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APPROXIMATELY INNER DERIVATIONS

OLA BRATTELI, AKITAKA KISHIMOTO and DEREK W. ROBINSON

(Dedicated to the memory of Gert K. Pedersen)

Abstract

Let α be an approximately inner flow on a C∗-algebra A with generator δ and let δn denote the
bounded generators of the approximating flows α(n). We analyze the structure of the set

D = {x ∈ D(δ) : lim
n→∞ δn(x) = δ(x)}

of pointwise convergence of the generators. In particular we examine the relationship of D and
various cores related to spectral subspaces.

1. Introduction

The theory of flows on operator algebras has been largely motivated by models
of quantum statistical mechanics in which the flow α is usually constructed
as the limit of a sequence (α(n)) of local flows. The latter are typically given
by inner one-parameter automorphism groups of the algebra A and the flow is
correspondingly called approximately inner. In particular this is the situation
for models of quantum spin systems in which the algebra of observables A

is a UHF-algebra (see, for example, [9], Chapter 6). An early result of Sakai
established [25] that if δ is the generator of a flow α on a UHF-algebra then
there exists an increasing sequence (An) of finite dimensional C∗-subalgebras
An of A such that An ⊂ D(δ) and

⋃
n An is dense in A. Furthermore, there

exists a sequence (hn) of elements hn of the self-adjoint part Asa of A such
that δ|An

= ad(ihn)|An
(see [8], Example 3.2.25). If, in addition,

⋃
n An is a

core for δα , i.e.
⋃

n An is dense in D(δ) in the graph norm, then it follows that
α is approximately inner. In particular one has

(1) lim
n→∞ max|t |≤1

‖αt(x) − α
(n)
t (x)‖ = 0

for all x ∈ A where α
(n)
t = etδn with δn = ad(ihn). This is a consequence

of two general results. First the strong convergence (1) of the semigroups is
equivalent to strong convergence of the resolvents (ι±δn)

−1 to (ι±δ)−1 by the
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Kato-Trotter theorem (see, for example, [14], Theorem IX.2.16). Explicitly (1)
is equivalent to the condition

(2) lim
n→∞ ‖(ι ± δn)

−1(x) − (ι ± δ)−1(x)‖ = 0

for all x in a norm-dense subspace of A. Secondly, since
⋃

n An ⊂ D , where

(3) D = {x ∈ D(δ) : lim
n→∞ δn(x) = δ(x)} ,

it follows that D is a core of δ. In particular the subspaces (ι ± δ)(D) are
norm-dense in A. Then if y ∈ D and x± = (ι ± δ)(y) one has

lim
n→∞ ‖(ι ± δn)

−1(x±) − (ι ± δ)−1(x±)‖ ≤ lim
n→∞ ‖(δn − δ)(y)‖ = 0 .

Therefore the strong resolvent convergence (2) and the equivalent semigroup
convergence (1) is established. Thus the crucial feature in this argument is the
core property of D . This follows automatically if

⋃
n An is a core.

Secondly, note that it does not follow in general from Sakai’s construction
that

⋃
n An can be taken to be a core for δ. This was an open problem for

many years. The affirmative answer would imply that α is approximately inner,
and this was known as the Powers-Sakai conjecture. The problem was finally
resolved in the negative in 2000 (see [20], Theorem 1.1). The counterexample
is, however, an AF-algebra which is not UHF and the problem still seems to
be open for UHF-algebras.

The purpose of this note is to analyze the convergence (1) for flows α
(n)
t =

eitδn and αt = eitδ on a general C∗-algebra A by examining the structure of
the set D defined by (3). In particular we consider the relation between D and
various natural cores of δ.

2. Cores and spectral subspaces

Let α be a flow on a C∗-algebra A with generator δα . Define the spectral
subspace Aα(K), for each closed subset K of R, as the Banach subspace
spanned by the x ∈ A for which the conditions f ∈ L1(R) and supp f̂ ∩K = ∅
imply αf (x) = 0. (Here f̂ denotes the Fourier transform of f .) The α-spectrum
of x ∈ A, denoted by Spα(x), is defined to be the smallest closed subset K of
R such that x ∈ Aα(K). Elements with compact α-spectra are referred to as
geometric elements of α and the subspace of geometric elements is denoted by
Aα

G. Explicitly, Aα
G = ⋃∞

n=1 Aα([−n, n]). Note that each geometric element is
automatically an entire analytic element of α. Moreover, Aα

G is a ∗-subalgebra
of A and an α-invariant core of δα .
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The spectrum Sp(α) of α is defined to be the smallest closed subset K of
R such that A = Aα(K). The Connes spectrum R(α) of α is defined to be the
intersection of Sp(α|B) with B all non-zero α-invariant hereditary C∗-algebras
of A. It is known that R(α) is a closed subgroup of R.

Our first result establishes under quite general conditions that the geometric
elements of an approximately inner flow are not contained in the subspace D

of convergence.

Theorem 2.1. Let A be a separable C∗-algebra and α an approximately in-
ner flow with generator δα . Suppose there exists a faithful family of α-covariant
irreducible representations of A and that R(α) �= {0}. Let (hn) be a sequence
of self-adjoint elements of A such that

lim
n→∞ max|t |≤1

‖αt(x) − Ad eithn(x)‖ = 0

for all x ∈ A and let

(4) D = {
x ∈ D(δα) : lim

n→∞ ad ihn(x) = δα(x)
}
.

Then
D �⊃ Aα

G.

