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LOGARITHMS AND SECTORIAL PROJECTIONS FOR
ELLIPTIC BOUNDARY PROBLEMS

ANDERS GAARDE and GERD GRUBB

Abstract

On a compact manifold with boundary, consider the realizationB of an elliptic, possibly pseudodif-
ferential, boundary value problem having a spectral cut (a ray free of eigenvalues), say R−. In the
first part of the paper we define and discuss in detail the operator logB; its residue (generaliz-
ing the Wodzicki residue) is essentially proportional to the zeta function value at zero, ζ(B, 0),
and it enters in an important way in studies of composed zeta functions ζ(A,B, s) = Tr(AB−s )
(pursued elsewhere).

There is a similar definition of the operator logθ B, when the spectral cut is at a general angle
θ . When B has spectral cuts at two angles θ < ϕ, one can define the sectorial projection�θ,ϕ(B)
whose range contains the generalized eigenspaces for eigenvalues with argument in ]θ, ϕ[; this
is studied in the last part of the paper. The operator �θ,ϕ(B) is shown to be proportional to the
difference between logθ B and logϕ B, having slightly better symbol properties than they have.
We show by examples that it belongs to the Boutet de Monvel calculus in many special cases, but
lies outside the calculus in general.

1. Introduction

The purpose of this paper is to set up logarithms and sectorial projections
for elliptic boundary value problems, and to establish and analyze residue
definitions associated with these operators. Let us first recall the situation for
boundaryless manifolds:

For a classical elliptic pseudodifferential operator (ψdo) P of orderm > 0,
acting in a vector bundle Ẽ over a closed (i.e., compact boundaryless) n-
dimensional manifold X̃, certain functions of the operator have been studied
with great interest for many years. Assuming that P has no eigenvalues on
some ray, say R−, one has from Seeley’s work [16] that the complex powers
P−s can be defined as ψdo’s by use of the resolvent (P − λ)−1. Moreover,
the zeta function ζ(P, s) = Tr(P−s) has a meromorphic extension to s ∈ C
with at most simple poles at the real numbers {(n− j)/m | j ∈ N} (we denote
{0, 1, 2, . . .} = N). There is no pole at s = 0 (for j = n), and the value ζ(P, 0)
plays an important role in index formulas. Let us define the basic zeta value
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C0(P ) by

(1.1) C0(P ) = ζ(P, 0)+ ν0,

where ν0 is the algebraic multiplicity of the zero eigenvalue of P (if any). It
is well-known how C0(P ) can be calculated in local coordinates from finitely
many homogeneous terms of the symbol of P .

Another interesting function of P is logP , defined on smooth functions by

(1.2) logP = lim
s↘0

i

2π

∫
C

λ−s log λ (P − λ)−1 dλ;

here λ−s and log λ are taken with branch cut R−, and C is a contour in C \ R−
going around the nonzero spectrum of P in the positive direction. By use of
the fact that logP = − d

ds
P−s∣∣

s=0, Scott [15] showed that

(1.3) C0(P ) = − 1
m

res(logP),

where res(logP) is a slight generalization of Wodzicki’s noncommutative
residue ([20], Guillemin [11]).

In the case of a compactn-dimensional manifoldXwith boundary ∂X = X′
(smoothly imbedded in an n-dimensional manifold X̃ without boundary), one
can study the analogous operators and constants defined from a realization B
of a pseudodifferential (or differential) elliptic boundary value problem. Here
B = (P +G)T , defined from a system {P+ +G, T } of order m > 0 (m ∈ Z)
in the Boutet de Monvel calculus [2], where P is a ψdo on X̃ and P+ is its
truncation to X (acting in E = Ẽ|X), G is a singular Green operator (s.g.o.)
and T is a system of trace operators. B is the operator acting like P+ +Gwith
domain

(1.4) D(B) = {u ∈ Hm(X,E) | T u = 0},
where Hm(X,E) is the Sobolev space of order m. In the differential operator
case, G = 0. Assuming that for λ on a ray, say R−, {P+ + G − λ, T } satis-
fies the hypotheses of parameter-ellipticity of Grubb [6, Sect. 3.3] (consistent
with those of Seeley [17] in the differential operator case), one can define
the complex powers by functional analysis and study the pole structure of
ζ(B, s) = Tr(B−s) [6, Sect. 4.4], and in particular discuss the basic zeta value
C0(B) defined similarly to (1.1). However, in contrast with the closed mani-
fold case, the powers B−s do not lie in the calculus we are using (in particular
their ψdo part does not satisfy the transmission condition of [2]). Then it is
advantageous to build the analysis more directly on the resolvent, which does
belong to the parameter-dependent calculus set up in [6]. In fact, forN > n/m
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(such that (B − λ)−N is trace-class), there is a trace expansion for λ → ∞ in
a sector V around R−:

(1.5) Tr(B − λ)−N =
∑

0≤j≤n
c
(N)
j (−λ)(n−j)/m−N +O(λ−N−ε)

(ε > 0), and here

(1.6) C0(B) = c(N)n ,

independently of N . It is shown in [8] that for a generalization of (1.3) to B,

(1.7) C0(B) = − 1
m

res(logB),

it is sufficient to be able to define logB; the complex powers B−s are not
needed.

The present paper gives in Sections 2 and 3 a detailed study of logB. For one
thing, this allows a more precise interpretation of the formula (1.7), initiated
in [8]. Another important purpose is to open up for the use of compositions of
logB with other operators. These are needed for the consideration of composed
zeta functions ζ(A,B, s) = Tr(AB−s) with general A from the calculus of
[2], or rather, trace expansion formulas for composed resolventsA(B−λ)−N .
Such a study is carried out in [9] using the results on logB obtained in the
present paper. We show in Section 2 that

(1.8) logB = (logP)+ +Glog,

where Glog is a generalized singular Green operator satisfying a specific part
of the usual symbol estimates for s.g.o.s; its principal part has a singularity at
the boundary. In Section 3 we study its residue.

If, more generally than R−, the ray free of eigenvalues for B (the spectral
cut) is eiθR+ for some angle θ , the corresponding operator functions will be
defined by formulas where λ−s and log λ (as in (1.2)) are replaced by λ−s

θ and
logθ λ with branch cut eiθR+, and the integration curve runs in C \ eiθR+. The
functions are then provided with an index θ ;

(1.9) ζθ (B, s) = Tr(B−s
θ ), logθ B = (logθ P )+ +Glogθ .

WhenB has spectral cuts at θ andϕ for some θ < ϕ < θ+2π , it is of interest to
study the sectorial projection �θ,ϕ(B), a projection whose range contains the
generalized eigenspace ofB for the sector�θ,ϕ = { reiω | r > 0, θ < ω < ϕ }
and whose nullspace contains the generalized eigenspace of B for �ϕ,θ+2π ; it
was considered earlier by Burak [3], and in the boundaryless case by Wodzicki
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[20], Ponge [14]. We show in Section 4 that it equals i
2π (logθ B− logϕ B) and

has the form

(1.10) �θ,ϕ(B) = (�θ,ϕ(P ))+ +Gθ,ϕ.

Here �θ,ϕ(P ) is a zero-order classical ψdo, which satisfies the transmission
condition when m is even, and Gθ,ϕ is a generalized s.g.o., bounded in L2 in
the differential operator case. There are natural types of examples whereGθ,ϕ

is a standard s.g.o. as in [2], but in general it will be of a generalized type
satisfying only part of the standard symbol estimates.

We expect to take up elsewhere the study of its residue, whose possible
vanishing is important for the study of eta functions associated with B.

2. The singular Green part of the logarithm

Let X be a compact n-dimensional C∞ manifold with boundary ∂X = X′,
provided with a hermitian C∞ vector bundle E. We can assume that X is
smoothly imbedded in ann-dimensional manifold X̃without boundary and that
E is the restriction toX of a bundle Ẽ over X̃. Consider a system {P+ +G, T }
of operators in the Boutet de Monvel calculus [2] (pseudodifferential boundary
operators, ψdbo’s). Here P is defined as a ψdo of order m > 0 on X̃ acting
on the sections of Ẽ, and its truncation to X is

(2.1) P+ = r+Pe+, r+ restricts from X̃ to X◦, e+ extends by 0.

To assure that P+ maps C∞(X,E) into itself, P is assumed to satisfy the
transmission condition, which means that in local coordinate systems at the
boundary, where the manifold is replaced by Rn+ = {x = (x1, . . . , xn) | xn >
0}, with notation x ′ = (x1, . . . , xn−1),

(2.2) ∂βx ∂
α
ξ pm−j (x ′, 0, 0,−ξn)

= (−1)m−j−|α|∂βx ∂
α
ξ pm−j (x ′, 0, 0, ξn) for |ξn| ≥ 1,

for all indices; m is integer. (A discussion of such conditions can be found in
Grubb and Hörmander [10].) G is a singular Green operator in E of order and
classm, and T = {T0, . . . , Tm−1} is a system of trace operators Tk of order and
class k, going from E to bundles Fk over ∂X, defining an elliptic boundary
value problem. In particular,

(2.3)
∑

0≤k≤m−1

dim Fk = 1
2m dimE.

Details on these operator types can be found in [2], [6].
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We assume that the system {P+ + G − λ, T } satisfies the conditions of
parameter-ellipticity in [6, Def. 3.3.1] for λ on the rays in a sector V around
R−. In particular, it can be a differential operator system; here P and T are
differential, and G is omitted. A classical example is the Laplace operator on
a domain in Rn, together with the Dirichlet trace operator T = γ0.

It should be noted that the hypotheses imply that the trace operator is normal,
as accounted for in [6, Section 1.5].

