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COMMUTING SEMIGROUPS OF HOLOMORPHIC
MAPPINGS

M. ELIN, M. LEVENSHTEIN, S. REICH and D. SHOIKHET

Abstract

Let S1 = {Ft }t≥0 and S2 = {Gt }t≥0 be two continuous semigroups of holomorphic self-mappings
of the unit disk � = {z : |z| < 1} generated by f and g, respectively. We present conditions
on the behavior of f (or g) in a neighborhood of a fixed point of S1 (or S2), under which the
commutativity of two elements, say, F1 and G1 of the semigroups implies that the semigroups
commute, i.e., Ft ◦ Gs = Gs ◦ Ft for all s, t ≥ 0. As an auxiliary result, we show that the
existence of the (angular or unrestricted) n-th derivative of the generator f of a semigroup {Ft }t≥0
at a boundary null point of f implies that the corresponding derivatives of Ft , t ≥ 0, also exist,
and we obtain formulae connecting them for n = 2, 3.

1. Introduction

We denote by Hol(�,D) the set of all holomorphic functions on the unit disk
� = {z : |z| < 1} which map � into a domain D ⊂ C, and by Hol(�) the set
of all holomorphic self-mappings of �.

We say that a family S = {Ft }t≥0 ⊂ Hol(�) is a one-parameter continuous
semigroup on � (a semigroup, in short) if

(i) Ft(Fs(z)) = Ft+s(z) for all t, s ≥ 0 and z ∈ �,

and

(ii) limt→0+ Ft(z) = z for all z ∈ �.

If all the elements Ft , t ≥ 0, of a semigroup S are automorphisms of �, then
S can be extended to a group of automorphisms {Ft }t∈R and property (i) holds
for all real s and t .

It follows from a result of E. Berkson and H. Porta [4] that each semigroup
is differentiable with respect to t ∈ R+ = [0,∞). So, for each one-parameter
continuous semigroup S = {Ft }t≥0 ⊂ Hol(�), the limit

lim
t→0+

z− Ft(z)

t
= f (z), z ∈ �,
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exists and defines a holomorphic mapping f ∈ Hol(�,C). This mapping f
is called the (infinitesimal) generator of S = {Ft }t≥0 . Moreover, the function
u(t, z) := Ft(z), (t, z) ∈ R+×�, is the unique solution of the Cauchy problem

(1)

⎧⎨⎩
∂u(t, z)

∂t
+ f (u(t, z)) = 0,

u(0, z) = z, z ∈ �.
This solution is univalent on � (see [1]).
We say that τ ∈ � is a fixed point of F ∈ Hol(�) if either F(τ) = τ ,

where τ ∈ �, or limr→1− F(rτ) = τ , where τ ∈ ∂� = {z : |z| = 1}.
If F is not an automorphism of � with an interior fixed point, then by the
Schwarz-Pick Lemma and the Julia-Wolff-Carathéodory Theorem, there is a
unique fixed point τ ∈ � such that for each z ∈ �, limn→∞ Fn(z) = τ , where
the n-th iteration Fn of F is defined by F1 = F, Fn = F ◦Fn−1, n = 2, 3, . . ..
Moreover, if τ ∈ �, then |F ′(τ )| < 1, and if τ ∈ ∂�, then the so-called
angular derivative at the point τ (see the definition below) F ′(τ ) ∈ (0, 1]. This
point is called the Denjoy-Wolff point of F . The mapping F is of

– dilation type, if τ ∈ �,

– hyperbolic type, if τ ∈ ∂� and 0 < F ′(τ ) < 1,

– parabolic type, if τ ∈ ∂� and F ′(τ ) = 1.

The mappings of parabolic type fall into two subclasses:

– automorphic type, if all orbitsFn(z) are separated in the hyperbolic Poincaré
metric ρ of �, i.e., limn→∞ ρ(Fn(z), Fn+1(z)) > 0 for all z ∈ �;

– nonautomorphic type, if no orbit Fn(z) is hyperbolically separated, i.e.,
limn→∞ ρ(Fn(z), Fn+1(z)) = 0 for all z ∈ �.

Consider a semigroup S = {Ft }t≥0 generated by f ∈ Hol(�,C). It is a well-
known fact that all elements Ft (t > 0) of S are of the same type (dilation,
hyperbolic or parabolic) and have the same Denjoy-Wolff point τ which is
a null point (interior or boundary) of f . (Recall that τ ∈ ∂� is a bound-
ary null point of f ∈ Hol(�,C) if limr→1− f (rτ) = 0.) If f generates a
semigroup of dilation type (which does not consist of automorphisms), then
Re f ′(τ ) > 0. In the hyperbolic case the angular derivative f ′(τ ) defined by
f ′(τ ) := limr→1− f (rτ)

(r−1)τ exists and is a positive real number; in the parabolic
case f ′(τ ) = 0 (see, for example, [23]).

We say that a function f ∈ Hol(�,C) has an angular limit L at a point
τ ∈ ∂� and write L := 	 limz→τ f (z), if f (z) → L as z → τ in each Stolz
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angle with vertex at τ (see [20]). If L is finite and the angular limit

M := 	 lim
z→τ

f (z)− L

z− τ

exists, then M is said to be the angular derivative f ′(τ ).
It is known (see [20], p. 79) that the existence of the first angular derivative

f ′(τ ) of a function f ∈ Hol(�,C) is equivalent to each of the following
conditions:

(1) there exists 	 limz→τ f
′(z), and then f ′(τ ) = 	 limz→τ f

′(z);
(2) the function f admits the representation

f (z) = a0 + a1(z− τ)+ γ (z),

where γ ∈ Hol(�,C), 	 limz→τ
γ (z)

z−τ = 0, and then f ′(τ ) = a1.

In Section 2 of this paper we show that higher order angular derivatives off can
also be defined by either one of these ways and the definitions are equivalent
(Proposition 2). Furthermore, we show that for a semigroup {Ft }t≥0 generated
by f ∈ Hol(�,C), the existence of the n-th (n > 1) angular derivative f (n)(τ )
of f at its boundary null point τ ∈ ∂� implies that for each element Ft of the
semigroup, the n-th angular derivative at τ also exists, and obtain formulae
connecting F (n)(τ ) with f n(τ ) for n = 2, 3 (Theorem 1).

Using these facts, we investigate in Sections 3, 4, and 5 conditions under
which the commutativity of two given elements of the semigroupsS1 = {Ft }t≥0

and S2 = {Gt }t≥0 implies that the semigroups commute for the dilation, hy-
perbolic and parabolic cases, respectively (Theorems 2, 4, and 5).

2. Higher order boundary derivatives

We begin by recalling the following known fact.

Proposition 1 ([20], p. 80). Let h be holomorphic in �. If Im h(z) has a
finite angular limit at τ ∈ ∂�, then (z− τ)h′(z) has the angular limit 0 at τ .