Proof. Under the assumptions of the theorem it follows that there is a
faithful family of irreducible representations (π, Hπ ) of A such that the rep-
resentation

π =
∫ ⊕

R
dt π ◦ αt

of A on L2(R ; Hπ ) is of type I with centre L∞(R) if R(α) = R and
L∞(R/((2πp)−1Z))) (as a subalgebra of L∞(R)) if R(α) = pZ. (This is The-
orem 1.2 of [18] when A is prime. See Remark 2.3 when A is not prime.) Define
a unitary flow U on L2(R ; Hπ ) by Utξ(s) = ξ(s + t). Then Utπ(x)U ∗

t =
π(αt (x)). We denote by αt the weakly continuous flow t �→ Ad Ut on π(A)′′.

Since A is separable, there is a countable faithful family of such irreducible
representations. Let (πi) be such a family. Let q ∈ R(α) and define zi ∈
πi(A)′′ ∩ πi(A)′ ⊂ L∞(R) by zi(t) = e2πiqt . Note that zi satisfies αt(zi) =
e2πiqt zi . Then there is a net (yμ) in the unit ball of A such that πi(yμ) converges
to zi in the ∗-strong topology for any i and π(yμ) converges to 0 weakly for
any representation π disjoint from all πi . We may further suppose that the α-
spectrum of yμ decreases to {q}. Since A is separable and the direct sum of πi is
a representation on a separable Hilbert space, one can choose a sequence (yk)

from the convex combinations of (yμ) such that (yk) is a central sequence,
πi(yk) converges to zi in the ∗-strong topology, and the α-spectrum of yk
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shrinks to {q}. Since πi(yky
∗
k ) converges to the identity for any i and the direct

sum of πi is faithful, one may conclude that ‖xyk‖ converges to ‖x‖ for any
x ∈ A as k → ∞. We use this fact below.

Assume that D ⊃ Aα([−ε, ε]) for an ε > 0. Then it follows from the
uniform boundedness theorem that there is constant c > 0 such that

‖ ad ihm|Aα([−ε,ε])‖ < c

for all m. Choose x ∈ Aα([q − ε/2, q + ε/2]) such that ‖x‖ = 1 where
q ∈ R(α) satisfies q > c + ε. By the arguments in the previous paragraph one
can find a central sequence (yk) in A such that ‖yk‖ ≤ 1, Spα(yk) ⊂ 〈−q −
ε/2, −q+ε/2〉 and π(yky

∗
k ) converges weakly to the identity as k → ∞. Then

‖xyk‖ ≤ 1, ‖xyk‖ → 1 and Spα(xyk) ⊂ 〈−ε, ε〉. Hence ‖ ad ihm(xyk)‖ < c

and
lim

k→∞ ‖ ad ihm(xyk) − ad ihm(x)yk‖ = 0 .

Since limm→∞ ‖ ad ihm(x)−δα(x)‖ = 0 and limk→∞ ‖δα(x)yk‖ = ‖δα(x)‖ it
follows that ‖ ad ihm(xyk)‖ > ‖δα(x)‖ − ε/2 ≥ q − ε > c for all sufficiently
large m and k. This contradicts the bound ‖ ad ihm(xyk)‖ < c. Therefore
D �⊃ ⋃∞

n=1 Aα([−n, n]).

Remark 2.2. The foregoing proof establishes a slightly stronger statement:
If D contains Aα([−ε, ε]) for some ε > 0, then D ∩Aα([q −ε/2, q +ε/2]) =
{0} for all large q ∈ R(α).

Remark 2.3. In Theorem 2.1 we assumed the condition

(i) there exists a faithful family of α-covariant irreducible representations
of A.

The essential requirement is, however, a consequence of the assumption

(ii) there exists a faithful family {πi} of irreducible representations of A such
that π̄i is of type I and the spectrum of ᾱ on the center π̄i(A)′′ ∩ π̄i(A)′,
which we denote by �(π), is R(α), where π̄i and ᾱ are defined in the
above proof.

As we asserted above (i) implies (ii). To confirm this assertion let us define
R2(α) to be the set of p ∈ R satisfying: for any non-zero x ∈ A and any ε > 0
there exists an a ∈ Aα([p−ε, p+ε]) such that ‖a‖ = 1 and ‖x(a+a∗)x∗‖ ≥
(2 − ε)‖x‖2. It is obvious that R2(α) is a closed subset of R(α). Furthermore
one can show that the inclusion R2(α) ⊃ ⋂

π∈F �(π) holds for any faithful
family F of irreducible representations of A and the equality holds for some
(see [17], Proposition 1). Consider the conditions

(i′) R2(α̂) = R
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and

(ii′) R2(α) = R.

One can show that (i) ⇔ (i′) ⇒ (ii′) ⇔ (ii). If A is prime all these conditions are
equivalent [18]. The equivalences of (i) with (i′) and (ii) with (ii′) are a kind
of duality and these equivalences are straightforward. The only implication
which is not explicitly given in the non-prime case seems to be (i′) ⇒ (ii′).
The arguments we adopt here are given in the proof of Theorem 3.3 of [16].
Let B = A ×α R, let H be a discrete subgroup of R(α), and let β = α̂|H .
Then it follows from (i’) that there is a faithful family of covariant irreducible
representations for (B×βH, Ĥ , β̂) and it follows from H ⊂ R(α) that H(β̂) =
H . Let x ∈ B ×β H . For p ∈ H⊥ and any compact neighborhood U of p in
R one can show from (i′) that

sup{‖x(a + a∗)x∗‖ : a ∈ Bα̂(U), ‖a‖ = 1} = 2‖x‖2.