The system has a certain regularity number ν in the sense of [6]; it is
an integer or half-integer in

[
1
2 ,m

]
for pseudodifferential problems, +∞ for

purely differential problems.
From the system we define the realization B = (P +G)T as the operator

acting like P+ + G with domain (1.4). By [6, Ch. 3], the resolvent Rλ =
(B − λ)−1 exists on each ray in V for sufficiently large |λ|, and is O(λ−1) in
L2 operator norm there. It has the structure

(2.4) Rλ = Qλ,+ +Gλ,

where Qλ = (P − λ)−1 on X̃ (which can be assumed to be compact), and Gλ

is the singular Green part. Since the spectrum of B is discrete, we can assume
(after a small rotation if necessary) that R− is free of eigenvalues of B, and
likewise for P .

We shall define the operator log(B) = log((P +G)T ), also written logB,
log(P +G)T , by

(2.5) log(P +G)T = lim
s↘0

i

2π

∫
C

λ−s log λRλ dλ,

to be further explained below; here C is a Laurent loop
(2.6)
C = {reiπ | ∞ > r > r0} ∪ {r0eiω | π ≥ ω ≥ −π} ∪ {re−iπ | r0 < r < ∞}
going around the nonzero spectrum of (P +G)T in the positive direction.

Insertion of the decomposition (2.4) in the defining formula (2.5) shows
that Qλ,+ contributes with

(2.7) lim
s↘0

i

2π

∫
C

λ−s log λ r+Qλe
+ dλ = r+(logP)e+ = (logP)+,

where logP is well-known from the closed manifold case, cf. (1.2). Its symbol
in local coordinates is of the form

(2.8) symb(logP) = m log[ξ ] + l(x, ξ),
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where l(x, ξ) is a classicalψdo symbol of order 0 (see also the lemma below),
and [ξ ] is a smooth positive function that equals |ξ | for |ξ | ≥ 1. The operator
is continuous from Ht(X̃, Ẽ) to Ht−ε(X̃, Ẽ) for any ε > 0; hence

(2.9) (logP)+:Ht(X,E) → Ht−ε(X,E) for |t | < 1
2 .

(The limit for s → 0 in (2.7) can be taken in this operator norm.)
In even-order cases, the transmission condition satisfied by P carries over

to l(x, ξ):

Lemma 2.1. When m is even, l(x, ξ) satisfies the transmission condition.

Proof. As shown e.g. in Okikiolu [13], the symbol of logP is calculated
in local coordinates from the symbol q(x, ξ, λ) of Qλ by integration with
log λ around the spectrum of the principal symbol pm of P ; here the quasi-
homogeneous terms in the expansion q(x, ξ, λ) ∼ ∑

j∈N q−m−j (x, ξ, λ) (ho-

mogeneous of degree −m− j in (ξ, |λ| 1
m ) on each ray) contribute as follows:

(2.10)

i

2π

∫
C (x,ξ)

log λ q−m(x, ξ, λ) dλ

= i

2π

∫
C (x,ξ)

log λ(pm(x, ξ)− λ)−1 dλ = logpm(x, ξ)

= log([ξ ]m)+ log([ξ ]−mpm(x, ξ)) = m log[ξ ] + l0(x, ξ),

i

2π

∫
C (x,ξ)

log λ q−m−j (x, ξ, λ) dλ = l−j (x, ξ) for j > 0,

where C (x, ξ) is a closed curve in C \ R− around the spectrum of pm(x, ξ).
Each l−j is homogeneous in ξ of degree −j for |ξ | ≥ 1; for j = 0 it follows
since [ξ ]−mpm(x, ξ) is so, and for j ≥ 1 it is seen e.g. as follows (where we
set λ = tm�):

l−j (x, tξ) = i

2π

∫
C (x,tξ)

log λ q−m−j (x, tξ, λ) dλ

= i

2π

∫
t−mC (x,tξ)

(log � +m log t)t−m−j q−m−j (x, ξ, �)tmd�

= t−j l−j (x, ξ)+mt−j log t
i

2π

∫
C (x,ξ)

q−m−j (x, ξ, �) d�,

where the last term is zero since q−m−j isO(|�|−2) for |�| → ∞ when j > 0.
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When m is even, we see that the transmission condition (2.2) carries over
through the calculations (2.10) to the corresponding property for l(x, ξ), since
the parity of −j is the same as that of −j −m.

Now consider the contribution from Gλ. Here we shall use the following
observations:
(2.11)
Qλ + λ−1 = Qλ + λ−1(P − λ)Qλ = λ−1PQλ on X̃,

Rλ + λ−1

= Rλ + λ−1(P+ +G− λ)Rλ = λ−1(P+ +G)(Qλ,+ +Gλ)

= λ−1[(PQλ)+ − L(P,Qλ)+GQλ,+ + (P+ +G)Gλ]

= Qλ,+ + λ−1 + λ−1[−L(P,Qλ)+GQλ,+ + (P+ +G)Gλ] on X;
they imply in view of (2.4) that Gλ may be written as

(2.12) Gλ = λ−1[−L(P,Qλ)+GQλ,+ + (P+ +G)Gλ].

Here L(P,Qλ) = G+(P )G−(Qλ) in local coordinates. (The latter formula
is accounted for in [6, (1.2.49–50) and Sect. 2.6]; we recall that G+(P ) =
r+Pe−J andG−(P ) = J r−Pe+, where e± extends by zero from Rn± to Rn, r±
restricts from Rn to Rn±, and J is the reflection map J : u(x ′, xn) �→ u(x ′,−xn).)
By [6, Th. 3.3.2],Gλ is of order −m and regularity ν; moreover, (2.12) shows
that it is λ−1 times an s.g.o. of order 0 and regularity ν (by the composition
rules in [6, Th. 2.7.6–7]).

Since

Qλ:L2(X̃, Ẽ) → Hm−ε(X̃, Ẽ),
Gλ:L2(X,E) → Hm−ε(X,E),

with norms O(λ−ε/m),

for ε ∈ [0,m] (a standard observation used also in [6, pp. 409–410]), each of
the terms in [ ] in (2.12) maps L2(X,E) to H−ε(X,E) with norm O(λ−ε/m).
Then we can perform the integration in this operator norm (letting s → 0),
defining the s.g.o.-like part Glog of log(P +G)T by

(2.13)

Glog = i

2π

∫
C

log λGλ dλ

= i

2π

∫
C

λ−1 log λ[−L(P,Qλ)+GQλ,+ + (P+ +G)Gλ] dλ,

also written as
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(2.14) Glog = −G+(P )
i

2π

∫
C

λ−1 log λG−(Qλ) dλ

+G
i

2π

∫
C

λ−1 log λQλ,+ dλ+ (P+ +G)
i

2π

∫
C

λ−1 log λGλ dλ,

when localized. It is a bounded operator from L2(X,E) to H−ε(X,E). Sum-
ming up, we have found:

Theorem 2.2. The logarithm of the realization B = (P +G)T satisfies

(2.15) logB = log(P +G)T = (logP)+ +Glog,

where logP is the logarithm of P on X̃, and Glog is defined by (2.13), (2.14);
the terms are bounded operators from L2(X,E) to H−ε(X,E) (any ε > 0).

The operator Glog is a generalized singular Green operator, in the same
spirit as the generalized s.g.o.s G(−s) studied in [6, Sect. 4.4] (the s.g.o.-like
parts of the powers B−s), and one can show as in [6, Th. 4.4.4] that there is a
symbol-kernel satisfying part of the usual L2,xn,yn (R

2++) estimates for s.g.o.s,

allowing Dβ

x ′ , Dα
ξ ′ , (xnDxn)

k and (ynDyn)
l in arbitrarily high powers (with

exceptions for the principal term), and allowing some applications of xknD
k′
xn

and ylnD
l′
yn

, limited by the regularity and other restrictions. We account for this
in Theorem 2.6 below; let us first consider an example.

Example 2.3. Let P = 1 − � on Rn+. It is easy to see that the solution
operator for the Dirichlet problem for P −λ = 1 −�−λ, λ ∈ V = C \R+, is
Rλ = Qλ,++Gλ, whereQλ is theψdo (1−λ−�)−1 with symbol (〈ξ〉2−λ)−1,
andGλ is the singular Green operator with symbol-kernel −1

2κ1
e−κ1(xn+yn); κ1 =

(〈ξ ′〉2−λ) 1
2 . (We here use the well-known notation 〈x〉 = (x2

1 +· · ·+x2
n+1)

1
2 .)

It follows that

(2.16) logP = OP(2 log〈ξ〉).
To find out how Glog acts on functions ϕ ∈ C∞

0 (R
n+), we write (using that

e−κ1(xn+yn) is rapidly decreasing in λ on the rays in V when yn is in the support
of ϕ):

Glogϕ = i

2π

∫
C

log λGλϕ dλ

= i

2π

∫
C

∫
Rn−1

∫ ∞

0
log λ eix

′ ·ξ ′ −1

2κ1
e−κ1(xn+yn)ϕ́(ξ ′, yn) dyn d−ξ ′ dλ,
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with ϕ́ denoting the partial Fourier transform ϕ́(ξ ′, yn) = Fy ′→ξ ′ϕ(y ′, yn).
Here we can calculate
(2.17)

i

2π

∫
C

log λ
−1

2κ1
e−κ1(xn+yn) dλ =

∫ 0

−∞
1

2(〈ξ ′〉2 − t)
1
2

e−(〈ξ
′〉2−t) 1

2 (xn+yn) dt

=
∫ ∞

0

1

2(〈ξ ′〉2 + s)
1
2

e−(〈ξ
′〉2+s) 1

2 (xn+yn) ds

=
∫ ∞

〈ξ ′〉
1

2u
e−u(xn+yn) 2u du

= 1

xn + yn
e−〈ξ ′〉(xn+yn),

using that the log |λ| contributions cancel out (as in [8, Lemma 1.2]). Thus

Glogϕ =
∫

Rn−1

∫ ∞

0
eix

′ ·ξ ′ 1

xn + yn
e−〈ξ ′〉(xn+yn)ϕ́(ξ ′, yn) dynd−ξ ′.