Proposition 2. Let f ∈ Hol(�,C) and let τ ∈ ∂�. Then the following
assertions are equivalent for any integer k ≥ 0:

(i) The function f admits the representation

(2) f (z) =
k∑

j=0

aj

j !
(z− τ)j + γk(z),

where 	 limz→τ
γk(z)

(z−τ)k = 0.
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(ii) The angular limit
	 lim
z→τ

f (k)(z)

exists finitely and coincides with ak in representation (2).
(iii) For each 0 ≤ n ≤ k, the angular limit

	 lim
z→τ

f (n)(z)

exists finitely and coincides with an in representation (2).

Proof. (i) ⇒ (ii). Let (i) hold. We show by induction that for all 0 ≤ n ≤ k,

the angular limit 	 limz→τ
γ
(n)
k (z)

(z−τ)k−n exists and equals zero, where γ (0)k := γk

and γ (n)k is the n-th derivative of γk .
For n = 0 this relation is given. Suppose that it holds for n = m−1,m ≤ k.

Denote

h(z) := γ
(m−1)
k (z)

(z− τ)k−m+1
+ ak

(k −m+ 1)!
, z ∈ �.

Then
	 lim
z→τ

h(z) = ak

(k −m+ 1)!

and, by Proposition 1,

	 lim
z→τ

(z− τ)h′(z) = 0.

On the other hand, differentiating (2) m− 1 times, we have

h(z) :=
f (m−1)(z)−

k−m∑
j=0

am−1+j
j ! (z− τ)j

(z− τ)k−m+1
, z ∈ �,

and so

(z−τ)h′(z) =
f (m)(z)−

k−m−1∑
j=0

am+j
j ! (z− τ)j

(z− τ)k−m
− (k−m+1)h(z), z ∈ �.

Hence, there exists the angular limit

	 lim
z→τ

γ
(m)
k (z)

(z− τ)k−m
= 	 lim

z→τ

f (m)(z)−
k−m∑
j=0

am+j
j ! (z− τ)j

(z− τ)k−m
= 0.
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Consequently, 	 limz→τ
γ
(n)
k (z)

(z−τ)k−n = 0 for all 0 ≤ n ≤ k. In particular,
	 limz→τ γ

(k)
k (z) = 0. So, by (2), the angular limit 	 limz→τ f

(k)(z) exists
finitely and coincides with ak .

(ii) ⇒ (iii). Suppose now that there exists the finite limit

(3) ak := 	 lim
z→τ

f (k)(z).

Consider the equality

f (k−1)(z) = f (k−1)(0)+
∫ z

0
f (k)(s) ds, z ∈ �.

Since the angular limit (3) exists finitely, the function f (k)(z) is continuous on
each curve �(t), α ≤ t ≤ β, �(α) = 0, �(β) = τ , strictly inside some Stolz
angle at τ . Hence, there exists the finite angular limit

ak−1 := 	 lim
z→τ

f (k−1)(z) = f (k−1)(0)+
∫ τ

0
f (k)(s) ds.

Similarly, for each 0 ≤ n ≤ k, the limit

(4) an := 	 lim
z→τ

f
(n)

(z)

exists finitely.
(iii) ⇒ (i). Now we show by induction that for each 0 ≤ n ≤ k,

(5) f (k−n)(z) =
n∑
j=0

ak−n+j
j !

(z− τ)j + γn(z)

with 	 limz→τ
γn(z)

(z−τ)n = 0.
For n = 0 equality (5) follows immediately from (3). Suppose that it holds

for n = m− 1 (m ≤ k), i.e.,

(6) f (k−m+1)(z) =
m−1∑
j=0

ak−m+1+j
j !

(z− τ)j + γm−1(z),

where 	 limz→τ
γm−1(z)

(z−τ)m−1 = 0.
It is clear that

f (k−m)(z)− ak−m
z− τ

=
∫ 1

0
f (k−m+1)(tτ + (1 − t)z) dt.
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Therefore, by (4),

	 lim
z→τ

f (k−m)(z)− ak−m
z− τ

= 	 lim
z→τ

∫ 1

0
f (k−m+1)(tτ + (1 − t)z) dt = ak−m+1.

On the other hand, by (6),

f (k−m)(z)− ak−m
z− τ

=
∫ 1

0
f (k−m+1)(tτ + (1 − t)z) dt

=
∫ 1

0

(m−1∑
j=0

ak−m+1+j
j !

(tτ + (1 − t)z− τ)j + γm−1(tτ + (1 − t)z)

)
dt

=
m−1∑
j=0

ak−m+1+j
(j + 1)!

(z− τ)j +
∫ 1

0
γm−1(tτ + (1 − t)z) dt.

Hence,

f (k−m)(z) =
m∑
j=0

ak−m+j
j !

(z− τ)j + γm(z),

where γm(z) = (z− τ)
∫ 1

0 γm−1(tτ + (1 − t)z) dt .
Now we verify that 	 limz→τ

γm(z)

(z−τ)m = 0. Indeed,

	 lim
z→τ

γm(z)

(z− τ)m

= 	 lim
z→τ

∫ 1

0

γm−1(tτ + (1 − t)z)

(z− τ)m−1
dt

= 	 lim
z→τ

∫ 1

0

γm−1(tτ + (1 − t)z)

(tτ + (1 − t)z− τ)m−1
· (tτ + (1 − t)z− τ)m−1

(z− τ)m−1
dt

=
∫ 1

0

(
(1 − t)m−1 	 lim

z→τ

γm−1(tτ + (1 − t)z)

(tτ + (1 − t)z− τ)m−1

)
dt = 0,

and for n = m (5) is proved. By induction, (5) holds for all 0 ≤ n ≤ k. This
equality with n = k yields representation (2).

Remark 1. Similar expansions to those which appear in Proposition 2
have already been used in [25] and [26].

Remark 2. The implication (i) ⇒ (ii) of Proposition 2 does not hold if
we replace the angular limit with the unrestricted one. This can be seen by
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studying the holomorphic self-mapping f (w) = i+w+exp(iw) of the upper
half-plane {w ∈ C : Imw > 0}, as suggested by the referee. At the same time,
repeating the proof, one can see that the implications (ii) ⇒ (iii) ⇒ (i) hold if
we replace the angular limits by the unrestricted ones.

If {Ft }t≥0 is a one-parameter continuous semigroup with a boundary fixed
point τ ∈ ∂� generated by f , then the angular derivatives F ′

t (τ ) for all t >
0 are finite if and only if the angular derivative f ′(τ ) =: β exists finitely.
Moreover, in this case F ′

t (τ ) = e−βt (see [16], [22], [17] and [9]).
As far as the higher order angular derivatives are concerned, even for the

Denjoy-Wolff point one cannot assert that they do exist. Consider, for example,
the parabolic holomorphic self-mapping F of � defined by

F(z) := 2z+ (1 − z)Log
(

2
1−z

)
2 + (1 − z)Log

(
2

1−z
) , z ∈ �,

where Log is the principal branch of the logarithm (see ([11])). The Denjoy-
Wolff point of this mapping is τ = 1. Consequently, there exists 	 limz→1

dF(z)

dz
.