Moreover, for s ∈ H one can show by using Glimm’s type of theorem for the
compact dynamical system (B ×β H, Ĥ , β̂) [6] that

sup{‖x(a + a∗)x∗‖ : a ∈ Bλ(s)} = 2‖x‖2,

where H � s → λ(s) is the canonical unitary group in the multiplier algebra
of B ×β H implementing β. Using these two conditions one can construct
a faithful family {πi} of irreducible representations of B ×β H such that πi

restricts to an irreducible representation ρi of B and ρ̄i which is the direct
integral of ρiα̂p, p ∈ R is of type I with �(ρi) = H⊥. Then, by Lemma 5
of [17], the duality implies that R2(α) ⊃ H . Since H is an arbitrary discrete
subgroup of R(α) one can conclude that R2(α) = R(α).

It follows automatically from the assumptions of Theorem 2.1 that one has
D �⊃ D for any core D of δα which contains the geometric elements Aα

G. In
particular D cannot contain the analytic elements, or the C∞ elements, of α.
In addition one cannot construct a core in D by regularization of the subspace
of geometric elements since the following lemma establishes that the subspace
is unchanged by regularization with respect to the flow.

Lemma 2.4. Let Aα
G denote the geometric elements of the flow α on the

C∗-algebra A. Then

Aα
G = {αf (x) : x ∈ Aα

G, f ∈ L1(R)}
= span{αf (x) : x ∈ Aα

G, f ∈ C∞
c (R)}.

Proof. First x ∈ Aα(K) if and only if g ∈ L1(R) and (supp ĝ) ∩ K = ∅
implyαg(x) = 0. But ifx ∈ Aα(K) andf ∈ L1(R) thenαg(αf (x)) = αf ∗g(x).
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Moreover, supp(f̂ ∗ g) ⊆ supp ĝ. Therefore αg(αf (x)) = 0 and one deduces
that αf (x) ∈ Aα(K). Hence

{αf (x) : x ∈ Aα
G, f ∈ C∞

c (R)} ⊆ {αf (x) : x ∈ Aα
G, f ∈ L1(R)} ⊆ Aα

G.

Next if x ∈ Aα(K) and f, g ∈ L1(R) with f̂ = ĝ = 1 on an open neigh-
bourhood U of K then αf (x) = αg(x) (see, for example, [8], Lemma 3.2.38).
Replacing g by an approximate identity, with the Fourier transform equal to
one on U , and taking the limit one deduces that αf (x) = x. Therefore

Aα
G = {αf (x) : x ∈ Aα

G, f ∈ L1(R)}.
But the same argument also gives

Aα
G = {αf (x) : x ∈ Aα

G, f ∈ S (R)}
where S (R) is the usual Schwartz space. Finally, if f ∈ S (R) then it follows
from the Rubel-Squires-Taylor factorization theorem [24] (see also [13]) that
there exists a finite set of gi ∈ C∞

c (R) and hi ∈ S (R) such that f = ∑
gi ∗hi .

In particular αf (x) = ∑
αgi

(yi) with yi = αhi
(x). Therefore

Aα
G = {αf (x) : x ∈ Aα

G, f ∈ S (R)}
⊆ span{αg(y) : y ∈ Aα

G, g ∈ C∞
c (R)}

⊆ span{αg(y) : y ∈ Aα
G, g ∈ S (R)} = Aα

G

and the proof is complete.

Despite these observations Example 3.6 illustrates that many approximately
inner flows of interest in mathematical physics are such that the subspace of
convergence D contains a dense invariant set of analytic elements.

It is remarkable that under the conditions of Theorem 2.1 convergence of
a sequence of bounded derivations on the subspace Aα

G automatically implies
boundedness of the limit derivation, at least if A is prime:

Corollary 2.5. Let A be a separable prime C∗-algebra and α a flow.
Suppose there exists a faithful family ofα-covariant irreducible representations
of A and that R(α) �= {0}.

Suppose that there is a sequence (bn) of self-adjoint elements of A such that
the limits

δ(x) = lim
n→∞ ad ibn(x)

exist for all x ∈ Aα
G. Then x ∈ Aα

G �→ δ(x) ∈ A extends to a bounded
∗-derivation on A.
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Proof. It follows from the uniform boundedness theorem that the norm of
ad bn|Aα([−k,k]) is bounded as n → ∞ for each k. Hence δ|Aα([−k,k]) is bounded.
Then, by [15], δ is closable and its closure δ generates a flow β.

By [19] there is a faithful covariant representation (π, U) of A such that
the flow α : t �→ Ad Ut on the factor M = π(A)′′ has Connes spectrum R(α),
e.g. π may be a type II∞ representation extending the tracial representation of
a UHF algebra (with a non-trivial UHF flow) “embedded” in A; here we need
A to be prime. Let f ∈ L1(R) be an integrable real-valued function such that
the Fourier transform f̂ has compact support and define

δf =
∫

R
dt f (t)αtδα−t .

The closure δf of δf is also a generator and we denote by βf the flow generated
by δf . By [5] the α-covariant representation π is also βf -covariant. If f ∈
L1(R) satisfies f̂ (0) = 0 then δf is bounded. Moreover, there is a constant
c > 0 such that ‖δf ‖ ≤ c‖f ‖1 for such f .