This shows that Glog is a generalized kind of s.g.o. with symbol-kernel

(2.18) g̃log(x ′, xn, yn, ξ ′) = 1

xn + yn
e−〈ξ ′〉(xn+yn).

Since the operator with kernel 1
xn+yn is bounded in L2(R+) (as a truncation of

the Hilbert transform), it follows that Glog is a bounded operator in L2(Rn+).
Note that ∂ξ1 g̃

log is a standard s.g.o. symbol-kernel, and that xng̃log is
bounded.

The same calculations with 〈ξ ′〉 replaced by |ξ ′| show that for P = −�,
Glog has symbol-kernel 1

xn+yn e
−|ξ ′|(xn+yn) for |ξ ′| ≥ 1.

In the general differential operator case, Glog is qualitatively very much
like in this example. Here one can directly use the symbol-kernel estimates and
boundedness considerations worked out by Seeley in [17], [18]. Notationally,
we follow [8]; in particular, the enumeration of quasi-homogeneous (resp.
homogeneous) terms in the asymptotic expansions of singular Green symbol-
kernels (resp. symbols) have been shifted by one step in comparison with [6],
in order to have the same index on an s.g.o. symbol-kernel (resp. symbol) and
its normal trace. For example, the principal part of a symbol-kernel g̃ of order
−m is denoted g̃−m (although the corresponding symbol g−m has homogeneity
degree −m − 1). We shall use the notation ≤̇ (resp. ≥̇) to indicate “less than
or equal (resp. greater than or equal) to a constant times”, and =̇ to indicate
that both ≤̇ and ≥̇ hold.
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Theorem 2.4. Consider the case whereP is a differential operator,G = 0,
and the trace operators T0, . . . , Tm−1 are differential operators. In this case,
the singular Green partGλ of the resolvent is of regularity +∞ and its symbol-
kernel in local coordinates g̃ ∼ ∑

j≥0 g̃−m−j , expanded in quasi-homogeneous
terms

(2.19) g̃−m−j
(
x ′,

xn

t
,
yn

t
, tξ ′, tmλ

)
= t−m+1−j g̃−m−j (x ′, xn, yn, ξ ′, λ) for t ≥ 1, |ξ ′| ≥ 1,

satisfies estimates on the rays in V , with κ = |ξ ′| + |λ| 1
m :

(2.20)∣∣Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
D
p

λ g̃−m−j
∣∣ ≤̇ κ1−m−|α|−k+k′−l+l′−j−mpe−cκ(xn+yn)

for all indices, when κ ≥ ε.
Then Glog is, in local coordinates near X′, a generalized singular Green

operator

(2.21)
Glogu(x) =

∫
Rn−1

∫ ∞

0
eix

′ ·ξ ′
g̃log(x ′, xn, yn, ξ ′)ú(ξ ′, yn) dyn d−ξ ′

= OPG(g̃log(x ′, xn, yn, ξ ′))u(x)

with g̃log ∼ ∑
j∈N g̃

log
−j ; here the j ’th term is quasihomogeneous:

(2.22) g̃
log
−j

(
x ′,

xn

t
,
yn

t
, tξ ′

)
= t1−j g̃log

−j (x
′, xn, yn, ξ ′) for t ≥ 1 and |ξ ′| ≥ 1,

and satisfies, when |ξ ′| ≥ ε,

(2.23)
∣∣Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
−j
∣∣ ≤̇ |ξ ′|−|α|−k+k′−l+l′−j 1

xn+yn e
−c|ξ ′|(xn+yn)

for the indices satisfying

(2.24) −k + k′ − l + l′ − |α| − j ≤ 0.

It follows in particular that Glog is a bounded operator in Lp(X,E) for
1 < p < ∞.

Proof. The estimates (2.20) were shown in [17, (29)], [18]. Because of the
fall-off in λ, they allow us to define the j ’th term in the symbol-kernel ofGlog
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for |ξ ′| ≥ ε by

(2.25)

g̃
log
−j (x

′, xn, yn, ξ ′) = i

2π

∫
C

log λg̃−m−j (x ′, xn, yn, ξ ′, λ) dλ

=
∫ ∞

0
g̃−m−j (x ′, xn, yn, ξ ′,−s) ds;

here we rewrote the integral as in (2.17) (and [8, Lemma 1.2]). The homo-
geneity is seen from the last integral, using (2.19). The function is estimated
as follows, for the indices satisfying (2.24), when we use that |ξ ′| + s

1
m =̇

(|ξ ′|m + s)
1
m :

(2.26)∣∣Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
−j
∣∣

=
∣∣∣∣∫ ∞

0
D
β

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃−m−j (x ′, xn, yn, ξ ′,−s) ds

∣∣∣∣
≤̇ |ξ ′|−|α|−k+k′−l+l′−j

∫ ∞

0

(
(|ξ ′|m + s)

1
m

)1−m
e−c(|ξ

′|m+s) 1
m (xn+yn) ds

= |ξ ′|−|α|−k+k′−l+l′−j
∫ ∞

|ξ ′|
u1−me−cu(xn+yn)mum−1 du

= |ξ ′|−|α|−k+k′−l+l′−j m
c(xn+yn) e

−c|ξ ′|(xn+yn).

The operator Glog is defined from a finite number of these symbol terms
multiplied with an excision function ζ(|ξ ′|), where
(2.27)

ζ(t) ∈ C∞(R), ζ(t) = 0 for |t | ≤ δ1, ζ(t) = 1 for |t | ≥ δ2,

plus an integral as in (2.13) of the remainder of Gλ, which can be taken with
arbitrarily high smoothness of the kernel and decrease for λ → ∞, cf. [18,
(2.14)]. Applying the arguments of Theorem 1 of [18] (using Lemmas 1 and 2
there invoking Mihlin’s theorem and the Hilbert transform) one finds thatGlog

is Lp-continuous as asserted.

Remark 2.5. The lower order terms in g̃log and the derivatives are not as
singular for xn + yn → 0 as (2.23) indicates. In fact, the symbol-kernels one
step down can be estimated as follows:

(2.28) When − k + k′ − l + l′ − |α| − j ≤ −1,
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∣∣Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
−j
∣∣ ≤̇ |ξ ′|−|α|−k+k′−l+l′−j+1

∫ ∞

|ξ ′|
u−1−εuεe−cu(xn+yn) du

≤̇ |ξ ′|−|α|−k+k′−l+l′−j+1+ε sup
u∈R+

∣∣uεe−cu(xn+yn)∣∣
≤̇ |ξ ′|−|α|−k+k′−l+l′−j+1+ε(xn + yn)

−ε,

for ε > 0. The symbol-kernels two steps down are bounded for xn + yn → 0:

(2.29) When − k + k′ − l + l′ − |α| − j ≤ −2,∣∣Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
−j
∣∣ ≤̇ |ξ ′|−|α|−k+k′−l+l′−j+2

∫ ∞

0

(|ξ ′| + s
1
m

)−m−1
ds

≤̇ |ξ ′|−|α|−k+k′−l+l′−j+1,

and the smoothness at 0 increases with increasing |α| and j .

Now let us turn to the pseudodifferential case and the methods of [6,
Sect. 4.4].

Theorem 2.6. Let {P++G, T } have regularity ν ∈ [ 1
2 ,∞

[
, and defineGlog

by (2.13). Then Glog is, in local coordinates near X′, a generalized singular
Green operator as in (2.21) with g̃log ∼ ∑

j∈N g̃
log
−j ; here the j ’th term is

quasihomogeneous as in (2.22) when j > 0, and the series approximates g̃log

asymptotically in the sense that

(2.30)

∥∥∥∥Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn

[
g̃log −

∑
j<J

g̃
log
−j

]∥∥∥∥
L2,xn,yn

≤̇ 〈ξ ′〉−|α|−k+k′−l+l′−J

holds for the indices satisfying

(2.31)
−k + k′ − l + l′ − |α| − J < 0,

[k − k′]− + [l − l′]− < ν.

Moreover,

(2.32)
∥∥Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
−J
∥∥
L2,xn,yn

≤̇ 〈ξ ′〉−|α|−k+k′−l+l′−J

holds for these indices.
With ζ(t) defined as in (2.27), the above symbol-kernels multiplied with

ζ(xn)ζ(yn) satisfy estimates for all α, β, J, k, k′, l, l′ with 〈ξ ′〉−M , any M , in
the right-hand side.

Proof. This is modeled after the proof of [6, Th. 4.4.4] and the remarks
preceding it.
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We recall from [6, Th. 3.3.9] that the symbol-kernel g̃(x ′, xn, yn, ξ ′, λ) of
Gλ (in a local coordinate system) has an expansion in quasi-homogeneous
terms g̃ ∼ ∑

j≥0 g̃−m−j satisfying (2.19) in V , and that one has for all indices,

denoting λ = −μmeiω (μ > 0), (|ξ ′|2 + μ2 + 1)
1
2 = 〈ξ ′, μ〉:

(2.33)

∥∥∥∥Dβ

x ′,ωD
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn

[
g̃ −

∑
j<J

g̃−m−j
]∥∥∥∥

L2,xn,yn

≤̇ (〈ξ ′〉ν−M ′ + 〈ξ ′, μ〉ν−M ′)〈ξ ′, μ〉−m−ν+M ′′

≤̇
{ 〈ξ ′, μ〉−m−M ′+M ′′

, when M ′ ≤ ν,

〈ξ ′〉ν−M ′ 〈ξ ′, μ〉−m−ν+M ′′
, when M ′ ≥ ν,

with

(2.34)

M ′ = [k − k′]+ + [l − l′]+ + |α| + J,

M ′′ = [k − k′]− + [l − l′]−; so

−M ′ +M ′′ = −k + k′ − l + l′ − |α| − J.

The notation N± = max{±N, 0} is used, and we have (as recalled earlier)
changed the indexation from [6] by one step as in [8].