However, the angular limit 	 limz→1
d2F(z)

dz2 does not exist finitely.
In Theorem 1 below we show that the existence of the angular derivatives

f ′′(τ ) and f ′′′(τ ) of the generator f of a semigroup {Ft }t≥0 at a boundary
fixed point τ implies that for each t > 0, the angular derivatives F ′′

t (τ ) :=
	 limz→τ

∂2Ft (z)

∂z2 and F ′′′
t (τ ) := 	 limz→τ

∂3Ft (z)

∂z3 also exist. Moreover, we give
formulae which connect these derivatives. In the proof we use the following
lemma (see [19], p. 303) which is also a consequence of Julia’s classical lemma.

Lemma 1. Let F ∈ Hol(�) and let τ ∈ ∂� be a boundary fixed point of F .
If F is conformal at τ , then nontangential convergence of z to τ implies that
F(z) converges to τ nontangentially.

Theorem 1. Let S = {Ft }t≥0 be a one-parameter continuous semigroup
generated by f ∈ Hol(�,C) and let τ ∈ ∂� be a boundary null point of f .

(i) If f ′(τ ) := 	 limz→τ f
′(z) exists finitely, then for each t ≥ 0, F ′

t (τ ) :=
	 limz→τ F

′
t (z) also exists and

(7) F ′
t (τ ) = e−βt ,

where β = f ′(τ ).
(ii) If f ′′(τ ) := 	 limz→τ f

′′(z) exists finitely, then for each t ≥ 0,F ′′
t (τ ) :=

	 limz→τ F
′′
t (z) also exists and

(8) F ′′
t (τ ) =

{ −αt, β = 0

α
β
e−βt (e−βt − 1), β 	= 0,
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where β = f ′(τ ), α = f ′′(τ ).
(iii) If f ′′′(τ ) := 	 limz→τ f

′′′(z) exists finitely, then for each t ≥ 0,
F ′′′
t (τ ) := 	 limz→τ F

′′′
t (z) also exists and

(9) F ′′′
t (τ ) =

⎧⎨⎩
3
2α

2t2 − γ t, β = 0(
3α2

2β2 + γ

2β

)
e−3βt − 3 α

2

β2 e
−2βt + (

3α2

2β2 − γ

2β

)
e−βt , β 	= 0,

where β = f ′(τ ), α = f ′′(τ ), γ = f ′′′(τ ).

Proof. Since assertion (i) has been proved in [22] (see also [9] and [16]),
we only present here proofs of assertions (ii) and (iii).

(ii) We have already mentioned above that semigroup elements solve the
Cauchy problem (1). Differentiating the equality

(10)
∂Ft (z)

∂t
+ f (Ft (z)) = 0, z ∈ �, t ≥ 0,

two times with respect to z ∈ �, we get

(11)
∂

∂t

(
∂2Ft(z)

∂z2

)
+ f ′′(Ft (z))

(
∂Ft (z)

∂z

)2

+ f ′(Ft (z))
∂2Ft(z)

∂z2
= 0

for all z ∈ � and t ≥ 0.

Define the functions p(z, t) := f ′(Ft (z)), q(z, t) := −f ′′(Ft (z))
(
∂Ft (z)

∂z

)2

and u2(z, t) := ∂2Ft (z)

∂z2 , z ∈ �, t ≥ 0. It is clear that u2(z, 0) = 0. Rewriting
(11) in the form

∂u2(z, t)

∂t
+ p(z, t)u2(z, t) = q(z, t), z ∈ �, t ≥ 0,

we find

u2(z, t) = e−
∫ t

0 p(z,s) ds ·
∫ t

0
q(z, s)e

∫ s
0 p(z,ς) dς ds.

Now we fix t and let z tend to τ nontangentially in the right-hand side
of this equality. Since 	 limz→τ f

′′(z) := α exists finitely, by Proposition 2,
the angular limit 	 limz→τ f

′(z) := β also exists finitely. Consequently, τ is
a boundary fixed point of Ft for all t ≥ 0 (see [22] and [9]). Moreover, by
item (i), 	 limz→τ F

′
t (z) = e−βt 	= 0 for each t ≥ 0. Hence, by Lemma 1,

Ft(z) converges to τ nontangentially as z tends to τ nontangentially for each
t > 0, and we can conclude that 	 limz→τ p(z, t) = β and 	 limz→τ q(z, t) =
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−αe−2βt for each t > 0. Hence,

	 lim
z→τ

(
e−

∫ t
0 p(z,t)ds ·

∫ t

0
q(z, s)e

∫ s
0 p(z,ς)dς ds

)
= e−

∫ t
0

	 limz→τ p(z,s)ds ·
∫ t

0

	 lim
z→τ

q(z, s) · e
∫ s

0
	 limz→τ p(z,ς)dς ds

= −αe−βt
∫ t

0
e−βs ds.

Therefore if β = 0, then

	 lim
z→τ

∂2Ft(z)

∂z2
= −αt, 0 ≤ t < ∞.

If β 	= 0, then

	 lim
z→τ

∂2Ft(z)

∂z2
= α

β
e−βt · (

e−βt − 1
)
.

(iii) Differentiating equality (10) three times with respect to z ∈ �, we get

(12)
∂

∂t

(
∂3Ft(z)

∂z3

)
+ f ′′′(Ft (z))

(
∂Ft (z)

∂z

)3

+ 3f ′′(Ft (z))
∂Ft (z)

∂z
· ∂

2Ft(z)

∂z2
+ f ′(Ft (z))

∂3Ft(z)

∂z3
= 0, t ≥ 0, z ∈ �.

Define the functions

r(z, t) := −f ′′′(Ft (z)) ·
(
∂Ft (z)

∂z

)3

− 3f ′′(Ft (z)) · ∂Ft (z)
∂z

· ∂
2Ft(z)

∂z2

and u3(z, t) := ∂3Ft (z)

∂z3 , z ∈ �, t ≥ 0. It is clear that u3(z, 0) = 0. Rewriting
(12) in the form

∂u3(t, z)

∂t
+ p(z, t)u3(z, t) = r(z, t), t ≥ 0,

we find

u3(z, t) = e−
∫ t

0 p(z,s) ds ·
∫ t

0
r(z, s)e

∫ s
0 p(z,ς) dς ds.

Now we fix t and let z tend to τ nontangentially in the right-hand side of
this equality.