We fix a positive function f ∈ L1(R) such that supp(f̂ ) is compact and
f̂ (0) = ∫

dt f (t) = 1 and define δn as the closure of 1/n
∫

dt f (t/n)αtδα−t .
Define �n to be the weak extension of x �→ πδn(x) on π(D(δn)), i.e. the
generator of the weak extension of the flow on π(A) induced by δn. Since
‖�n − �1‖ ≤ 2c, we take a limit point d of the sequence of derivations
�n −�1 : π(A)′′ → π(A)′′ with pointwise weak topology. Thus the limit d is
a derivation on M . Then by general theory d is an inner derivation on M . Hence
�1 + d is a generator. Since �1 + d is a limit point of �n : D(�1) → M and
‖αt�n(x) − �nαt(x)‖ → 0, x ∈ Mα

G as n → ∞, we conclude that �1 + d

commutes with α. By the arguments originating in [21] we argue that �1 + d

generates a flow which is a bounded perturbation of a scaled α as follows: Let
γ be the flow on M generated by �1 + d. We denote by α ⊗ γ the action of
R2 on M defined by (s, t) �→ αsγt . Since the spectrum of α ⊗ γ is bounded
on each {p} × R and the Connes spectrum R(α ⊗ γ ) is included in R(α) × R,
there is a constant λ ∈ R such that R(α ⊗ γ ) = {(p, λp) : p ∈ R(α)}.
Since Sp(α ⊗ γ ) + R(α ⊗ γ ) = Sp(α ⊗ γ ), we conclude that γ is a bounded
perturbation of the flow t �→ αλt or the flow on A generated by δ1 is a bounded
perturbation of the flow t �→ αλt .

On the other hand define δ′
n to be the closure of n

∫
dt f (nt)αtδα−t and �′

n

to be the weak extension of x �→ π(δ′
n(x)). Then by the same token we have

that ‖�1 − �′
n‖ ≤ 2c. Note that D(�1) = D(�′

n) and ‖π(δ1(x) − δ′
n(x))‖ ≤

2c‖π(x)‖ for x ∈ D(δ1). We then conclude that there is a derivation d ′ of M

such that π(δ1(x)) − d ′(π(x)) = π(δ(x)) for x ∈ π(Aα
G). Since Aα

G is dense
in A, this implies that d ′ leaves π(A) invariant. Hence, since π is faithful,
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x ∈ Aα
G �→ δ1(x) − δ(x) extends to a derivation of A. Combining this with

the result in the previous paragraph, the flow β (generated by δ) is a bounded
perturbation of t �→ αλt . If λ �= 0, this would imply that δα|Aα

G
is approximated

by inner derivations, which contradicts Theorem 2.1. Hence λ = 0 and β is
uniformly continuous, or δ is bounded.

Theorem 2.1 can be reformulated in various ways. The assumption of the
existence of a faithful family of α-covariant irreducible representations is likely
to follow from the approximate innerness of α alone. For example, if each
non-zero ideal of A has a non-zero projection, this follows because there exist
ground states for a perturbed α restricted to an invariant unital hereditary C∗-
subalgebra. With different arguments we can show this is also a consequence
of a property of the ideal structure of the C∗-algebra.

Proposition 2.6. Let A be a separable C∗-algebra and α an approximately
inner flow. Suppose that A has at most countably many ideals. Then there exists
a faithful family of α-covariant irreducible representations of A.

Proof. Let (hn) be a sequence in Asa such that

αt(x) = lim
n→∞ Ad eithn(x)

uniformly in t on every bounded interval of R for all x ∈ A.
Let γ denote the flow on C0(R, A), the C∗-algebra of continuous functions

into A vanishing at infinity, induced by translation; γt (x)(s) = x(s + t), x ∈
C0(R, A) and let α̂ denote the dual action of R on the crossed product A ×α R.

We denote by N+ the one-point compactification of N; ∞ is the newly
added point. We assign the dynamical system (C0(R, A), γ ) to each point
n ∈ N and (A ×α R, α̂) to ∞ ∈ N+. We assert that they form a continuous
field of dynamical systems over N+.

We define a map φn of Cc(R, A), the space of continuous functions on R
into A with compact support, into C0(R, A) by

φn(f )(p) =
∫

R
dt f (t)eit (hn+p) = f̂ (p + hn).

We note that φn(f )φn(g) = φn(f ∗n g) and φn(f )∗ = φn(f
∗n ), where

f ∗n g(t) =
∫

R
ds f (s) Ad eishn(g(t − s))

and f ∗n (t) = Ad eithn(f (−t)). We denote by φ∞ the natural embedding of
Cc(R, A) into A ×α R, which is given by

φ∞(f ) =
∫

R
dt f (t)λt ,
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where t �→ λt is the canonical unitary flow implementing α in the multiplier
algebra of A ×α R. We note that φ∞(f )φ∞(g) = φ∞(f ∗ g) and φ∞(f )∗ =
φ∞(f ∗), where

f ∗ g(t) =
∫

R
dt f (s)αs(g(t − s))

and f ∗(t) = αt(f (−t)). Note that f ∗n g converges to f ∗ g (resp. f ∗n to f ∗)
uniformly as continuous functions of support contained in supp(f )+ supp(g)

(resp. − supp(f )). In particular ‖φn(f ∗ng)−φn(f ∗g)‖ → 0 and ‖φn(f
∗n )−

φn(f
∗)‖ → 0.

For f ∈ Cc(R, A) and q ∈ R we define fq ∈ Cc(R, A) by fq(t) = f (t)eiqt .
Then γq(φn(f )) = φn(fq) for n ∈ N and α̂q(φ∞(f )) = φ∞(fq). The assertion
made above comprises this fact and the following:

Lemma 2.7. If f ∈ Cc(R, A) then n ∈ N+ �→ ‖φn(f )‖ is continuous. The
range of φn is dense in C0(R, A) if n < ∞ or in A ×α R if n = ∞.