Let us first observe that the “error terms” and remainders in the resolvent
construction, that are negligible in the class of operators of order −m and
regularity ν, give rise to generalized s.g.o. error terms G′ here, satisfying
estimates of the type (as in [6, Lemma 2.3.11])

(2.35)

∥∥∥∥Dβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃′
∥∥∥∥
L2,xn,yn

≤̇ 〈ξ ′〉−M
∣∣∣∣∫

C

log λ〈λ〉−1−(ν−[k−k′]−−[l−l′]−)/m dλ
∣∣∣∣

≤̇ 〈ξ ′〉−M, for any M , when [k − k′]− + [l − l′]− < ν.

It follows that the corresponding kernels KG′(x, y) satisfy, for these indices:

(2.36) sup
x ′,y ′

∥∥Dγ

x ′,y ′x
k
nD

k′
xn
ylnD

l′
yn

KG′
∥∥
L2,xn,yn

< ∞.

For j > 0 the L2,xn,yn -norm of g̃−m−j is O(λ−1−1/2m) since ν ≥ 1
2 , so

the corresponding term g̃
log
−j can be defined directly for |ξ ′| ≥ 1 by Cauchy

integrals as in (2.25), convergent in the L2,xn,yn -norm. The quasi-homogeneity
of g̃log

−j is seen as in (2.25) by using [8, Lemma 1.2] in L2,xn,yn -norm.
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We use the estimates (2.33) to see that for g̃log − ∑
j<J g̃

log
−j with J > 0

(so that the first term is excluded), the integrand in the corresponding Cauchy
integral is O(λ−1−ε) in L2,xn,yn -norm (some ε > 0), when

(2.37) −k+k′ − l+ l′ − |α|−J < 0, if [k−k′]+ + [l− l′]+ +|α|+J ≤ ν,

and when

(2.38) [k − k′]− + [l − l′]− < ν, if [k − k′]+ + [l − l′]+ + |α| + J ≥ ν.

Then the integral converges and defines a symbol-kernel satisfying the asserted
estimate. Since

−k+k′−l+l′−|α|−J = [k−k′]−+[l−l′]−−([k−k′]++[l−l′]++|α|+J ),
we see that the conditions “if . . . ” can be left out in (2.37)–(2.38), leading to
the formulation (2.31).

We still have to consider the first term g̃
log
0 in g̃log, defined from the prin-

cipal part g̃−m of g̃. Here we use that g̃−m can be found by performing the
resolvent construction on the principal boundary symbol level for the corres-
ponding operators on L2(R+), and that they obey a one-dimensional version
of the identities in (2.11). So we can replace g̃−m by the symbol-kernel of the
principal boundary symbol version of (2.12), which gives a convergent Cauchy
integral, when the λ-independent factors are pulled outside of the integration.
In a formal sense, we can ascribe it a symbol-kernel g̃log

0 (x ′, xn, yn, ξ ′). The
resulting boundary symbol operator is continuous from L2(R+) to H−ε(R+)
for ε > 0, at each (x ′, ξ ′). If we define the functions derived from g̃log

0 “weakly”
by

D
β

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃

log
0 (x ′, xn, yn, ξ ′)

= i

2π

∫
C

log λDβ

x ′D
α
ξ ′x

k
nD

k′
xn
ylnD

l′
yn
g̃−m(x ′, xn, yn, ξ ′, λ) dλ,

we can use that the integral converges inL2,xn,yn -norm when the indices satisfy
(2.31). In this sense, the estimates (2.30) hold also when J = 0 in (2.31).

The estimates (2.32) of the individual terms follow from (2.30) since g̃log
−J =(

g̃log −∑
j<J g̃

log
−j
)− (

g̃log −∑
j<J+1 g̃

log
−j
)
.

Finally, for the statements on the symbol-kernels multiplied with
ζ(xn)ζ(yn), note that ζ(t) can for any k ∈ N be written as tkζk(t) with a
bounded smooth function ζk , so from the already shown estimates we can in-
fer arbitrarily rapid fall-off in ξ ′ by rewriting with arbitrarily high powers of
xn and yn.
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If Rλ has infinite regularity, ν can be arbitrarily large in the second line of
(2.31), so the line can be left out. Note that even then there is a limitation on
the indices for which we get standard s.g.o. estimates.

While Glog is the primary s.g.o.-type operator to consider in this con-
nection, it is also of interest to study some other s.g.o.-type operators here,
namely, in local coordinates, G+(logP) = r+(logP)e−J and G−(logP) =
J r−(logP)e+, with notation as in the text after (2.12). The operators
G±(logP) have properties very similar to those of Glog:

Theorem 2.7. The operators G±(logP) are defined in local coordinates
by

(2.39)

G+(logP) = r+ logPe−J = r+ i

2π

∫
C

log λQλ dλ e
−J

= i

2π

∫
C

λ−1 log λG+(PQλ) dλ,

G−(logP) = J r− logPe+ = J r− i

2π

∫
C

log λQλ dλ e
+

= i

2π

∫
C

λ−1 log λG−(PQλ) dλ.

Their symbol-kernels g̃±(logp) have properties like those of g̃log in The-
orem 2.6, with ν = m.

In particular, when P is a differential operator, the s.g.o.s G±(Qλ) satisfy
Seeley’s estimates (2.20), and hence the operators G±(logP) have symbol
estimates and boundedness properties like those of Glog in Theorem 2.4, Re-
mark 2.5.

Proof. The defining integrals are established by use of the first formula in
(2.11), noting that G±(λ−1) = 0. By [6, Th. 2.7.4], G±(Qλ) is a parameter-
dependent polyhomogeneous family of s.g.o.s of order −m and regularitym−ε
(any ε > 0), since Qλ is of order −m and regularity m. The symbol-kernel
then satisfies estimates like those for g̃ in Theorem 2.6, with ν = m− ε. The
method of Theorem 2.6 leads to the conclusion that the resulting symbol-kernel
g̃±(logp) has properties like those stated for g̃log, with ν = m− ε; here ε can
be removed since the second inequality in (2.31) is sharp.

For the second statement, we must show that the Seeley estimates (2.20) are
valid for the homogeneous terms in the symbol-kernel of G±(Qλ). But this is
easy. Consider e.g.G+(Qλ). Using the Taylor expansion of the symbol ofQλ

at xn = 0:
q(x ′, xn, ξ, λ) ∼

∑
l∈N

1
l!x

l
n∂
l
xn
q(x ′, 0, ξ, λ)



258 anders gaarde and gerd grubb

we have from [6, Th. 2.7.4] that

g+(q)(x ′, ξ, ηn, λ) ∼
∑
l∈N

1
l!D

l

ξn
g+[∂lxnq(x

′, 0, ξ, λ)],

where g+[f ](ξn, ηn) is the s.g.o. symbol corresponding to the symbol-kernel
g̃+[f ](xn, yn) defined by:

g̃+[f ](xn, yn) = (
r+
zn

[F −1
ξn→zn

f ]
)|zn=xn+yn .

The homogeneous terms in the symbols ∂lxnq(x
′, 0, ξ, λ) are rational functions

of ξn with 1
2m dimE poles in C± = {z ∈ C | Im z ≷ 0}, lying inside a

circle of radius Cκ and having a distance ≥ cκ from the real axis, for suitable
positive constants C > c. (A more detailed description is given e.g. in [6,
Remark 3.3.7].) For simplicity of notation, consider the j ’th term q−m−j itself.
The inverse Fourier transform evaluated at zn > 0 can be written as an integral
of eiznξnq−m−j (x ′, 0, ξ ′, ξn) over the curve bounding the intersection of the
circle {|ξn| = Cκ} with the halfplane {Im ξn ≥ cκ} (lying in C+). We get
the factor e−cκzn since |eiznξn | ≤ e−cκzn on the curve. (Similarly, the inverse
Fourier transform evaluated at zn < 0 can be written as an integral over a
closed curve in C− with Im ξn ≤ −cκ .) For the resulting symbol-kernel, this
gives the factor e−cκ(xn+yn); the power of κ in front is seen from the degree of
the rational function.

Once the estimates (2.20) are established, the rest of the proof goes as in
Theorem 2.4.

Example 2.8. For P = 1 − � as in Example 2.3, one finds by direct
calculation of the inverse Fourier transform w.r.t. ξn that G±(Qλ) both have
the symbol-kernel

(2.40) g̃+ = g̃− = 1

2κ1
e−κ1(xn+yn),

with κ1 = (〈ξ ′〉2 − λ)
1
2 . Then the calculations of Example 2.3 can be used

again, to see that
(2.41)

g̃+(logp)(x ′, xn, yn, ξ ′) = g̃−(logp)(x ′, xn, yn, ξ ′) = −1

xn + yn
e−〈ξ ′〉(xn+yn).

For P = −�, the calculations give that the symbol-kernel ofG±(logP) is
−1

xn+yn e
−|ξ ′|(xn+yn) for |ξ ′| ≥ 1; the same holds for P = OP([ξ ]2).

When the order m is even, there is a remarkable simplification in view of
Lemma 2.1:
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Proposition 2.9. When m = 2k, k integer > 0, then in local coordinates,
the symbol-kernel of G±(logP) satisfies for |ξ ′| ≥ 1:

(2.42) g̃±(logp)(x ′, xn, yn, ξ ′) = −k
xn + yn

e−|ξ ′|(xn+yn)+g̃±,0(x ′, xn, yn, ξ ′),

where g̃±,0(x ′, xn, yn, ξ ′) is a standard singular Green symbol of order and
class 0.

Proof. We here have in view of Lemma 2.1 that the symbol of logP is the
sum of k log[ξ ]2 and a symbol l(x, ξ) of order 0 satisfying the transmission
condition. Then we can apply Example 2.8 to the first term and the standard
G± construction (of [6]) to the second term.

Thus in the even-order case, the terms in G±(logP) of order < 0 satisfy
all the standard s.g.o. estimates.