304 m. elin, m. levenshtein, s. reich and d. shoikhet

Once again, by the continuity ofp(·, t) and r(·, t) in each closed Stolz angle
with vertex at τ ,

	 lim
z→τ

(
e−

∫ t
0 p(z,s) ds ·

∫ t

0
q(z, s)e

∫ s
0 p(z,ς) dς ds

)
= e−

∫ t
0

	 limz→τ p(z,s) ds ·
∫ t

0

	 lim
z→τ

q(z, s) · e
∫ s

0
	 limz→τ p(z,ς) dς ds

= −e−βt ·
∫ t

0

(
γ e−3βs + 3αe−βs · 	 lim

z→τ

∂2Fs(z)

∂z2

)
eβs ds.

By Proposition 2, the limit 	 limz→τ
∂2Ft (z)

∂z2 exists and by item (ii) proved
above, it is given by equality (8).

Hence, the limit 	 limz→τ
∂3Ft (z)

∂z3 exists and in the parabolic case (β = 0) it
equals

	 lim
z→τ

∂3Ft(z)

∂z3
= −

∫ t

0
(γ − 3α2s) ds = 3α2t2

2
− γ t.

In the hyperbolic case (β 	= 0) this limit also exists and

	 lim
z→τ

∂3Ft(z)

∂z3
= −e−βt ·

∫ t

0

((
γ + 3α2

β

)
e−2βs − 3α2

β
e−βs

)
ds

=
(

3α2

2β2
+ γ

2β

)
e−3βt − 3

α2

β2
e−2βt +

(
3α2

2β2
− γ

2β

)
e−βt .

Corollary 1. Let f ∈ Hol(�,C) be the generator of a parabolic semi-
group {Ft }t≥0 with the Denjoy-Wolff point τ ∈ ∂�. If 	 limz→τ f

′′(τ ) =
	 limz→τ f

′′′(τ ) = 0, then Ft = I for all t ≥ 0.

Indeed, these conditions imply that F ′
t (τ ) = 1, F ′′

t (τ ) = F ′′′
t (τ ) = 0 for

all t ≥ 0 and, by Corollary 2.5 in [26] (see also [8]), we get Ft = I.

Remark 3. As a matter of fact, repeating our proof and using Remark 2, one
can show that the angular limits in Theorem 1 can be replaced by unrestricted
limits. Namely:

Let S = {Ft }t≥0 be the semigroup generated by f . Assume that for each
t > 0 the unrestricted limit limz→τ,z∈� Ft(z) exists, where τ is a boundary
null point of f . The following assertions hold:

(i) If the unrestricted limit β := limz→τ,z∈� f ′(z) exists finitely, then

lim
z→τ
z∈�

F ′
t (z) = e−βt for each t ≥ 0.
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(ii) If the unrestricted limit α := limz→τ,z∈� f ′′(z) exists finitely, then

(13) lim
z→τ
z∈�

F ′′
t (z) =

{ −αt, β = 0

α
β
e−βt (e−βt − 1), β 	= 0,

for each t ≥ 0.
(iii) If the unrestricted limit γ := limz→τ,z∈� f ′′′(z) exists finitely, then

(14)

lim
z→τ
z∈�

F ′′′
t (z) =

⎧⎨⎩
3
2α

2t2 − γ t, β = 0(
3α2

2β2 + γ

2β

)
e−3βt − 3 α

2

β2 e
−2βt + (

3α2

2β2 − γ

2β

)
e−βt , β 	= 0,

for each t ≥ 0.

Remark 4. The arguments used in the proof of Theorem 1 can be used to
derive analogous results for derivatives of any order k ≥ 4.

3. Semigroups with an interior fixed point

In our proofs we use the two following facts established by C. C. Cowen in
[12].

Proposition 3. Let F , G1, G2 be holomorphic self-mappings of �, not
automorphisms of�, and letG1 andG2 commute with F . Suppose that τ ∈ �
is the Denjoy-Wolff point of F and that 0 < |F ′(τ )| < 1. Then G1 and G2

commute with each other.

Proposition 4. Let F andG be two nonconstant commuting holomorphic
self-mappings of�, not automorphisms of�, and let τ ∈ � be their common
Denjoy-Wolff point.

(i) If F ′(τ ) = 0, then G′(τ ) = 0.

(ii) If 0 < |F ′(τ )| < 1, then 0 < |G′(τ )| < 1.

(iii) If F ′(τ ) = 1, then G′(τ ) = 1.

The following fact is more or less known (see, for example, [1]).

Proposition 5. Let S = {Ft }t≥0 be a semigroup in �. Assume Ft0 is
an automorphism of � for some t0 > 0; then each element Ft of S is an
automorphism of �.

We now begin our investigation of commuting semigroups. Note that in all
the following theorems the condition F1 ◦G1 = G1 ◦ F1 can be replaced by
the condition Fp ◦Gq = Gq ◦ Fp for some p, q > 0.
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Theorem 2. Let S1 = {Ft }t≥0 and S2 = {Gt }t≥0 be two continuous semig-
roups on � generated by f and g, respectively, and assume that F1 ◦ G1 =
G1 ◦F1. Suppose that f has an interior null point τ ∈ �. If S1 and S2 are not
groups of automorphisms of �, then they commute.

Proof. Since τ is an interior null point of the generator f , it is the unique
interior fixed point of the semigroup S1 (see [1]). The commutativity of F1 and
G1 implies that τ is a fixed point of G1 and, consequently, τ is a fixed point
of Gt for each t > 0.

By our assumption, S1 and S2 are not groups of automorphisms of �. By
the Schwarz-Pick lemma and the univalence of Ft and Gt on �, we have
0 < |F ′

t (τ )| < 1 and 0 < |G′
t (τ )| < 1 for all t > 0.

Then applying Proposition 3 and the semigroup property, we get that G1 ◦
Ft = Ft ◦G1 for all t ≥ 0. Similarly, Gs ◦ Ft = Ft ◦Gs for all s, t ≥ 0.

Surprisingly, the case where S1 contains elliptic automorphisms is more
complicated. First we prove that a semigroup commuting with a group of
elliptic automorphisms has a specific form.

Proposition 6. Let S1 = {Ft }t≥0 be a nontrivial group of elliptic auto-
morphisms of� with a common fixed point at τ ∈ �, and let S2 = {Gt }t≥0 be
a semigroup of self-mappings of �. Then S1 and S2 commute if and only if S2

is a semigroup of linear fractional transformations of the form

(15) Gt(z) = mτ(e
−at ·mτ(z))

for some a ∈ C, where mτ(z) = τ−z
1−τz .

Note that the function Gt defined by equality (15) is a self-mapping of �
if and only if Re a ≥ 0.

Proof. Let S2 be of the form (15). Since both S1 and S2 are actually linear
semigroups up to conjugation with mτ , they must commute.