The only non-trivial claim is that limn→∞ ‖φn(f )‖ = ‖φ∞(f )‖ for f ∈
Cc(R, A). Let ρ(f ) = lim sup ‖φn(f )‖. Then it follows that ρ defines a C∗-
seminorm on Cc(R, A) as a ∗-subalgebra of A ×α R. This fact follows from

ρ(f ∗ g) = lim sup ‖φn(f ∗ g)‖ = lim sup ‖φn(f ∗n g)‖
≤ lim sup ‖φn(f )‖‖φn(g)‖ ≤ ρ(f )ρ(g),

ρ(f ∗ ∗ f ) = lim sup ‖φn(f
∗n ∗n f )‖ = lim sup ‖φn(f )‖2 = ρ(f )2,

etc.
Since ρα̂p = ρ and ρ is non-zero on a non-zero element ag with a ∈ A

and g ∈ Cc(R), one concludes that ρ is a norm, i.e. ρ(f ) = ‖φ∞(f )‖. Since
the same statement holds for any subsequence of (φn), the claim follows.

Let a ∈ A and g ∈ Cc(R) and define x ∈ Cc(R, A) by x(t) = ag(t). Then
φn(x)(p) = a

∫
R dt g(t)eit (hn+p) = aĝ(hn + p). Note that p �→ ‖φn(x)(p)‖

is a continuous function on R vanishing at ∞.
If a �= 0 and g �= 0, then φ∞(x) �= 0. For any θ ∈ 〈0, ‖φ∞(x)‖〉, and for

all large n, we find the smallest pn ∈ R such that ‖φn(x)(pn)‖ = θ . Define a
seminorm ρ on Cc(R, A) by

ρ(f ) = lim sup
n→∞

max
p≤pn

‖φn(f )(p)‖,

which extends to a C∗-seminorm on A ×α R. Note that ρ(x) = θ < ‖φ∞(x)‖
and q �→ ρα̂q(f ) is increasing (because γqφn(f )(p) = φn(fq) = φn(f )(p +
q)).
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Let
ρ−∞(f ) = lim

q→−∞ ρα̂q(f ),

which defines a C∗-seminorm on A ×α R.
Suppose that ρ−∞ �= ρ. Since Ker ρ � Ker ρ−∞, we take an irreducible

representation π of the quotient Ker ρ−∞/ Ker ρ and regard it as an irreducible
representation of A ×α R. Then Ker πα̂p �= Ker π for p �= 0; if Ker πα̂p =
Ker π for some p �= 0, then Ker π contains Ker ρα̂q for any q (as Ker π ⊃
Ker ρ), from which follows that π |Ker ρ−∞ = 0, a contradiction. This implies
that the center of π (as defined as the direct integral of πα̂p over p ∈ R as
before) is L∞(R), which in turn implies that the representation π of A ×α R is
induced from an α-covariant irreducible representation of A.

Suppose that ρ−∞ = ρ, which implies that ρα̂q = ρ for all q. Then there
is an α-invariant ideal I of A such that Ker ρ is described as I ×α R. For each
θ ∈ 〈0, ‖φ∞(x)‖〉 we have defined a seminorm ρ = ρθ and an ideal I = Iθ of
A if ρθ is α̂-invariant. Note that if ρθ and ρμ are α̂-invariant for θ �= μ, then
Iθ �= Iμ. If all ρθ are α̂-invariant, we thus obtain a continuous family of ideals
of A, which contradicts the assumption. Thus there is a θ such that ρθ is not
α̂-invariant.

Thus we obtain an α-covariant irreducible representation π of A. If Ker π

is non-zero, we apply this argument to Ker π and α|Ker π , which is an approx-
imately inner flow on a C∗-algebra with at most countably many ideals. By
induction one concludes that there is a faithful family of α-covariant irreducible
representations.

3. AF and UHF algebras

In this section we examine some properties of cores of generators for AF and
UHF algebras. First we note that if α is an approximately inner flow on an AF-
algebra then one may choose the sequence (hn) which defines the generators
of the approximating flows in such a way that the subspace D defined by (3)
is dense in A.

Proposition 3.1. Let A be an AF algebra and α an approximately inner
flow on A with generator δα . Then there exists a sequence (hn) in Asa such
that

lim
n→∞ max|t |≤1

‖αt(x) − Ad eithn(x)‖ = 0

for all x ∈ A and

D = {
x ∈ D(δα) : lim

n→∞ ad ihn(x) = δα(x)
}

is dense in A.
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Remark 3.2. Even without assuming the existence of (hn) it follows from
the result of Sakai mentioned in the introduction [25] that there exists an in-
creasing sequence An of finite dimensional C∗-subalgebras of A such that
An ⊂ D(δα) and

⋃
n An is dense in A. This is true even if δ is not assumed to

be a generator, but only a closed derivation ([7], Theorem 11). Furthermore,
there exists a sequence hn in Asa such that δ|An

= ad(ihn)|An
(see [8], Ex-

ample 3.2.25). If δ = δα is a generator and
⋃

n An is a core for δα then the
assertion in Proposition 3.1 follows with (hn) equal to this sequence since in
this case

⋃
n An ⊂ D . In the absence of the assumption on the existence of

hn, however, it does not in general follow from the generator property of δ

that
⋃

n An can be taken to be a core for δ or that hn exists (see again [20],
Theorem 1.1).

