomial ring C[X1, . . . , Xn].
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This shows the need of having an extension of Gao’s Theorem for n > 2
variables, and this will be our main result below.

3. Hypersurface complements

In this section P ∈ C[X1, . . . , Xn] is a reduced polynomial and P = ∏s
i=1 Pi

is the factorization of P into irreducible factors in C[X1, . . . , Xn]. Then the
associated affine hypersurface V (P ) ⊂ Cn has s irreducible components.

First we recall a basic result, relating the number s of irreducible factors to
the topology of the hypersurface complement M(P) = Cn \ V (P ).

Proposition 3.1.
s = dimH 1(M(P ),C).

Proof. Using Corollary 1.4 on p. 103 in [2], we get H1(M(P ),Z) = Zs .
Then we use the usual identificationH 1(M(P ),C) = Hom(H1(M(P ),Z),C).

Using this result, we can give the following description of the generic 2-
planes E.

Let V (P ) ⊂ Pn be the projective closure of the hypersurface V (P ). Then
E is said to be geometrically generic with respect to V (P ) if its projective
closure E is transversal to every strata of a Whitney stratification of V (P ).
Applying the Zariski Theorem of Lefschetz type, see for instance [2], p. 25,
we get the following.

Corollary 3.2. Let E be a geometrically generic affine 2-plane with
respect to the affine hypersurface V (P ). Then V (P ) and V (P ) ∩ E have the
same number of irreducible components.

Proof. The Zariski Theorem of Lefschetz type implies that the two comple-
mentsM(P) andE \ (V (P )∩E) have isomorphic fundamental groups. Since
we know that, for any path connected spaceX, the abelianization ab(π1(X)) of
the fundamental group coincides to the integral first homology groupH1(X,Z),
the result follows using Proposition 3.1.

For any n-tuple A = (A1, . . . , An) ∈ C[X1, . . . , Xn]n of polynomials,
consider the rational 1-form

ω(A) =
n∑
i=1

Ai

P
dXi

defined on the affine open setM(P). Such a form ω(A) is closed by definition
if

dω(A) =
n∑
i=1

[ n∑
j=1,j �=i

(
Ai

P

)
Xj

dXj

]
∧ dXi = 0
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where the subscript Xj means taking the partial derivative with respect to Xj .
In other words, the following equations should be satisfied.

(3.1)

(
Aj

P

)
Xi

−
(
Ai

P

)
Xj

= 0

for all i, j = 1, . . . , n with i < j . Consider the vector space F(P ) of all
solutionsA = (A1, . . . , An) ∈ C[X1, . . . , Xn]n of the equations (3.1) with the
following multi-degree bounds

multideg(Ai) ≤ (m1, . . . , mi − 1, . . . , mn)

for all i = 1, . . . , n. Here multideg(P ) = (m1, . . . , mi, . . . , mn), and this
obviously means that degXi P = mi for all i = 1, . . . , n exactly as in Defini-
tion 2.1.

Any closed form ω(A) gives rise to a cohomology class [ω(A)] ∈
H 1(M(P ),C), if we work with the de Rham cohomology groups of the affine
smooth variety M(P).

Theorem 3.3. The linear map T : F(P ) −→ H 1(M(P ),C) defined by

T (A) = [ω(A)]

is an isomorphism. In particular dim F(P ) = s.

Proof. To prove the surjectivity of the map T , we recall that a basis for
the first de Rham cohomology group H 1(M(P ),C) is given by the rational
1-forms

(3.2)
dPj

Pj
= ω(Bj )

for j = 1, . . . , s, where Bj = (B
j

1 , . . . , B
j
n ) with Bji = P ·(Pj )Xi

Pj
where the

subscript Xi indicates the partial derivative with respect to Xi . It is clear that
Bj ∈ F(P ), which yields the surjectivity of T .

To prove the injectivity of T , assume that T (A) = 0, i.e.

(3.3) ω(A) = dα

for some rational function α ∈ �0(M). We can restrict to the case when α is a
rational function in view of Grothendieck Theorem [4] saying that for an affine
smooth variety the cohomology can be computed using the regular (algebraic)
de Rham complex.

It follows that α is then a regular function of the form α = Q

Pk
, where k ≥ 0

andQ is not divisible by P . Then for any index j ∈ {1, 2, . . . , s}, α has a pole
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of order kj ≥ 0 along the irreducible component V (Pj ). Working locally in the
neighborhood of a smooth point pj of V (Pj ), we see that dα has either a pole
of order zero along V (Pj ) if kj = 0, or a pole of order kj + 1 if kj ≥ 1. Hence
in any case we do not get a pole of order 1. On the other hand, by definition,
the 1-form ω(A) has poles of order at most one along any component V (Pj ).
The equality (3.3) is possible only if these pole orders are all zero. This occurs
only if the polynomial P divides all the polynomials Aj for j = 1, . . . , n. But
this is impossible in view of the multi-degree bounds imposed on Aj , unless
all Aj are zero.

4. Finding the irreducible factors of P

In this section we explain how to find the irreducible factors of P . Our ap-
proach is similar to that of Gao explained in [1], (9.2.10)–(9.2.12), but we pay
more attention to a degenerate case that may occur, which explains our next
definition.