Conversely, suppose that Ft ◦Gs = Gs ◦ Ft for all s, t ≥ 0. Denote

F̃t (z) = eiϕt z, G̃t = mτ ◦Gt ◦mτ .
Then {F̃t }t≥0 is a group of automorphisms of� with a fixed point at zero, and
{G̃t }t≥0 is a semigroup of self-mappings of � with a fixed point at zero. It is
obvious that the semigroups {F̃t }t≥0 and {G̃t }t≥0 commute. Consequently, their
generators g̃(z) and f̃ (z) = −iϕz are proportional (see [15]). So g̃(z) = az

for some a ∈ C. Therefore G̃t (z) = e−at z and Gt(z) = mτ(e
−atmτ (z)).

We will see below that if S1 is a group of elliptic automorphisms the com-
mutativity ofF1 andG1 does not imply that the semigroupsS1 andS2 commute.
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Nevertheless, in this case one can still obtain some additional information about
the semigroup S2. The following assertions explain our claim.

Theorem 3. Let F be an elliptic automorphim of � and let S2 = {Gt }t≥0

be a semigroup of self-mappings of� which are not automorphisms. Then the
commutativity of F and G1 implies that F ◦Gt = Gt ◦ F for all t ≥ 0.

Proof. Let τ ∈ � be the common fixed point of F and Gt , t ≥ 0. Then
the function F is of the form F(z) = mτ(e

iϕmτ (z)), ϕ ∈ R, z ∈ �, where
mτ(z) = τ−z

1−τz .

Denote F̃ (z) := eiϕz and G̃t (z) = mτ(Gt(mτ (z))). Then {G̃t }t≥0 is a
semigroup of self-mappings of� which are not automorphisms with its com-
mon fixed point at zero.

It is obvious that for each t > 0, F andGt commute if and only if F̃ and G̃t

commute. Hence, by our assumption, F̃ ◦G̃1 = G̃1 ◦F̃ or, which is one and the
same, eiϕG̃1(z) = G̃1(e

iϕz). It follows that for all n ∈ N, F̃ ◦ G̃n = G̃n ◦ F̃ ,
where G̃n are the iterates of G̃1, i.e., G̃n = G̃1 ◦ G̃n−1.

Since G̃1 is a self-mapping of� (which is not an automorphism) with a fixed
point at the origin, there exists a unique univalent solution h of the functional
equation

h(G̃1(z)) = αh(z), with α = G̃′
1(0),

normalized by h(0) = 0, h′(0) = 1 (see, for example, [21]). This solution is
given by

h(z) = lim
n→∞

G̃n(z)

αn
.

Moreover, for all real positive t (see, for instance, [14]),

h(G̃t (z)) = αth(z).

Therefore,

h(F̃ (G̃t (z))) = h(eiϕG̃t (z)) = lim
n→∞

G̃n(e
iϕG̃t (z))

αn
= lim

n→∞
eiϕG̃n(G̃t (z))

αn

= eiϕh(G̃t (z)) = eiϕαth(z) = αt lim
n→∞

eiϕG̃n(z)

αn

= αt lim
n→∞

G̃n(e
iϕz)

αn
= αth(eiϕz) = h(G̃t (e

iϕz))

= h(G̃t (F̃ (z)))

and, by the univalence ofh, we get F̃ ◦G̃t = G̃t ◦F̃ for all t ≥ 0. Consequently,
F and Gt commute for all t ≥ 0 as asserted.
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Corollary 2. Let S1 = {Ft }t≥0 be a group of elliptic automorphisms of
�, i.e., Ft(z) = mτ(e

iϕtmτ (z)), ϕ ∈ R, τ ∈ �, and let S2 = {Gt }t≥0 be a
semigroup of self-mappings of� withG1 	= I . Suppose that ϕ

π
is an irrational

number and F1 and G1 commute. Then Gt(z) = mτ(e
−atmτ (z)), a ∈ C, and,

consequently, the semigroups S1 and S2 commute.

Proof. Once again, we define the functions F̃t = eiϕt z and G̃t = mτ ◦
Gt ◦mτ . The commutativity of F1 andG1 implies that F̃1 ◦ G̃1 = G̃1 ◦ F̃1 and,
by Proposition 6 and Theorem 3, F̃1 ◦ G̃t = G̃t ◦ F̃1 for all t ≥ 0. Therefore
G̃t (e

inϕz) = einϕG̃t (z) for all n ∈ N. Since the set {einϕ}n∈N is dense in the unit
circle, G̃t (λz) = λG̃t (z) for all λ with |λ| = 1 and z ∈ �, by the continuity
of G̃t on �.

Fix 0 	= z ∈ � and t > 0, and consider the analytic function q(λ) on the
closed unit disk defined by

(16) q(λ) =
⎧⎨⎩

G̃t (λz)

λ
, λ 	= 0,

limλ→0
G̃t (λz)

λ
= z ∂

∂w
G̃t (w)

∣∣
w=0, λ = 0.

This function is constant on the unit circle: q(λ) = G̃t (z). Moreover,
q(λ) 	= 0 for all λ ∈ �. Therefore, q(λ) = G̃t (z) for all λ ∈ �. So for
each z 	= 0 and t > 0, G̃t (λz) = λG̃t (z). Consequently, this equality holds
for all z ∈ �. Hence G̃t is a linear function for each t > 0, i.e., G̃t (z) = e−at z
for some a ∈ C, Re a ≥ 0, and the assertion follows.

In contrast with this corollary, if ϕ

π
is a rational number, the semigroups S1

and S2 do not necessarily commute. The following example gives a large class
of semigroups S2 = {Gt }t≥0 such that F1 ◦Gt = Gt ◦F1 for all t ≥ 0, but the
semigroups S1 and S2 do not commute.

Example. Let S1 = {Ft }t≥0, where Ft(z) = ei
2π
n
t z, n ∈ N, and let S2 =

{Gt }t≥0 be the semigroup generated by g(z) = zp(zn), where Rep(z) ≥ 0 for
all z ∈ �. Then F1 ◦Gt = Gt ◦ F1 for all t ≥ 0.

Indeed, denote u = u(t, z) := Gt(z). Then u is the unique solution of the
Cauchy problem

(17)

{
∂u
∂t

+ up(un) = 0,

u(0, z) = z, z ∈ �,

and, consequently,

(18)
∫ Gt (z)

z

dς

ςp(ςn)
= −t for all z ∈ �.
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Substituting ei
2π
n z instead of z, we get

∫ Gt

(
ei

2π
n z

)
ei

2π
n z

dς

ςp(ςn)
= −t.

Now substitute ς = ei
2π
n w:

(19)∫ Gt

(
ei

2π
n z

)
e−i

2π
n

z

dw

wp(wnei2π )
=

∫ Gt

(
ei

2π
n z

)
e−i

2π
n

z

dw

wp(wn)
= −t, z ∈ �.

Equalities (18) and (19) imply that

(20)
∫ Gt

(
ei

2π
n z

)
e−i

2π
n

Gt (z)

dw

wp(wn)
= 0, z ∈ �.