Proof of Proposition 3.1. Since α is approximately inner there exists a
sequence dn = d∗

n in Asa such that δα is the graph limit of ad(idn). This means
that for each x in D(δα) there exists a sequence (xn) of xn ∈ A such that

(5) lim
n→∞ ‖xn − x‖ + lim

n→∞ ‖ ad(idn)(xn) − δα(x)‖ = 0

This condition is actually equivalent to each of the equivalent conditions (1)
and (2) in the introduction (see [8], Theorem 3.1.28).

To prove the proposition we next choose an increasing sequence Bn of
finite dimensional sub-algebras by Sakai’s result as in the preceding remark
such that

⋃
n Bn ⊂ D(δα). Then we are going to modify dn to hn by passing

to a subsequence of dn such that the conclusion of Proposition 3.1 is valid.
First, fix an n and let X be a set of matrix units for Bn (see e.g. [12],

Chapter III). Now for each matrix unit x in Bn there exists, as remarked above,
a sequence xm in A such that

(6) lim
m→∞ ‖xm − x‖ + lim

m→∞ ‖ ad(idm)(xm) − δα(x)‖ = 0

Using Glimm’s technique we may furthermore use spectral theory to modify
the approximants xm for each fixed m such that the set of these approximants
form a set of matrix units isomorphic to X for each m. This is possible if we
go so far out in the sequences indexed by m that the approximation to x is
good enough (see, for example, [12], Section III.3, or [10], Section 2). If Xm

denotes the corresponding sequences of matrix units, we then have

(7) lim
m→∞ ‖Xm − X‖ = 0

However by careful scrutiny of the proof in [12] or [10] one may choose the
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approximants to X such that also

(8) lim
m→∞ ‖ ad(idm)(Xm) − δα(X)‖ = 0.

Hence

(9) lim
m→∞ ‖Xm − X‖ + lim

m→∞ ‖ ad(idm)(Xm) − δα(X)‖ = 0

(The norms in these relations are defined by taking the maximum of the finite
number of norms obtained by replacing the sets X by the individual matrix
elements x in X.)

The reason for the convergence of the derivatives is that the matrix elements
are obtained by applying functional calculus by smooth functions in D(δ). We
use [8], Theorem 3.2.32, (or alternatively [23], or [2] and [3]) to deduce that
if δ is any closed derivation and x = x∗ is in D(δ) then f (x) is in D(δ). Since
f (x) only depends on the definition of f on Spec(x) we may assume

|||f ||| = (2π)−1/2
∫

R
dp |f̂ (p)||p| < ∞

where f̂ is the Fourier transform of f . Then

f (x) = (2π)−1/2
∫

R
dp f̂ (p)eipx

and

δ(f (x)) = i(2π)−1/2
∫

R
dp f̂ (p)p

∫ 1

0
dt eitpxδ(x)ei(1−t)px.

Hence

(10) ‖δ(f (x))‖ ≤ |||f ||| ‖δ(x)‖.

We need the following lemma:

Lemma 3.3. Let δn be a sequence of closed derivations on a C∗-algebra A

with graph limit δ and (xn) a sequence of elements of A with limn→∞ ‖xn −
x‖+‖δn(xn)−δ(x)‖ = 0. Further let fn be a sequence of functions converging
to f with respect to the semi-norm ||| · |||.

It follows that

(11) lim
n→∞ ‖δn(fn(xn)) − δ(f (x))‖ = 0
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Proof. We have

δn(fn(xn)) − δ(f (x))

= i(2π)−1/2
∫

R
dp f̂n(p)p

∫ 1

0
dt eitpxδn(xn)e

i(1−t)px

− i(2π)−1/2
∫

R
dp f̂ (p)p

∫ 1

0
dt eitpxδ(x)ei(1−t)px

= i(2π)−1/2
∫

R
dp (f̂n(p) − f̂ (p))p

∫ 1

0
dt eitpxδn(xn)e

i(1−t)px

+ i(2π)−1/2
∫

R
dp f̂ (p)p

∫ 1

0
dt eitpx(δn(xn) − δ(x))ei(1−t)px

from which one deduces that

(12) ‖δn(fn(xn))−δ(f (x))‖ ≤ |||fn −f ||| ‖δn(xn)‖+|||f ||| ‖δn(xn)−δ(x)‖.
The conclusion of the lemma follows immediately.

Remark 3.4. The semi-norm |||f ||| occurring in (10) and (12) can be es-
timated by noting that |p|(1 + p2)1/2 ≤ 2 (1 + p4)1/2 and using the Cauchy-
Schwarz inequality. Hence

(13)
|||f |||2 ≤ 4

(∫
R
dp (1 + p2)−1

) (∫
R
dp |f̂ (p)|2(1 + p4)

)

= 2π (‖f ′′‖2
2 + ‖f ‖2

2).

It then follows that the space of functions with |||f ||| < ∞ contains the Sobolev
space W 2,2(R). But these estimates are not optimal (see [2], [3], [1], [4]).

Proof of Proposition 3.1 continued. We fix a set Xn of matrix units
for Bn and suppose that we have obtained a sequence (Xn

m) of matrix units for
each Xn by the arguments illustrated above. We then find a sequence (un,m) of
unitaries in A such that

(14) lim
m→∞ ‖un,m − 11‖ = 0

and

(15) un,mXnu∗
n,m = Xn

m

where we again interpret (15) as the set of relations obtained by replacing
X = Xn

m, Xn by each the matrix elements x in X. We can choose a subsequence
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(m(n)) such that ‖un,m(n) −11‖ < 1/n and ‖(ad(idm(n)) Ad un,m(n) −δ)|Bn‖ <

1/n. Then it follows that ‖δ̂n(x) − δ(x)‖ → 0 for all x ∈ ⋃
k Bk where

(16) δ̂n(x) = u∗
n,m(n) ad(idm(n))(un,m(n)xu∗

n,m(n))un,m(n),

and hence

(17) δ̂n = ad(iu∗
n,m(n)dm(n)un,m(n)).