Definition 4.1. We say that a polynomial P ∈ C[X1, . . . , Xn] is X1-
generic if the restriction of the projection π1 : Cn → Cn−1, (x1, x2, . . . , xn) �→
(x2, . . . , xn) to the hypersurface V (P ) has finite fibers.

This property, which replaces the condition gcd(P, PX1) = 1 in Gao’s
approach in [3], can be tested by computer since we have the following obvious
result.

Lemma 4.2. Let P = a0X
m
1 + a1X

m−1
1 + · · · + am where the coefficients

aj are polynomials in C[X2, . . . , Xn]. Then P is X1-generic if and only if the
ideal spanned by a0, . . . , am coincides to the whole ring C[X2, . . . , Xn].

Example 4.3. (i) If d is the total degree of P and if the monomial Xd1
occurs in P with a non-zero coefficient, then clearly the polynomial P is X1-
generic. Starting with any polynomial P , we can arrive at this situation by
making a linear coordinate change X̃1 = X1, X̃j = Xj + cj ·X1 for j > 1 and
suitable constants cj ∈ C.

(ii) Let n = 3 and consider the polynomial P = X2Y 2Z2 + X. Then P is
X generic, but not Y -generic.

We assume in the sequel that the polynomial P is X1-generic and define
the following two associated vector spaces. Let E(P ) = pr1(F (P )), where

pr1 : C[X1, . . . , Xn]
n → C[X1, . . . , Xn]

denotes the projection on the first factor. LetE(P ) be the image ofE(P ) under
the canonical projection p : C[X1, . . . , Xn] → Q(P ), where we introduce the
quotient ring Q(P ) = C[X1, . . . , Xn]/(P ).



topology and factorization of polynomials 57

Proposition 4.4. If the polynomial P is X1-generic, then the following
hold.

(i) gcd(P, PX1) = 1, where the subscriptX1 indicates the partial derivative
with respect to X1.

(ii) dimE(P ) = s.

Proof. To prove (i), it is enough to show that any irreducible factor Pk of
P does not divide PX1 . Now, with the notation from the proof of Theorem 3.3,
we have

(4.1) PX1 =
∑
j=1,s

B
j

1 .

In this sum, all the terms are divisible by Pk , except possibly

Bk1 = P · (Pk)X1

Pk
.

This term is divisible by the irreducible polynomial Pk exactly when (Pk)X1 =
0 (otherwise degX1

Pk > degX1
(Pk)X1 ). But (Pk)X1 = 0 implies that Pk ∈

C[X2, . . . , Xn] and then, for any b ∈ Cn−1 such that Pk(b) = 0 (which exists
since degPk > 0), the line π−1

1 (b) is contained in the hypersurface V (P ). This
contradicts the hypothesis that P is X1-generic, and thus proves (i).

To prove (ii), it is enough to show that the classes of the elements Bj1 for
j = 1, . . . , s are linearly independent in Q(P ). Assume there is a relation

∑
j=1,s

cj · Bj1 = C · P

where cj ∈ C and C ∈ C[X1, . . . , Xn]. Checking as above the divisibility by
Pk , it follows that the coefficient ck has to vanish, for all k = 1, . . . , s.

Exactly as in the proof above, one can show that the classes of the elements

(4.2) C
j

1 = B
j

1 · PX1

for j = 1, 2, . . . , s are linearly independent inQ(P ). It follows that the linear
subspace

(4.3) Ẽ(P ) = {[v · PX1 ] | v ∈ E(P )}
in Q(P ) is s-dimensional. Let S : Ẽ(P ) → E(P ) be the inverse of the linear
isomorphism E(P ) → Ẽ(P ) sending [v] to [v · PX1 ] for j = 1, 2, . . . , s.
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Note that in the quotient ring Q(P ) one has

(4.4) [Bi1] · [Bj1 ] = 0

for i �= j and

(4.5) [Bi1] · [Bi1] = [PX1 ] · [Bi1]

for all i = 1, . . . , s. Let v ∈ E(P ) and write [v] = ∑
j=1,s λj [B

j

1 ] in Q(P ).
Consider the linear mapping

φv : Q(P ) → Q(P )

induced by the multiplication by v. Then the equations (4.2), (4.4), (4.5) imply
that φv(E(P )) ⊂ Ẽ(P ). It follows that ψv = S ◦φv as a linear endomorphism
of the s-dimensional vector space E(P ). We also get

ψv([B
i
1]) = λi[B

i
1]

for all i = 1, . . . , s.

Remark 4.5. A key point here is that the vector space E(P ) and the
endomorphism ψv : E(P ) → E(P ) can be computed without knowing the
factorization of P .

We have the following basic result.

Proposition 4.6. If the polynomialP isX1-generic and all the eigenvalues
of the endomorphism ψv : E(P ) → E(P ) are distinct, say λ1, . . . , λs , then,
up-to a re-indexing of the factors, one has

Pi = gcd(P, v − λiPX1)

for i = 1, . . . , s.

Proof. Using the above equations, we get a polynomialC1 ∈ C[X1, . . . ,Xn]
such that

(4.6) v − λiPX1 =
∑
j �=i
(λj − λi)[B

j

1 ] + C1 · P.

It follows that the irreducible polynomial Pi divides v − λiPX1 . Moreover,
exactly as in the proof of Proposition 4.4, we see that the irreducible polynomial
Pk does not divide v − λiPX1 for k �= i.
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