By the uniqueness of the solution to the Cauchy problem (17), the equation∫ u

z

dw

wp(wn)
= −s, s ≥ 0, z ∈ �

has the unique solution u = Gs(z) for each s ≥ 0. Thus, it follows from (20)
that Gt

(
ei

2π
n z

)
e−i

2π
n = G0(Gt(z)) = Gt(z). Hence, Gt

(
ei

2π
n z

) = ei
2π
n Gt (z).

Therefore, F1 commutes with Gt for all t ≥ 0. At the same time, if p is not
a constant function, the semigroups do not commute because their generators
are not proportional (see Theorem 4 in [15]).

Remark 5. The following complement to this example has been inspired
by the referee. If at least one element of a semigroup S2 = {Gt }t≥0, sayG1, has
the formG1(z) = zφ1(z

n), φ1 ∈ Hol(�), then all the elements have the same
form: Gt(z) = zφt (z

n) for some functions φt ∈ Hol(�); so the semigroup
generator can be represented as g(z) = zp(zn) with Rep(z) ≥ 0.

Indeed, the representation G1(z) = zφ1(z
n) is equivalent to the commut-

ativity of G1 with F1(z) = ei
2π
n z. By Theorem 3, each mapping Gt, t ≥ 0,

must commute withF1. HenceGt(z) = zφt (z
n), φt ∈ Hol(�). Differentiating

Gt at t = 0+, we arrive at our claim.

4. Semigroups of hyperbolic type

We start this section with a result of M. H. Heins [18].

Lemma 2. Let F be a hyperbolic automorphism of�, and letG ∈ Hol(�)
(G 	= I ) commute with F . Then G is also a hyperbolic automorphism of �.
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This result can be complemented by the following assertion which is of
independent interest.

Proposition 7. LetF andG be two commuting holomorphic self-mappings
of � and assume that G is not the identity. If F is of hyperbolic type, then G
is of hyperbolic type too.

Proof. If F is a hyperbolic automorphism of �, then by Lemma 2, G is a
hyperbolic automorphism of �.

Let F be a holomorphic self-mapping of � which is not an automorphism
of �. In this case, by a result in [2], the mappings F and G have a common
Denjoy-Wolff point τ ∈ ∂�. We have to show that G is of hyperbolic type,
i.e., 0 < G′(τ ) < 1. Suppose, to the contrary, that G is of parabolic type, i.e.,
G′(τ ) = 1. Then, by Proposition 4(ii), G must be a parabolic automorphism.

Denote ϕ := C ◦ F ◦ C−1 and ψ := C ◦ G ◦ C−1, where C(z) = τ+z
τ−z .

Then f and g are two commuting holomorphic self-mappings of the right
half-plane H = {z ∈ C : Re z > 0} with their common Denjoy-Wolff point at
infinity. Moreover,ψ is a parabolic automorphism of H while ϕ is a hyperbolic
self-mapping of H. Consequently, ϕ and ψ are of the forms (see [21]):

ϕ(w) = cw + �F (w) with c = 1

F ′(τ )
> 1 and 	 lim

w→∞
�F (w)

w
= 0,

and
ψ(w) = w + ib with b ∈ R \ {0} and w ∈ H.

By a simple calculation and the commutativity of ϕ and ψn, we infer from the
above representations that

(21) ϕ(w + nib) = ϕ(w)+ nib, w ∈ H.

Hence,
ϕ(w + nib)

w + nib
= ϕ(w)

w + nib
+ nib

w + nib
, w ∈ H.

Letting n → ∞, we obtain that for each w ∈ H, the limit limn→∞ ϕ(w+nib)
w+nib

exists and equals 1.
Fix w0 ∈ H. Consider the curve � := {w0 + it : t ∈ R, sgn t = sgn b}. We

intend to show that the limit lim��z→∞ ϕ(z)

z
exists and equals 1.

To this end, fix an arbitrary ε > 0 and take N ∈ N such that

N >
1

|b|
( |ϕ(w)− w|

ε
+ |w|

)
and N >

|w|
|b|

for all w ∈ [w0, w0 + ib].
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Then
∣∣ ϕ(z)
z

− 1
∣∣ < ε for all z ∈ � with sgn b · Im z > sgn b(Imw0 +Nb).

Indeed, if sgn b · Im z > sgn b(Imw0 + Nb), then z = α + ikb for some
α ∈ [w0, w0 + ib] and k ≥ N .

Hence, k|b| ≥ |α| and k > 1
|b|

( |ϕ(α)−α|
ε

+ |α|). Consequently, |α + ikb| >
k|b| − |α| > |ϕ(α)−α|

ε
.

Now using (21), we obtain that∣∣∣∣ϕ(z)z − 1

∣∣∣∣ =
∣∣∣∣ϕ(α + kib)

α + kib
− 1

∣∣∣∣ =
∣∣∣∣ϕ(α)− α

α + ikb

∣∣∣∣ < ε.

Thus lim��z→∞ ϕ(z)

z
= 1. It now follows from Lindelöf’s theorem (see, for

example, [23]) that 	 limz→∞ ϕ(z)

z
= 1, which contradicts our assumption.

Therefore the mapping G is indeed of hyperbolic type.

Theorem 4. Let S1 = {Ft }t≥0 and S2 = {Gt }t≥0 be continuous semigroups
on � generated by f and g, respectively, and assume that G 	= I and F1 ◦
G1 = G1 ◦ F1. Suppose that f has a boundary null point τ ∈ ∂�, such that
f ′(τ ) := 	 limz→τ f

′(z) > 0, i.e., the semigroup S1 is of hyperbolic type.
Then the semigroups S1 and S2 commute.

Proof. By our assumption, τ is the Denjoy-Wolff point of the semig-
roup S1.

First we suppose that S1 consists of automorphisms of�. Since f ′(τ ) > 0,
S1 consists of hyperbolic automorphisms of � and its generator f is of the
form

f (z) = a1

τ − ς
(z− τ)(z− ς),

where a1 is a positive real number and ς is the second common fixed point of
the semigroup S1 (see [3]).

Again Lemma 2 and the commutativity of F1 andG1 imply thatG1 (hence,
Gt, t ≥ 0) are hyperbolic automorphisms of �. Moreover, S2 has the same
fixed points τ and ς ; consequently, its generator g is of the form

g(z) = a2

ς − τ
(z− τ)(z− ς),

wherea2 is a non-zero real number. Hence, g(z) = − a2
a1
f (z), and by Theorem 4

in [15], the semigroups commute.
Suppose now that the semigroup S1 consists of self-mappings of � which

are not automorphisms. By a result in [2], τ is the common Denjoy-Wolff point
of S1 and S2.
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Then by Lemma 2 and Proposition 7, S2 consists also of hyperbolic map-
pings which are not automorphisms. Now our theorem is seen to be a con-
sequence of Proposition 3.

The referee has pointed out that another proof of Theorem 4 can be obtained
by using Proposition 6 in [7].