Since ‖un,m(n) − 1‖ → 1, one concludes that δ̂n converges to δ in the graph
norm. This concludes the proof.

Remark 3.5. As we have already said after Proposition 3.1, if the increas-
ing family of finite dimensional sub-algebras constitute a core for δ, there is
nothing more to prove. So Proposition 3.1 only tells something new when the
increasing family is not a core, or D(δ) is not an AF Banach algebra in the
graph norm. We do not know in general whether we can choose approximating
inner derivations converging pointwise on a core for δ.

The method of constructing the modified sequence again goes back to
Glimm, and is expanded in Section II.3 in [12] and in Section 2 in [10].

Although Theorem 2.1 established under quite general conditions that the
convergence subspace D cannot contain the analytic elements of the flow α

the next example shows that there are many examples in which D contains an
α-invariant dense subspace of analytic elements. The following example is a
flow constructed on a one-dimensional lattice. In mathematical physics terms
A is the algebra of observables of a one-dimensional spin-1/2 system. Note
that we consider the one-dimensional case for simplicity. One can construct
similar examples on higher dimensional lattices by analogous arguments.

Example 3.6. Let A denote the UHF-algebra given by the C∗-closure of
the infinite tensor product

⊗
n∈Z M2 of copies of the 2 × 2-matrices M2.

The algebra A has a natural quasi-local structure. Let AI = ⊗
i∈I M2 denote

the family of local matrix algebras indexed by finite subsets I = {i1, . . . , in}
with im ∈ Z. Further let Aloc = ⋃

I AI . If σ denotes the shift automorphism on
A then Z acts on A as a group of shifts (space translations) n ∈ Z �→ σn = σn

which leaves Aloc invariant. In particular σn(AI ) = AI+n.
Next we construct a flow corresponding to a finite-range interaction between

the spins, i.e. an interaction which links close by points of Z. Fix � = �∗ ∈ AJ

for some finite subset J . Define HI = H ∗
I by

HI =
∑
m∈I

σm(�).
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Then introduce the corresponding inner ∗-derivations δI by

δI (x) = ad iHI (x)

for all x ∈ A. Further define the ∗-derivation δ by D(δ) = Aloc and

δ(x) = lim
I

ad iHI (x)

for x ∈ Aloc where the limit is over an increasing family of I whose union is Z.
(For each x ∈ Aloc there is an I ∈ Z such that δ(x) = ad iHI (x) by locality.)

There is a flow α on A given by

αt(x) = lim
I

Ad eitHI (x).

The norm limit exists by the estimates of [9], Theorem 6.2.4. Moreover the
generator δα of the flow is the norm closure δ of the derivation δ. Then δα is
the graph limit of the derivations δI (see [8], Theorem 3.1.28). Therefore if we
define

D = {
x ∈ D(δα) : lim

I
δI (x) = δα(x)

}
one has

Aloc = D(δ) ⊆ D ⊆ D(δα).

Finally define A as the ∗-algebra generated by {αt(Aloc) : t ∈ R}. Then we
argue that A ⊆ D . To this end it suffices to show that if x ∈ AJ for some J

and t ∈ R then limI ad HI(αt (x)) exists. But if I1 ⊂ I2 then

ad HI1(αt (x)) − ad HI2(αt (x)) =
∑

p∈I2\I1

[σp(�), αt (x)].

Then, as a consequence of [9], Proposition 6.2.9, there are a, b, c > 0 such
that

‖[σp(�), αt (x)]‖ ≤ a ‖x‖ e−bp+ct

uniformly for p ∈ Z and t ∈ R. Therefore

‖ ad HI1(αt (x)) − ad HI2(αt (x))‖ ≤ a ‖x‖ ect
∑
p∈I c

1

e−bp

for all t ∈ R. It follows immediately that the limit exists and this suffices to
establish the inclusion A ⊆ D .

One concludes that A is an α-invariant subspace of D(δα). Therefore it is
a core of δα . But it also follows from [9], Theorem 6.2.4, that each x ∈ A is
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an analytic element of δα . Thus D contains an α-invariant dense subalgebra of
analytic elements.

Since the flow α commutes with the group of translations by Z it follows
that the Connes’ spectrum R(α), which is a subgroup of R, must be Sp(α).
Therefore R(α) ∼= Z or R if α is non-trivial. Both cases can occur with a
suitable choice of �.

Although the latter conclusions rely on translation invariance one can con-
struct similar examples on the half line and the same conclusions are valid.
In particular one can add a bounded ∗-derivation δP to δα in such a way that
α factors into a product of flows α(±) on the left and right half lattice Z±,
respectively. Then the algebra A + generated by {α(+)

t (AI ) : t ∈ R, I ⊂ Z+}
is contained in the set D(α(+)) corresponding to α(+) and consists of analytic
elements for the latter flow. Finally R(α(+)) = R(α) because α(−) ⊗α(+) arises
by a bounded perturbation of the generator of α.

The next example shows that D can be much larger but then the Connes’
spectrum is equal to {0}.

Example 3.7. Let A denote the UHF-algebra given by the C∗-closure
of the infinite tensor product

⊗
n≥1 M2 of copies of the 2 × 2-matrices M2,

AI = ⊗
i∈I M2 the local matrix algebras and Aloc = ⋃

I AI .
Now let (λi)i≥1 be a sequence of positive numbers and define hi ∈ A{i} by

hi =
(

λi 0
0 0

)
.