3. Trace formulas

The normal trace trn G of a singular Green operator G with symbol-kernel
g̃(x ′, xn, yn, ξ ′) in a local coordinate system is theψdo S = trn Gwith symbol

(3.1) s(x ′, ξ ′) = (trn g̃)(x
′, ξ ′) =

∫ ∞

0
g̃(x ′, xn, xn, ξ ′) dxn.

In the differential operator case, we see from the estimates (2.23), (2.28),
(2.29) that trn g̃

log
−j is well-defined for j ≥ 1. (Example 2.3 shows that this will

generally not hold for the principal part.) In view of the homogeneity (2.22),
trn g̃

log
−j is homogeneous of degree −j in ξ ′ for |ξ ′| ≥ 1, hence a classical ψdo

symbol of degree −j . In the pseudodifferential case, we have when ν > 1 and
j ≥ 1 that the L2,xn,yn -estimates of g̃log

−j , yng̃
log
−j , ∂yn g̃

log
−j and yn∂yn g̃

log
−j imply

as in [6, pf. of Th. 3.3.9] that there is a well-defined normal trace, again a
homogeneous classical symbol of order −j . This estimation applies also to
remainders g̃log −∑

j<J g̃
log
−j for J ≥ 1.

For ν = 1
2 or 1, the estimates in Theorem 2.6 do not provide the estimates

of ∂yn g̃
log
−j needed for this argument. However, it is still posssible to take the

normal trace of Gλ, subtract the principal part, and integrate the remaining
operator with log λ to get a classical ψdo of order −1.

Theorem 3.1. In a local coordinate system, let Sλ = trn Gλ with sym-
bol s(x ′, ξ ′, λ) = (trn g̃)(x ′, ξ ′, λ), expanded in terms s−m−j (x ′, ξ ′, λ) =
(trn g̃−m−j )(x ′, ξ ′, λ). Define the parts of Gλ and Sλ of order −m− 1 by

(3.2)
Gλ,sub = Gλ − OPG(g̃−m(x ′, xn, yn, ξ ′, λ)),

Sλ,sub = trn Gλ,sub = Sλ − OP′(s−m(x ′, ξ ′, λ))
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(the remainders after subtracting principal parts), and let

(3.3) G
log
sub = i

2π

∫
C

log λGλ,sub dλ,

with symbol-kernel g̃log
sub = g̃log − g̃

log
0 . The formula

(3.4) S
log
sub = i

2π

∫
C

log λ Sλ,sub dλ

defines a classicalψdo of order −1, with symbol s log
sub(x

′, ξ ′) expanded in terms

(3.5) s
log
sub,−j (x

′, ξ ′) = i

2π

∫
C

log λ s−m−j (x ′, ξ ′, λ) dλ, j ≥ 1.

When ν > 1, S log
sub is the normal trace of Glog

sub.

Proof. Since Gλ and Gλ,sub are of regularity ν ≥ 1
2 , Sλ and Sλ,sub are of

regularity ν − 1
4 ≥ 1

4 , cf. [8, Section 3]. In particular, the symbols in Sλ,sub

are O(λ−1−1/4m) on the rays in V so that the integrals in (3.4) and (3.5) make
sense.

As accounted for in the text before the theorem, there are estimates in
the cases ν > 1 that allow interchange of the λ-integral with the xn-integral
involved in taking trn.

For the operator in Example 2.3, we note that Sλ = trn Gλ is the ψdo with
symbol −(2κ1)

−2 = − 1
4 (〈ξ ′〉2−λ)−1, so its log-integral gives − 1

4 log(1−�x ′).
This demonstrates that the “log-transform” of the principal part of Sλ will not
in general be a classical ψdo.

Finally, we shall connect this with the study of the expansion coefficient
C0(I, (P +G)T ) in the last section of [8]; we here write it simply as C0((P +
G)T ) (or C0(B)). It is known from [6, Sect. 3.3] that when m > n, the trace
of the resolvent has an expansion in powers of −λ,

(3.6) TrRλ =
∑

0≤l≤n
cl(−λ) n−lm −1 +O

(
λ−1− 1

4m
)
,

and a similar proof shows that for general m > 0, the expansion holds for a
sufficiently high iterate:

(3.7) TrRNλ = Tr
∂N−1
λ

(N − 1)!
Rλ =

∑
0≤l≤n

c
(N)
l (−λ) n−lm −N +O

(
λ−N− 1

4m
)
.
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Define the basic zeta value as the coefficient of (−λ)−N :

(3.8) C0(B) = c(N)n ,

it is independent of N . If B is invertible, C0(B) equals the value of the zeta
function ζ(B, s) — the meromorphic extension of Tr(B−s) — at s = 0. If B
has a nontrivial nullspace, the constants are connected by

(3.9) C0(B) = ζ(B, 0)+ ν0,

where ν0 is the dimension of the generalized eigenspace of the zero eigenvalue.
There are similar expansions as in (3.7) of the traces of theψdo iteratesQN

λ

on X̃, truncated toX, that follow from integration overX of the diagonal kernel
expansions, as established in [6, Sect. 3.3] (with remarks); it is the s.g.o. con-
tribution that presents the greater challenge in [6]. In view of the identifications
in [8, Sect. 1], the coefficient of (−λ)−N here equals − 1

m
res+(logP), where

the plus-index indicates that the pointwise contribution to − 1
m

res(logP) is in-
tegrated over X only. It can also be regarded as − 1

m
res((logP)+), extending

the notation of [4].
The constant C0(B) was analyzed in [8, Sect. 5] in relation to residue

formulas, and we can now improve the result with further information.

Theorem 3.2. One has that

(3.10) C0(B) = − 1
m

res+(logP)− 1
m

resX′(S
log
sub),

where the terms are calculated as sums of contributions from local coordinate
patches of the form

(3.11)

∫
Rn+

∫
|ξ |=1

tr l−n(x, ξ) d−S(ξ) dx, resp.∫
Rn−1

∫
|ξ ′|=1

tr s log
sub,1−n(x

′, ξ ′) d−S(ξ ′) dx ′.

The term − 1
m

res+(logP) has an invariant meaning as the coefficient of
(−λ)−N in the expansion similar to (3.7) of Tr(((P − λ)−N)+), and hence
the last term in the right-hand side of (3.10) likewise has an invariant mean-
ing.

When the problem is differential, or when the problem is pseudodifferential
with regularity ν > 1, then resX′(S

log
sub) is, in local coordinates, the residue of

the normal trace of Glog
sub.
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Proof. It was shown in [8, Sect. 5] how C0(B) is found from integrals of
the strictly homogeneous symbol terms of order −m − n in (P − λ)−1 resp.
of order −m − n + 1 in Gλ; the proof given for the case m > n extends
to general m when the iterates are used, cf. [8, Remark 3.12]. It was shown
moreover that these integrals by use of [8, Lemmas 1.2, 1.3] could be turned
into log-integrals as in (3.5). In those proofs, the log-integration is applied
after the trn-integration, so the boundary term is really res(S log

sub), as defined in
Theorem 3.1.

When ν > 1, in particular when the problem is differential so that ν = ∞,
Theorem 3.1 shows that S log

sub is the normal trace of Glog
sub, so the assertion for

the residues follows.

What we gain here in comparison with [8, Sect. 5] is a little more insight
into how the boundary term stems from the s.g.o.-like part of logB, plus the
inclusion of all orders m > 0. At any rate, since C0(B) is an invariant, we can
propose it to be the residue of − 1

m
logB:

Definition 3.3. When {P+ +G− λ, T } satisfies the hypotheses of para-
meter-ellipticity given above, the residue of log(P +G)T is defined to be the
constant

(3.12) res(log(P +G)T ) = −mC0((P +G)T ) = res+(logP)+ resX′(S
log
sub),

as calculated in Theorem 3.2.

This is consistent with the definition of [4]. We note that certain steps in an
explicit calculation of this constant depend very much on localizations, e.g.
in the steps of discarding the principal symbol and taking trn. A number of
similar or more general residue definitions are made in [9] for compositions
ofψdbo’s with components of logPT (when PT is defined from an even-order
differential problem). These residues do have a certain amount of traciality:
res([A, logPT ]) = 0 holds for operators A of order and class zero (cf. The-
orem 6.5 there).

It should be noted that Definition 3.3 does not cover the case of first-order
differential operators with spectral boundary conditions, since such boundary
conditions are not normal. But for such boundary problems (Atiyah-Patodi-
Singer problems [1]) there exists a wealth of other treatments, adapted to
the specific situation. The results there often depend on additional symmetry
properties. (See e.g. [7] and its references.)
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4. Sectorial projections

Now we turn our attention to a certain spectral projection connected to the
realization (P + G)T ; namely a projection whose range contains the closure
of the direct sum of the generalized eigenspaces for the eigenvalues in a sector
of the complex plane. Such projections have been studied earlier by Burak
[3], Wodzicki [20], and Ponge [14]; the latter gives a detailed deduction of the
basic properties in the case of classical ψdo’s on closed manifolds. We recall
the properties below, supplying them with some additional information.

In order to apply the techniques to different types of operators, we first
consider an abstract situation whereA denotes an unbounded, densely defined,
closed operator in a Hilbert space H . It is assumed to have the following
properties:
A has a resolvent set containing two sectors Vθ and Vϕ around eiθR+ and

eiϕR+, respectively, for some θ < ϕ < θ + 2π , the resolvent (A − λ)−1 is
compact, and ‖(A − λ)−1‖ is O(λ−1) for λ going to infinity on each ray of
these sectors. (We refer to Kato [12] for general background theory.)