Remark 6. Note that if S1 and S2 are commuting semigroups of hyperbolic
type generated by f and g, respectively, then f (z) = kg(z), where k = f ′(τ )

g′(τ )
is a real constant [15]. (This constant is positive whenever the semigroups are
not groups.)

Therefore S1 and S2 coincide up to rescaling. In particular, if in Theorem 4
the derivatives F ′

1(τ ) = e−f ′(τ ) and G′
1(τ ) = e−g′(τ ) are equal, then Ft(z) =

Gt(z) for all t ≥ 0 and z ∈ �.

5. Semigroups of parabolic type

For each n = 0, 1, . . . , we denote by CnA(τ), τ ∈ �, the class of functions
F ∈ Hol(�,C) which admit the representation

(22) F (z) =
n∑
k=0

ak(z− τ)k + γ (z),

where γ ∈ Hol(�,C) and 	 limz→τ
γ (z)

(z−τ)n = 0; and we say that F ∈ Cn(τ)

when this expansion holds as z → τ unrestrictedly.
To proceed we need the following auxiliary result.

Lemma 3. Let F,G ∈ Hol(�) be two commuting univalent parabolic
mappings and let τ = 1 be the Denjoy-Wolff point of F . If one of the following
conditions

(i) F,G ∈ C2(1), F ′′(1) 	= 0, G′′(1) 	= 0;

(ii) F,G ∈ C2
A(1), G

′′(1) 	= 0, ReF ′′(1) > 0;

(iii) F,G ∈ C3(1), F ′′(1) = G′′(1) = 0, F ′′′(1) 	= 0, G′′′(1) 	= 0

holds, then there exists a univalent function σ ∈ Hol(�,C) such that

(23) σ ◦ F = σ + 1

and

(24) σ ◦G = σ + λ with λ ∈ C, λ 	= 0.

Proof. Denote ϕ = C ◦ F ◦ C−1, ψ = C ◦G ◦ C−1, ϕ,ψ ∈ Hol(H,H),
where H = {z ∈ C : Re z > 0} and C is the Cayley transformation given
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by C(z) = 1+z
1−z . Then ϕ and ψ are commuting parabolic maps in Hol(H,H)

having ∞ as their common Denjoy-Wolff point.
Denote w0 := 1, w0

n := ϕn(1), n = 1, 2, . . .,

wn := ϕn(w), wn ∈ H,

and
hn(w) := wn − w0

n

w0
n+1 − w0

n

, w ∈ H.

Then hn ∈ Hol(H,C) and the sequence {hn}∞n=1 converges in the compact open
topology to a holomorphic function h ∈ Hol(H,C) such that h◦ϕ = h+1 and
the function σ := h ◦ C solves equation (23) (see [10]). Since F is univalent
in �, the solution σ of Abel’s equation (23) is also univalent in �.

Suppose that (i) holds. Then the following expansions of ϕ and ψ at ∞ are
satisfied (see [5]):

(25) ϕ(w) = w + F ′′(1)+ γϕ(w), lim
w→∞ γϕ(w) = 0

and

(26) ψ(w) = w +G′′(1)+ γψ(w), lim
w→∞ γψ(w) = 0.

Hence,

hn(ψ(w))

= ϕn(ψ(w))− w0
n

w0
n+1 − w0

n

= ψ(ϕn(w))− w0
n

w0
n+1 − w0

n

= wn +G′′(1)+ γψ(wn)− w0
n

w0
n+1 − w0

n

= wn − w0
n

w0
n+1 − w0

n

+ G′′(1)+ γψ(wn)

w0
n+1 − w0

n

= hn(w)+ G′′(1)+ γψ(wn)

F ′′(1)+ γϕ(wn)
· F

′′(1)+ γϕ(wn)

w0
n+1 − w0

n

.

Letting n → ∞, we obtain

(27) h(ψ(w))− h(w) = G′′(1)
F ′′(1)

· lim
n→∞

F ′′(1)+ γϕ(wn)

w0
n+1 − w0

n

.

Repeating this calculation with ϕ instead of ψ , we find that

h(ϕ(w)) = h(w)+ lim
n→∞

F ′′(1)+ γϕ(wn)

w0
n+1 − w0

n

.
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At the same time, h ◦ ϕ = h+ 1. Hence limn→∞
F ′′(1)+γϕ(wn)
w0
n+1−w0

n

= 1.

Rewrite (27) as follows:

h(ψ(w))− h(w) = λ, where λ = G′′(1)
F ′′(1)

	= 0 and w ∈ H.

Substituting h = σ ◦ C−1 and ψ = C ◦ G ◦ C−1 in the last equality we get
(24).

If (ii) holds, then Theorem 14 in [11] implies that for each z ∈ �, the
sequence {Fn(z)}∞n=1 converges to 1 (and, consequently, {wn} converges to ∞)
nontangentially. So, in this case, one can repeat the proof of item (i), replacing
the unrestricted limits in (25) and (26) by the angular limits.

Suppose now that (iii) holds. Then the following expansions of ϕ and ψ at
∞ hold (see [5]):

(28) ϕ(w) = w − 2

3

F ′′′(1)
w + 1

+ �ϕ(w), lim
w→∞�ϕ(w)w = 0

and

(29) ψ(w) = w − 2

3

G′′′(1)
w + 1

+ �ψ(w), lim
w→∞�ψ(w)w = 0.

Therefore

hn(ϕ(w)) = ϕ(wn)− w0
n

w0
n+1 − w0

n

= wn − w0
n

w0
n+1 − w0

n

+ − 2
3
F ′′′(1)
wn+1 + �ϕ(wn)

w0
n+1 − w0

n

= hn(w)+ − 2
3
F ′′′(1)
wn+1 + �ϕ(wn)

w0
n+1 − w0

n

.

Letting n → ∞, we obtain

h(ϕ(w)) = h(w)+ lim
n→∞

− 2
3
F ′′′(1)
wn+1 + �ϕ(wn)

w0
n+1 − w0

n

.

On the other hand, h(ϕ(w)) = h(w)+ 1. Hence,

(30) lim
n→∞

− 2
3
F ′′′(1)
wn+1 + �ϕ(wn)

w0
n+1 − w0

n

= 1.
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Now using (29), we find

hn(ψ(w)) = ψ(wn)− w0
n

w0
n+1 − w0

n

= wn − 2
3
G′′′(1)
wn+1 + �ψ(wn)− w0

n

w0
n+1 − w0

n

= hn(w)+ − 2
3G

′′′(1)+ �ψ(wn)(wn + 1)

− 2
3F

′′′(1)+ �ϕ(wn)(wn + 1)
· − 2

3
F ′′′(1)
wn+1 + �ϕ(wn)

w0
n+1 − w0

n

.

Letting n → ∞ and using (30), we get

h(ψ(w))− h(w) = λ, w ∈ H, where λ = G′′′(1)
F ′′′(1)

	= 0.