Set Hn = ∑n
i=1 hi and δn(x) = ad iHn(x) for x ∈ A. Then define α on A by

αt(x) = lim
I

Ad eitHI (x).

Set
D = {

x ∈ D(δα) : lim
I

δI (x) = δα(x)
}
.

We next argue that if the λi are chosen to increase sufficiently fast as i → ∞
then D(δ2

α) ⊂ D but in this case R(α) = {0}.
Let ai, a

∗
i ∈ A{i} be given by

ai =
(

0 1
0 0

)
and a∗

i =
(

0 0
1 0

)

and note that Hn = ∑n
i=1 λi a

∗
i ai . Set a(I ) = ⊗

i∈I ai and a∗(J ) = ⊗
j∈J a∗

j .
Let C2 be the diagonal matrices of M2 and C the C∗-subalgebra generated

by C2 at every point of N; C = ⊗
i∈N C2 ⊂ A = ⊗

i∈N M2. For a subset K of
N let CK = ⊗

i∈K C2.



approximately inner derivations 157

We define an action γ of G = ∏∞
n=1 T on A by

γz =
∞⊗

n=1

Ad

(
zn 0
0 1

)
.

Then the fixed point algebra of γ is C while a(I ) and a∗(J ) are eigen-
operators for finite subsets I, J : γz(a(I )) = ∏

n∈I zna(I ). The spectrum of
γ is

∐{−1, 0, 1} ⊂ Ĝ = ∐
n∈N Z, which we identify with S = {(I, J ) ∈

Pf (N) × Pf (N) | I ∩ J = ∅}, where Pf (N) is the set of finite subsets
of N and p ∈ ∐{−1, 0, 1} maps to (I, J ) with I = {n | pn = −1} and
J = {n | pn = 1}. Note that for each (I, J ) ∈ S the eigen-space is given by
Ca(I)a∗(J ) = CIc∩J ca(I )a∗(J ).

Then each x ∈ Aloc has a unique representation

x =
∑

(I,J )∈S

x(I ; J ) a∗(I )a(J )

with x(I ; J ) ∈ CIc∩J c , where the sum is finite. Let zI = ∏
n∈I zn and z̄J =∏

n∈J z̄n. Since

∫
G

zI z̄J γz(x) dz = x(I, J )a∗(I )a(J )

with dz is normalized Haar measure on G, one deduces that ‖x(I ; J )‖ ≤ ‖x‖.
Now x ∈ D(δ2

α) by locality,

(18) δα(x) = i
∑

(I,J )∈S

(λ(I ) − λ(J )) x(I ; J ) a∗(I )a(J )

where λ(I) = ∑
i∈I λi and

δ2
α(x) = −

∑
(I,J )∈S

(λ(I ) − λ(J ))2 x(I ; J ) a∗(I )a(J ).

In particular (λ(I ) − λ(J ))2 ‖x(I ; J )‖ ≤ ‖δ2
α(x)‖.

Next suppose λn ≥ 2 (λ1 + · · · + λn−1) + 6n for all n. If n = max(I ∪ J )

then
|λ(I) − λ(J )| ≥ λn − (λ1 + · · · + λn−1) ≥ 6n.
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Therefore 6n|λ(I) − λ(J )| ‖x(I ; J )‖ ≤ ‖δ2
α(x)‖ and

‖δα(x)‖ ≤
∑

(I,J )∈S

|λ(I) − λ(J )| ‖x(I ; J )‖ ≤
∑
n≥1

∑
max(I∪J )=n

6−n‖δ2
α(x)‖

≤
∑
n≥1

2−n‖δ2
α(x)‖ = ‖δ2

α(x)‖

where we have used
∑

max(I∪J )=n 1 < 3n. ButAloc is a core of δ2
α . The foregoing

estimates then establish that the representation (18) extends to all x ∈ D(δ2
α);

the infinite sum in (18) is absolutely convergent.
Then if k ≤ l one has Hl − Hk = ∑l

i=k+1 λi a
∗
i ai and so

(19) δl(x) − δk(x) = i
∑
I,J

(λk,l(I ) − λk,l(J )) x(I ; J ) a∗(I )a(J )

for all x ∈ D(δ2
α) with λk,l(I ) = λ(I ∩ {k + 1, . . . , l}). In particular the

summand is only non-zero if max(I ∪ J ) > k. But λk,l(I ) = λl(I ) − λk(I )

with λl(I ) = λ(I ∩ {1, . . . , l}). Now if n + 1 ∈ I ∪ J then

|λn+1(I ) − λn+1(J )| ≥ λn+1 − (λ1 + · · · + λn)

and |λn(I ) − λn(J )| ≤ λ1 + · · · + λn.

Hence

(20) |λn(I ) − λn(J )| ≤ |λn+1(I ) − λn+1(J )|.
But if n+ 1 �∈ I ∪ J then λn(I )−λn(J ) = λn+1(I )−λn+1(J ) so (20) is valid
for all n. Then by iteration

|λk(I ) − λk(J )| ≤ |λl(I ) − λl(J )| ≤ |λ(I) − λ(J )|.
Combining these observations one concludes from (19) that

‖δl(x) − δk(x)‖ ≤
∑

max(I∪J )>k

|λ(I) − λ(J )| ‖x(I ; J )‖ ≤ 2−k‖δ2
α(x)‖

for all x ∈ D(δ2
α). Therefore δl(x) → δα(x) as l → ∞ and D ⊇ D(δ2

α).
Note that in this example R(α) = {0} but δα is not bounded.
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