For x ∈ D(A) and λ on a ray in either sector, we have

(4.1) ‖λ−1A (A− λ)−1x‖ ≤ ‖λ−1(A− λ)−1‖ · ‖Ax‖ = O(λ−2),

so that λ−1A(A− λ)−1x is integrable for |λ| → ∞.
Then define the operator �θ,ϕ(A), the sectorial projection, with domain

D(A) to begin with, by

(4.2) �θ,ϕ(A)x = i

2π

∫
�θ,ϕ

λ−1A (A− λ)−1x dλ, x ∈ D(A),

where the integration goes along the sectorial contour
(4.3)
�θ,ϕ = {reiϕ | ∞ > r > r0} ∪ {r0eiω | ϕ ≥ ω ≥ θ} ∪ {reiθ | r0 < r < ∞},

with r0 taken so small that 0 is the only possible eigenvalue in {|λ| < r0}. If the
operator is bounded in H -norm, we extend it to H . This operator is a spectral
projection in the following sense:

For each λ ∈ σ(A), denote the generalized eigenspace by Eλ,

Eλ =
⋃
k∈N

ker(A− λ)k

(it equals ker(A− λ)k0 for a sufficiently large k0). For α < β, set

�α,β = { reiω | r > 0, α < ω < β, }, Eα,β = �λ∈σ(A)∩�α,βEλ.
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Proposition 4.1. �θ,ϕ(A)
2 = �θ,ϕ(A), i.e. �θ,ϕ(A) is a (possibly un-

bounded) projection in H . Its range contains Eθ,ϕ and its kernel contains
E0 � Eϕ,θ+2π .

(a) If A has a complete system of root vectors, i.e. �λ∈σ(A)Eλ is dense in
H , then �θ,ϕ(A) is the bounded projection onto Eθ,ϕ along E0 � Eϕ,θ+2π .

(b) IfA is normal, i.e.A∗A = AA∗, then�θ,ϕ(A) is the bounded orthogonal
projection onto ⊕λ∈σ(A)∩�θ,ϕ ker(A− λ) along ⊕λ∈σ(A)\�θ,ϕ ker(A− λ).

Proof. Except for a few elementary considerations regarding the domain
and closedness, the proofs of [14, Propositions 3.2, A.4, and A.5] carry over
almost word for word to the present setting (it should be noted that some
contours in [14] have the opposite orientation).

In (a) and (b), the boundedness of �θ,ϕ(A) follows from the fact that the
kernel and range are closed.

In certain important cases, �θ,ϕ(A) can be seen to be bounded regardless
of whether the hypotheses of (a) or (b) can be verified; as shown in [14,
Proposition 3.1] this holds when A is a ψdo of order m > 0 on a closed
manifold. We shall see below in Theorem 4.6 that it also holds for the realization
of a differential elliptic boundary value problem.

As shown below, the sectorial projection has a direct connection with the
choice of spectral cut in our definition of the logarithm of an operator. Using
arguments as in Section 2, we can define the logarithm of A with a branch cut
at the angle θ as

(4.4) logθ A = lim
s↘0

i

2π

∫
Cθ

λ−s
θ logθ λ(A− λ)−1 dλ

where the subscript θ indicates that λ−s log λ is chosen to have a branch cut
along eiθR+, and the contour is the Laurent loop

(4.5) Cθ = {reiθ | ∞ > r > r0}
∪ {r0eiω | θ ≥ ω ≥ θ − 2π} ∪ {rei(θ−2π) | r0 < r < ∞}.

The following proposition eliminates the limiting procedure of (4.4) and
gives a useful alternative description of �θ,ϕ(A). A proof can be found in the
Appendix.

Proposition 4.2. For x ∈ D(A) we have the identities

logθ Ax = i

2π

∫
Cθ

λ−1 logθ λA(A− λ)−1x dλ and(4.6)

�θ,ϕ(A)x = i

2π

∫
�θ,ϕ

(A− λ)−1x dλ+ ϕ − θ

2π
x,(4.7)
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where the integral in the right-hand side of (4.7) is an improper integral.

Next, we include a lemma which will be useful for our considerations
regarding expressions involving different branches of the logarithm. Again, a
proof is available in the Appendix.

Lemma 4.3. Let f (λ) be a continuous (possibly vector-valued) function on
the “punctuated double keyhole region”

(4.8) Vr0,δ = {λ ∈ C | |λ| < 2r0 or | arg λ−θ | < δ or | arg λ−ϕ| < δ}\{0},
such that f (λ) is O(λ−1−ε) for |λ| → ∞ in Vr0,δ . Then

(4.9)
∫

Cθ

logθ λf (λ) dλ−
∫

Cϕ

logϕ λf (λ) dλ = −2πi
∫
�θ,ϕ

f (λ) dλ.

We can use this lemma to describe the relation between �θ,ϕ(A) and log-
arithms of A as follows:

Proposition 4.4. For x ∈ D(A),

(4.10) logθ Ax − logϕ Ax =
∫
�θ,ϕ

λ−1A(A− λ)−1x dλ = −2πi�θ,ϕ(A)x.

When �θ,ϕ(A) is bounded, so is logθ A− logϕ A, and

(4.11) �θ,ϕ(A) = i

2π
(logθ A− logϕ A).

Proof. For x ∈ D(A), the expression f (λ) = λ−1A(A − λ)−1x is holo-
morphic in Vr0,δ for some r0, δ > 0, and f (λ) isO(λ−2) for |λ| → ∞ in Vr0,δ
by (4.1).

Hence we can apply Lemma 4.3, and insertion of the expression for f (λ)
into (4.9) gives

(4.12)
∫

Cθ

logθ λλ
−1A(A− λ)−1x dλ−

∫
Cϕ

logϕ λλ
−1A(A− λ)−1x dλ

= −2πi
∫
�θ,ϕ

λ−1A(A− λ)−1x dλ.

Then (4.10) follows from (4.2) and (4.6).
If �θ,ϕ(A) is bounded, (4.10) extends to all x ∈ H since D(A) is dense in

H , and (4.11) follows.
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With the results above at hand we return to the realization (P + G)T .
Modifying the assumption of Section 2 a little, we now assume {P++G−λ, T }
to satisfy the conditions of parameter-ellipticity in [6, Def. 3.3.1] for λ on the
rays of two sectors around eiθR+ and eiϕR+, respectively. Then the realization
B = (P +G)T satisfies the requirements forA above (4.1), and we can define
the sectorial projection accordingly:

(4.13) �θ,ϕ(B) = i

2π

∫
�θ,ϕ

λ−1BRλ dλ.

Here, and below, the integrals are understood to be in the strong sense, to
simplify notation. Like in the case of the logarithm, we decompose it into the
contributions from the pseudodifferential and singular Green parts.

For the ψdo P on the closed manifold X̃, we can use Proposition 4.2 to see
that

(4.14)
i

2π

∫
�θ,ϕ

Qλu dλ+ ϕ − θ

2π
u = �θ,ϕ(P )u, u ∈ D(P );

it is known from [20], [14], that �θ,ϕ(P ) is a ψdo of order ≤ 0 on X̃.
Using Proposition 4.2, (2.4), and the fact that r+e+ = I , we can rewrite

(4.13) as

(4.15)

�θ,ϕ(B) = i

2π

∫
�θ,ϕ

Rλ dλ+ ϕ − θ

2π

= i

2π

∫
�θ,ϕ

[Qλ,+ +Gλ] dλ+ ϕ − θ

2π

= r+
(
i

2π

∫
�θ,ϕ

Qλ dλ+ ϕ − θ

2π

)
e+ + i

2π

∫
�θ,ϕ

Gλ dλ

= �θ,ϕ(P )+ + i

2π

∫
�θ,ϕ

Gλ dλ;

in the last line we moreover used (4.14). Now an application of Proposition 4.4
to P and B gives:

(4.16)
�θ,ϕ(P )+ = i

2π

(
(logθ P )+ − (logϕ P )+

)
,

�θ,ϕ(B) = i

2π

(
logθ B − logϕ B

)
.



logarithms and sectorial projections for elliptic . . . 267

Using the contour Cθ from (4.5) we can define an operator as in (2.13),

(4.17) Glogθ = i

2π

∫
Cθ

logθ λGλ dλ,

and similarly defineGlogϕ where θ is replaced byϕ. By rotation it is obvious that
Glogθ andGlogϕ have properties similar to those ofGlog described in Section 2.
Now (4.16) and (2.15) show that if we define Gθ,ϕ by

(4.18) Gθ,ϕ = i

2π

∫
�θ,ϕ

Gλ dλ,

then

(4.19) Gθ,ϕ = i

2π

(
Glogθ −Glogϕ

)
.

In view of (4.15), we have then obtained:

Theorem 4.5. The sectorial projection for B = (P +G)T satisfies

(4.20) �θ,ϕ(B) = �θ,ϕ(P )+ +Gθ,ϕ,

where each term on the right hand side is known: �θ,ϕ(P )+ is the truncation
of a ψdo on X̃ of order at most zero, in particular it is bounded on L2(X,E);
Gθ,ϕ is a difference (4.19) of two terms of the log-type described in Section 2
and hence is a generalized singular Green operator, bounded from L2(X,E)

to H−ε(X,E).

LikeGlog,Gθ,ϕ acts as in (2.21). It has a symbol-kernel g̃θ,ϕ∼∑j∈N g̃θ,ϕ,−j ,
with terms given by

(4.21)

g̃θ,ϕ,−j = i

2π

(
g̃

logθ
−j − g̃

logϕ
−j
)

= −1

4π2

(∫
Cθ

logθ λ g̃−m−j dλ−
∫

Cϕ

logϕ λ g̃−m−j dλ
)
.

By Lemma 4.3 this is simplified to

(4.22) g̃θ,ϕ,−j (x ′, xn, yn, ξ ′) = i

2π

∫
�θ,ϕ

g̃−m−j (x ′, xn, yn, ξ ′, λ) dλ.

In view of (4.19) and (4.21), the results onGlog resp. g̃log in Section 2 carry
over immediately toGθ,ϕ resp. g̃θ,ϕ . We shall not reproduce all the statements
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explicitly, but will just present the following important result obtained from
Theorem 2.4.

Theorem 4.6. Assume that P is a differential operator, G = 0, and the
trace operators T0, . . . , Tm−1 are differential operators; hereby B = PT .