Consequently, σ ◦G− σ = λ.

Following [10], we say that the function σ mentioned in the lemma is the
Kœnigs intertwining function associated with F .

Remark 7. The function σ in Lemma 3 is completely determined by the
function F . It does not depend on G. So if the conditions of the lemma hold
for the same function F and another functionG1 ∈ Hol(�), then we have the
equality

σ ◦G1 = σ + λ1

with the same function σ and a constant λ1 	= 0.

Theorem 5. Let S1 = {Ft }t≥0 and S2 = {Gt }t≥0 be two non-trivial
continuous semigroups on � generated by f and g, respectively, and let
F1 ◦G1 = G1 ◦ F1.

Suppose that τ = 1 is the boundary null point of f such that f ′(1) = 0. If
either one of the following conditions

(i) the semigroups S1 and S2 are of non-automorphic type;

(ii) S1, S2 ⊂ C0(1), the unrestricted limits α := limz→1 f
′′(z) and α̃ :=

limz→1 g
′′(z) exist and are different from zero;

holds, then the semigroups commute.

Proof. Since τ = 1 is a boundary null point of f and f ′(1) = 0, it is
the common Denjoy-Wolff point of the semigroup S1. The commutativity of
F1 and G1 implies that τ = 1 is the Denjoy-Wolff point of G1 (see [2]) and,
consequently, it is also the common Denjoy-Wolff point of the semigroup S2.

Suppose that condition (i) holds. Consider the holomorphic function σ
defined by

(31) σ ′(z) = −1

f (z)
, σ (0) = 0.
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It follows by the Berkson-Porta formula for generators (see [4]) that f can be
presented in the form f (z) = −(1 − z)2p(z), where Rep(z) ≥ 0. Thus

Re
σ ′(z)
q ′(z)

≥ 0,

where q(z) = z
1−z is a univalent convex function. Then the function σ is

close-to-convex, hence univalent in the open unit disk � (see, for example,
Theorem 2.17 in [13]).

In addition, it can be shown (see, for example, [24] and [14]) by using
the Cauchy problem (1) and (31) that the function σ satisfies the following
functional equation:

(32) σ (Ft (z)) = σ(z)+ t.

Define now a univalent function σ̃ in the unit disk by σ̃ = σ ◦G1. It follows
from (32) with t = 1 and the commutativity of F1 and G1 that

σ̃ (F1(z)) = σ̃ (z)+ 1.

Then by Theorem 3.1 in [10], there exists a constant λ ∈ C such that σ̃ = σ+λ,
i.e.,

(33) σ (G1(z)) = σ(z)+ λ.

Note that if λ = 0, the univalence of σ implies that G1(z) ≡ z. In this case
all the functions Gt, t ≥ 0, coincide with the identity mapping. Hence the
semigroups S1 and S2 commute. Therefore we can suppose that λ 	= 0.

Consider now the holomorphic function σ1 defined by

(34) σ ′
1(z) = −1

g(z)
, σ1(0) = 0.

As above, σ1 is univalent and satisfies the functional equation

σ1 (Gt(z)) = σ1(z)+ t.

In particular, σ1 is the Kœnigs intertwining function associated with G1,

(35) σ1 (G1(z)) = σ1(z)+ 1.

Comparing equations (33) and (35) and using again Theorem 3.1 in [10], we
obtain that σ = λσ1 +μ for some complex number μ. Differentiating the last
equality, we obtain by (31) and (34), that g(z) = λf (z). So, by a result in [15],
the semigroups S1 and S2 commute.
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Suppose now that condition (ii) holds. By Remark 3 above, it follows that
for each t ≥ 0,

lim
z→1

F ′′
t (z) = −αt

and
lim
z→1

G′′
t (z) = −α̃t.

We have already seen in the proof of Lemma 3 that

(36) σ (G1(z))− σ(z) = G′′
1(1)

F ′′
1 (1)

.

Since ReF ′′
1 (1) = 0 and ReG′′

1(1) = 0 (see Theorem 4.4 in [5]), it follows

that G
′′
1(1)

F ′′
1 (1)

∈ R \ {0}. Moreover, by Remark 3,

F ′′
t (1) = −αt and G′′

t (1) = −α̃t, t > 0,

where α = f ′′(1) 	= 0 and α̃ = g′′(1) 	= 0. So equality (36) has the form

(37) σ (G1(z))− σ(z) = p, where p := α̃

α
.

On the other hand,

(38) σ (Ft (z))− σ(z) = F ′′
t (1)

F ′′
1 (1)

= αt

α
= t for all t ≥ 0.

First we suppose that p > 0. From (37) and (38) we have σ(G1(z)) =
σ(Fp(z)), z ∈ �, and by the univalence of σ on �, G1(z) = Fp(z) for all
z ∈ �. Hence, G1 ◦ Ft = Ft ◦G1 for all t ≥ 0.

Fix t > 0 and repeat these considerations withG1, Ft ,Gs and σ̃ instead of
F1, G1, Ft and σ , respectively. Namely,

σ̃ (Ft (z))− σ̃ (z) = F ′′
t (1)

G′′
1(1)

= αt

α̃
> 0

and
σ̃ (Gs(z))− σ̃ (z) = G′′

s (1)

G′′
1(1)

= s for all s > 0.

Denote s̃ := αt
α̃
> 0. Then σ̃ (Ft (z)) = σ̃ (Gs̃(z)), z ∈ �. By the univalence

of σ̃ on� we have Ft(z) = Gs̃(z). ThereforeGs ◦Ft = Ft ◦Gs for all s > 0.
Since t > 0 is arbitrary, it follows that the semigroups S1 = {Ft }t≥0 and
S2 = {Gs}s≥0 commute.
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Let now p < 0. Then by (38), σ(F−p(z)) − σ(z) = −p for all z ∈ �.
Hence, by (37),

σ(F−p(G1(z)))− σ(G1(z)) = σ(z)− σ(G1(z)), z ∈ �,
and, therefore,

σ(F−p(G1(z))) = σ(z), z ∈ �.
By the univalence of σ on �, F−p(G1(z)) = z. Consequently, F−p = G−1

1
on G1(�). Since F−p ∈ Hol(�), G−1

1 is well defined on � and so G1, as
well as F−p, are automorphisms of �. Therefore, by Proposition 5, {Ft }t≥0 is
a semigroup of automorphisms. Consequently, it can be extended to a group
SF = {Ft }t∈R and G1 = F−1

p = F−p ∈ SF . In particular, G1 ◦ Ft = Ft ◦G1

for all t ≥ 0.
Fix t > 0. In a similar way, using the commutativity of Ft andG1, one can

show that the semigroup {Gs}s≥0 can be extended to a group SG = {Gs}s∈R
and that Ft ◦Gs = Gs ◦ Ft for all s, t ∈ R.
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