Then Gθ,ϕ is, in local coordinates near X′, a generalized singular Green
operator

(4.23) Gθ,ϕ = OPG(g̃θ,ϕ)

with g̃θ,ϕ ∼ ∑
j∈N g̃θ,ϕ,−j ; the j ’th term is quasihomogeneous as in (2.22) and

satisfies estimates as in (2.23).
Gθ,ϕ and �θ,ϕ(PT ) are bounded operators in Lp(X,E) for 1 < p < ∞.

In particular, �θ,ϕ(PT ) is a bounded projection in L2(X,E).

Proof. The claims regarding g̃θ,ϕ follow immediately from Theorem 2.4
and (4.21).

The boundedness properties of Gθ,ϕ are obvious from Theorem 2.4 and
(4.19). Since �θ,ϕ(P )+ is the truncation of a ψdo of order at most zero, this
is also bounded in Lp(X,E); then in view of (4.20) so is �θ,ϕ(PT ).

An interesting question is whether one can give criteria on P , G, and T
assuring that the operator �θ,ϕ((P + G)T ) belongs to the Boutet de Monvel
calculus.

Concerning theψdo part�θ,ϕ(P ), with symbol πθ,ϕ(x, ξ) in local coordin-
ates, we have easily by use of Lemma 2.1:

Lemma 4.7. Whenm is even, πθ,ϕ(x, ξ) satisfies the transmission condition.
Hence �θ,ϕ(P )+ is in the Boutet de Monvel calculus for even m.

Proof. We have that in view of (2.10) that

(4.24) symb(logθ P ) = m log[ξ ]+ lθ (x, ξ), lθ (x, ξ) ∼
∑
j∈N

lθ,−j (x, ξ),

where m log[ξ ] + lθ,0(x, ξ) = logθ (pm(x, ξ)), with similar formulas for
logϕ P , so the symbols of logθ P and logϕ P have the same log-termm log[ξ ].
Then it is seen from the first line in (4.16) that

(4.25) πθ,ϕ(x, ξ) = i

2π
(lθ (x, ξ)− lϕ(x, ξ)),

which satisfies the transmission condition when m is even in view of
Lemma 2.1.
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This could also be based more directly on the fact, worked out in detail in
[14], that πθ,ϕ(x, ξ) ∼ ∑

j∈N πθ,ϕ,−j (x, ξ), where the terms are given by

(4.26) πθ,ϕ,−j (x, ξ) = i

2π

∫
Cθ,ϕ (x,ξ)

q−m−j (x, ξ, λ) dλ;

here Cθ,ϕ(x, ξ) is a closed curve in the sector�θ,ϕ going in the positive direction
around the part of the spectrum of pm(x, ξ) lying in that sector.

Whenm is odd, one cannot expect�θ,ϕ(P ) to satisfy the transmission con-
dition. For example, for a first-order selfadjoint invertible elliptic differential
operator A on X̃ (e.g., a Dirac operator), �− π

2 ,
π
2
(A) equals �>(A), the pos-

itive eigenprojection 1
2 (I + A|A2|−1/2), where A|A2|−1/2 does not satisfy the

transmission condition (its even-order symbol terms are odd in ξ ).
Next, let us consider the s.g.o. part Gθ,ϕ . Example 4.8 below shows a dif-

ferential operator realization where Gθ,ϕ is not a standard singular Green op-
erator, already in a constant-coefficient principal symbol case. Example 4.9
on the other hand defines a general class of differential operator realizations
whereGθ,ϕ is a standard s.g.o., and�θ,ϕ(B) belongs to the standard calculus.
Here one finds however, that lower order perturbations can ruin the standard
s.g.o.-properties.

Example 4.8. Consider the differential operatorsA and P on R4+ given by

(4.27) A =
(
i 0
0 −i

)
D1 +

(
0 1

−1 0

)
D2 +

(
0 i

i 0

)
D3 +

(
1 0
0 1

)
D4,

and

(4.28) P =
(

0 −A∗

A 0

)
,

where A∗ denotes the formal adjoint of A. (A and P are Dirac-type operators,
with A∗A = −�I2, (iP )2 = −�I4.)

Regarding this as a localization of a manifold situation, we seek the pro-
jection onto the (generalized) eigenspaces for the eigenvalues λ in the upper
halfplane C+ for a certain realisation PT of P , where the boundary condition
is Bγ0u = 0, with

(4.29) B =
(

1 0 1 0

0 1 0 1

)
,

i.e., γ0u1 + γ0u3 = γ0u2 + γ0u4 = 0, ui being the i’th component of u.
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Thus, in this localized situation we shall construct �θ,ϕ(PT ) with θ = 0
and ϕ = π . In this case the contour �θ,ϕ is a contour from −∞ to ∞ passing
above the origin.
P has symbol

p(ξ) =
(

0 −t a(ξ)

a(ξ) 0

)

=

⎛⎜⎜⎜⎝
0 0 iξ1 − ξ4 ξ2 + iξ3

0 0 −ξ2 + iξ3 −iξ1 − ξ4

iξ1 + ξ4 ξ2 + iξ3 0 0

−ξ2 + iξ3 −iξ1 + ξ4 0 0

⎞⎟⎟⎟⎠ ,
the eigenvalues of which are ±i|ξ |. Hence P − λ is parameter-elliptic for λ
on all rays in C \ iR, with parametrix-symbol

q(ξ, λ) = (p(ξ)− λ)−1

= 1

|ξ |2 + λ2

⎛⎜⎜⎜⎝
−λ 0 −iξ1 + ξ4 −ξ2 − iξ3

0 −λ ξ2 − iξ3 iξ1 + ξ4

−iξ1 − ξ4 −ξ2 − iξ3 −λ 0

ξ2 − iξ3 iξ1 − ξ4 0 −λ

⎞⎟⎟⎟⎠ .
We first find the ψdo part of �0,π (PT ): According to (4.26) the symbol π(ξ)
of �0,π (P ) is obtained by integrating q(ξ, λ) along a small closed curve, Cξ ,
enclosing the pole i|ξ | in C+:

(4.30)

π(ξ) = i

2π

∫
Cξ

q(ξ, λ) dλ = − Res
λ=i|ξ |

(
q(ξ, λ)

)

= 1

2|ξ |

⎛⎜⎜⎜⎝
|ξ | 0 ξ1 + iξ4 −iξ2 + ξ3

0 |ξ | iξ2 + ξ3 −ξ1 + iξ4

ξ1 − iξ4 −iξ2 + ξ3 |ξ | 0

iξ2 + ξ3 −ξ1 − iξ4 0 |ξ |

⎞⎟⎟⎟⎠ .

The singular Green partGλ of the resolvent Rλ = (PT − λ)−1 has symbol-
kernel

g̃(xn, yn, ξ
′, λ)
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= 1

2σ

⎛⎜⎜⎜⎝
−iξ1 + iσ −ξ2 − iξ3 −λ 0

ξ2 − iξ3 iξ1 + iσ 0 −λ
−λ 0 −iξ1 − iσ −ξ2 − iξ3

0 −λ ξ2 − iξ3 iξ1 − iσ

⎞⎟⎟⎟⎠ e−σ(xn+yn),
where σ = √|ξ ′|2 + λ2. Note that σ is holomorphic (and Re σ > 0) for
λ ∈ C \ ±i(|ξ ′|,∞); in particular {P − λ,Bγ0} is parameter-elliptic for λ on
any ray in C \ iR.

The integration contour �0,π is homotopic in {reiω | ω �= ±π
2 or r < |ξ ′|}

to the real line; thus, due to the exponential falloff of e−(|ξ ′|2+λ2)
1
2 (xn+yn) we get

(4.31)

g̃θ,ϕ(xn, yn, ξ
′) = i

2π

∫
�θ,ϕ

g̃(xn, yn, ξ
′, λ) dλ

= i

2π

∫ ∞

−∞
g̃(xn, yn, ξ

′, t) dt.

We can now verify that g̃θ,ϕ is not a singular Green symbol-kernel: The 12-
matrix entry of g̃θ,ϕ becomes

(4.32)
−iξ2 + ξ3

4π

∫ ∞

−∞

(|ξ ′|2 + t2
)− 1

2 e−(|ξ
′|2+t2) 1

2 (xn+yn) dt,

which, for fixed ξ ′, is unbounded as xn + yn goes to zero; hence, g̃θ,ϕ is not in
S++.

To see this note that, for fixed a > 0,

f (r) = 1

2

∫ ∞

−∞
(a2 + t2)−

1
2 e−r(a

2+t2) 1
2
dt =

∫ ∞

0
(a2 + t2)−

1
2 e−r(a

2+t2) 1
2
dt

≥
∫ ∞

0

e−(a+t)r

a + t
dt =

∫ ∞

ar

e−u

u
du

which diverges to +∞ as r → 0+.

Example 4.9. Let X′
0 be a closed (n− 1)-dimensional manifold provided

with an elliptic second-order differential operator S which is selfadjoint pos-
itive in L2(X

′
0). Let X = X′

0 × [0, a] with points x = (x ′, xn), x ′ ∈ X′
0 and

xn ∈ [0, a], and let B be the Dirichlet realization ofD2
xn

+S onX; it is selfad-
joint positive in L2(X), withD(B) = H 2(X)∩H 1

0 (X). LetA be the Dirichlet
realization of

(4.33) P =
(
D2
xn

+ S S

S −D2
xn

− S

)
.
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on X, then in fact,

(4.34) A =
(
B S

S −B
)

with domain D(B)×D(B). The resolvent is

(4.35) (A− λ)−1 =
(−B − λ −S

−S B − λ

)
(λ2 − B2 − S2)−1,

where we used thatS andB commute. DefineB1 = (B2+S2)
1
2 . HereB2+S2 is

the realization of the fourth-order elliptic differential operator (D2
xn

+S)2 +S2

determined by the boundary condition γ0u = 0, γ0Bu = 0. This is one of
the particular cases where the square root of the interior operator does satisfy
the transmission condition, cf. [6, (4.4.9)]. Moreover, the square root of the
realization B2 + S2 represents a boundary condition consisting of exactly the
part of the boundary condition for B2 + S2 that makes sense on H 2(X), cf.
[6, Cor. 4.4.3] (based on a result of Grisvard); so in fact B1 is the realization
of ((D2

xn
+ S)2 + S2)

1
2 determined by the Dirichlet condition γ0u = 0. This

belongs to the standard calculus and enters nicely in the theory of [6], cf.
Section 1.7 there. Note that D(B1) = D(B).

We can then calculate

(4.36)

(λ2 − (B2 + S2))−1

= (λ2 − B2
1 )

−1 = (B1 − λ)−1(−B1 − λ)−1

= (B1 − λ)−1(2B1)
−1(B1 + λ+ B1 − λ)(−B1 − λ)−1

= −1

2
B−1

1

(
(B1 − λ)−1 − (−B1 − λ)−1

)
,

which leads to the formula:
(4.37)
(A− λ)−1

=
(−B + B1 − B1 − λ −S

−S B − B1 + B1 − λ

)
(B1 − λ)−1(−B1 − λ)−1

=
(
(B1 − λ)−1 0

0 (−B1 − λ)−1

)

−
(
B1 − B −S

−S B − B1

)
1

2
B−1

1

(
(B1 − λ)−1 − (−B1 − λ)−1

)
,

valid for λ outside the spectra of B1 and −B1. To determine the spectral pro-
jection �θ,ϕ(A) with θ = −π

2 , ϕ = π
2 , we use the abstract machinery. It is
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seen from either of the formulas (4.2) or (4.7) that

(4.38) �− π
2 ,

π
2
(A) =

(
�− π

2 ,
π
2
(B1) 0

0 �− π
2 ,

π
2
(−B1)

)

−
(
B1 − B −S

−S B − B1

)
1

2
B−1

1

(
�− π

2 ,
π
2
(B1)−�− π

2 ,
π
2
(−B1)

)
.

Here

(4.39) �− π
2 ,

π
2
(B1) = I, �− π

2 ,
π
2
(−B1) = 0,

in view of Proposition 4.1 and the fact that B1 is selfadjoint positive. It follows
that

(4.40) �− π
2 ,

π
2
(A) =

( 1
2 + 1

2BB
−1
1

1
2SB

−1
1

1
2SB

−1
1

1
2 − 1

2BB
−1
1

)
.

The operator is in the Boutet de Monvel calculus. Note that the sum of the
diagonal terms is I , so the residue of the operator is zero.

Inherent in this example are some symbol calculations where the poles of
the resolvent symbol appear isolated in such a way that integrals over �θ,ϕ
can be turned into integrals over closed curves, reducing to simple residue
calculations. Perturbations can easily introduce more complicated calculations
where integrals as in (4.32) appear, leading to non-standard s.g.o.-symbols (we
shall not reproduce examples here).

In view of Definition 3.3 and the formulas (4.16), the sectorial projection
�θ,ϕ(B) has a well-defined residue. In the differential operator case where
the order m is even, one can moreover define residues of the compositions of
�θ,ϕ(B) with operators A in the Boutet de Monvel calculus; this is taken up
in [9]. It is found there that if in addition, A is of order and class 0, the residue
vanishes on the commutator of �θ,ϕ(B) and A.

It is still an open question whether the residue is zero on sectorial projections
for boundary value problems, as it is in the closed manifold case; we expect
to return to this question in a forthcoming work.

Appendix A. Proofs of auxiliary results in functional analysis

Proof of Proposition 4.2. First we prove (4.6): Let, for N ∈ N,

(A.1) CN
θ = {reiθ | N ≥ r ≥ r0}

∪ {r0eiω | θ ≥ ω ≥ θ − 2π} ∪ {rei(θ−2π) | r0 ≤ r ≤ N}.



274 anders gaarde and gerd grubb

Then, for s > 0

(A.2)
∫

CN
θ

λ−s−1
θ logθ λ dλ

=
[
− 1

s2
λ−s
θ (1 + s logθ λ)

]Neiθ
Nei(θ−2π)

−→ 0 for N → ∞,

since N−s and N−s logN go to 0 for N → ∞. It follows that

(A.3) lim
s↘0

lim
N→∞

∫
CN
θ

λ−s−1
θ logθ λ dλ = 0.

Observe that the order of the limits is important.
Using the resolvent identityA(A−λ)−1 = 1 +λ(A−λ)−1 we now get for

x ∈ D(A):
(A.4)

lim
s↘0

∫
Cθ

λ−s
θ logθ λ(A− λ)−1x dλ

= lim
s↘0

lim
N→∞

∫
CN
θ

λ−s
θ logθ λ(A− λ)−1x dλ

= lim
s↘0

lim
N→∞

[∫
CN
θ

λ−s−1
θ logθ λx dλ+

∫
CN
θ

λ−s
θ logθ λ(A− λ)−1x dλ

]
= lim

s↘0
lim
N→∞

∫
CN
θ

λ−s−1
θ logθ λ

[
1 + λ(A− λ)−1

]
x dλ

= lim
s↘0

lim
N→∞

∫
CN
θ

λ−s−1
θ logθ λA(A− λ)−1x dλ,

where we used (A.3) in the second line (adding zero). Then, since
‖(A− λ)−1‖ ≤̇ |λ|−1,

(A.5)
∥∥λ−s−1

θ logθ λA(A− λ)−1x
∥∥ ≤̇ | log λ||λ|−s−2‖Ax‖,

so that the integrand in the last expression of (A.4) is integrable along Cθ
uniformly in s > 0, and

(A.6) lim
s↘0

lim
N→∞

∫
CN
θ

λ−s−1
θ logθ λA(A− λ)−1x dλ

=
∫

Cθ

λ−1 logθ λA(A− λ)−1x dλ.

Combining (A.4) and (A.6) (and multiplying with i
2π ) we obtain the desired

result (4.6).
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The identity (4.7) stems from [3] (we have corrected a sign here). For this,
consider the integration contour

(A.7) �Nθ,ϕ = {reiϕ | N > r > r0}
∪ {r0eiω | ϕ ≥ ω ≥ θ} ∪ {reiθ | r0 < r < N}.

Using again A(A− λ)−1 = 1 + λ(A− λ)−1 we obtain

(A.8)
∫
�Nθ,ϕ

λ−1A(A− λ)−1x dλ =
∫
�Nθ,ϕ

(A− λ)−1x dλ+
∫
�Nθ,ϕ

λ−1x dλ.

For the second term we have, using a logarithm with branch cut disjoint from
�θ,ϕ ,

(A.9)
∫
�Nθ,ϕ

λ−1dλ = [
log λ

]Neiθ
Neiϕ

= i(θ − ϕ).

Thus

(A.10)
i

2π

∫
�Nθ,ϕ

λ−1A(A− λ)−1x dλ = i

2π

∫
�Nθ,ϕ

(A− λ)−1x dλ+ ϕ − θ

2π
x.

For x ∈ D(A) the limit for N → ∞ is well-defined on the left-hand side,
and the limit of the first term on the right-hand side then exists as an improper
integral, as indicated.

Proof of Lemma 4.3. The integral along Cθ is, in detail:
(A.11)∫

Cθ

logθ λ f (λ) dλ =
∫ r0

∞
(log r + iθ)f (reiθ )eiθ dr

+
∫ θ−2π

θ

(log r0 + iω)f (r0e
iω)ir0e

iω dω

+
∫ ∞

r0

(log r + iθ − 2πi)f (reiθ−2πi)eiθ−2πi dr.

Since f (reiθ−2πi)eiθ−2πi = f (reiθ )eiθ , the two terms with (log r+ iθ) cancel
each other. Thus

(A.12)
∫

Cθ

logθ λf (λ) dλ

= −
∫ θ

θ−2π
(log r0 + iω)f (r0e

iω)ir0e
iω dω − 2πi

∫ ∞

r0

f (reiθ )eiθ dr.
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Denote the integrand in the first integral g(ω) = (log r0 + iω)f (r0e
iω)ir0e

iω.
There is of course an identity similar to (A.12) with θ replaced by ϕ, and

then

(A.13)

∫
Cθ

logθ λf (λ) dλ−
∫

Cϕ

logϕ λf (λ) dλ

=
(

−
∫ θ

θ−2π
+
∫ ϕ

ϕ−2π

)
g(ω) dω

− 2πi

(∫ ∞

r0

f (reiθ )eiθ dr −
∫ ∞

r0

f (reiϕ)eiϕ dr

)

=
(

−
∫ θ

θ−2π
+
∫ ϕ

ϕ−2π

)
g(ω) dω

− 2πi
∫ r0

∞
f (reiϕ)eiϕ dr − 2πi

∫ ∞

r0

f (reiθ )eiθ dr.

The last two terms are recognized as the contributions to −2πi
∫
�θ,ϕ

f (λ) dλ

from the rays eiϕ[r0,∞[ and eiθ [r0,∞[. The first term is seen to give the
contribution from the arc Cr0,θ,ϕ = {r0eiω | ϕ ≥ ω ≥ θ} as follows:(

−
∫ θ

θ−2π
+
∫ ϕ

ϕ−2π

)
g(ω) dω

=
(

−
∫ θ

ϕ

+
∫ θ−2π

ϕ−2π

)
g(ω) dω =

∫ θ

ϕ

[−g(ω)+ g(ω − 2π)] dω

=
∫ θ

ϕ

[− (log r0 + iω)f (r0e
iω)ir0e

iω

+ (log r0 + i(ω − 2π))f (r0e
iω)ir0e

iω
]
dω

= −2πi
∫ θ

ϕ

f (r0e
iω)ir0e

iω dω = −2πi
∫

Cr0 ,θ,ϕ

f (λ) dλ.
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