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ON BANACH IDEALS SATISFYING
c0(A (X, Y )) = A (X, c0(Y ))

J. M. DELGADO and C. PIÑEIRO

Abstract

We characterize Banach ideals [A , a] satisfying the equality c0(A (X, Y )) = A (X, c0(Y )) for all
Banach spaces X and Y . Among other results we have proved that K (the normed operator ideal
of all compact operators with the operator norm) is the only injective Banach ideal satisfying the
equality.

1. Introduction

Let X and Y be Banach spaces. If I is an arbitrary index set, we denote
by �∞(I, Y ) the Banach space of all bounded Y -valued functions defined on
I , endowed with the supremum norm

(‖f ‖ = sup{‖fi‖ : i ∈ I } for each
f = (fi)i∈I ∈ �∞(I, Y )

)
. By �∞

c (I, Y ) (respectively, c0(I, Y )) we mean
the subspace of �∞(I, Y ) consisting of the functions with relatively compact
range (respectively, converging to zero). As usual, we write �∞(Y ) (respect-
ively, c0(Y )) instead of �∞(N, Y ) (respectively, c0(N, Y )) and �∞(I ) instead
of �∞(I, R).

If L (X, Y ) is the space of bounded linear maps T : X −→ Y and M

is a bounded subset of L (X, Y ), we can consider the operator V : X −→
�∞(M, Y ) defined by V x = (T x)T ∈M . When the set M = (Tn) is a null
sequence for the strong operator topology (in short, SOT), the values of the
operator V lie in c0(Y ), so we can define U : X −→ c0(Y ) by Ux = (Tnx).

There are many areas in which it is useful to elucidate whether the operat-
ors U or V belong to a certain Banach operator ideal. For example, the weak
compactness of the operator U has turned out to be very helpful in the the-
ory of multilinear operators (see [1, proposition 1.6], [7, theorem 5] and [8,
theorem 3.5]); the well known Ryan’s lemma [5, p. 375] provides a charac-
terization in that case. Moreover, several authors have made use of the map V

when it acts as a completely continuous operator. For instance, G. Emmanuele
has obtained a characterization of Banach spaces not containing a copy of �1
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(see [2, theorem 2]) and T. Leavelle has deduced when a Banach space has the
Reciprocal Dunford-Pettis property (see [3]).

Let us recall that a subset M of K (X, Y ) (the space of all compact operators
from X into Y ) is collectively compact if the set {T x : ‖x‖ ≤ 1, T ∈ M} is
relatively compact. In [6], the notion of equicompactness for a subset M of
K (X, Y ) is introduced and it is proved that M ⊂ K (X, Y ) is equicompact (that
is, there exists a null sequence (x∗

n) in X∗ such that ‖T x‖ ≤ supn |〈x∗
n, x〉| for

all x ∈ X and all T ∈ M) iff the operator V is compact ([6, proposition 2.2]).
Since M is equicompact iff M∗ = {T ∗ : T ∈ M} is collectively compact
([6, p. 689]), we have been able to obtain the following result using Palmer’s
criteria for relatively compact subsets of K (X, Y ) ([4, theorem 2.2]):

Proposition 1.1. The following properties hold:

(1) If X and Y are Banach spaces and M ⊂ K (X, Y ) is a bounded set, then
M is relatively compact in K (X, Y ) if and only if the operator

V : x ∈ X �−→ (T x)T ∈M ∈ �∞
c (M, Y )

is well defined and compact.

(2) K (X, c0(Y )) = c0(K (X, Y )) (isometrically), for all Banach spaces X

and Y .

The aim of this paper is to study what happens when we replace the Banach
ideal [K , ‖·‖] by an arbitrary Banach ideal in proposition 1.1. Thus, we con-
sider the following definitions:

Definition 1.2. Let [A , a] be a Banach ideal. We say that [A , a] has the
property (P ) if, for all Banach spaces X and Y , the relatively compact subsets
of A (X, Y ) are those bounded subsets M for which the operator

V : x ∈ X �−→ (T x)T ∈M ∈ �∞
c (M, Y )

is well defined and belongs to A (X, �∞
c (M, Y )).

Definition 1.3. We say that [A , a] has the property (P0) if the equality

A (X, c0(Y )) = c0(A (X, Y ))

holds for all Banach spaces X and Y .

In section 2, we study a characterization of the property (P0). Section 3
is devoted to making clear the relationship between the properties (P0) and
(P ), as well as to describing arbitrary Banach ideals enjoying those properties.
We show that the injectivity of the ideal plays a crucial role in this theory. In
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fact, theorem 3.4 proves that, among the injective Banach ideals, [K , ‖·‖] is
the only one enjoying both properties (P ) and (P0). We conclude with some
remarks and open problems.

Our notation is standard. BX denotes the closed unit ball of X and X∗

its topological dual. For a natural number n, �∞
n (Y ) is the space (Y× (n)· · ·

×Y, ‖·‖∞). If {T1, . . . , Tn} is a finite subset of L (X, Y ), we denote by (Tk)
n
k=1

the operator from X into �∞
n (Y ) defined by (Tk)

n
k=1x = (T1x, . . . , Tnx) for all

x ∈ X. Given a set J ⊂ N, χJ is the characteristic function of J . Now, if U is
an operator defined as above, UJ is the operator from X into c0(Y ) such that
UJ x = (χJ (n) · Tnx)n and Un = U{1,...,n} for a fixed n ∈ N.

Let us recall that an operator ideal A is a subclass of L (the class of all
operators between arbitrary Banach spaces) such that, for each pair (X, Y ) of
Banach spaces, the component A (X, Y ) = A ∩ L (X, Y ) is a linear space
satisfying the following conditions:

(1) x∗ ⊗ y ∈ A (X, Y ) for all x∗ ∈ X∗ and y ∈ Y (x∗ ⊗ y: X −→ Y is
defined by (x∗ ⊗ y)(x) = 〈x∗, x〉y).

(2) If T ∈ L (X0, X), S ∈ A (X, Y ) and R ∈ L (Y, Y0) then R ◦ S ◦ T ∈
A (X0, Y0).

Let A be an operator ideal. The pair [A , a] is called a Banach (operator) ideal
if a is a map from A (X, Y ) into R+ and the following conditions are satisfied:

(1) a(x∗ ⊗ y) = ‖x∗‖ · ‖y‖ for all x∗ ∈ X∗ and y ∈ Y .

(2) If T ∈ L (X0, X), S ∈ A (X, Y ) and R ∈ L (Y, Y0) then

a(R ◦ S ◦ T ) ≤ ‖R‖ · a(S) · ‖T ‖.
(3) [A (X, Y ), a] is a Banach space.

A Banach ideal [A , a] is injective if a(i ◦ T ) = a(T ) whenever X, Y and Z

are Banach spaces, i ∈ L (Y, Z) is an isometry and T ∈ A (X, Y ). Familiar
examples of Banach ideals are [L , ‖·‖], the ideal of all bounded linear op-
erators, or [K , ‖·‖], the ideal of all compact operators (here, ‖·‖ denotes the
operator norm). These are examples of classical Banach ideals, that is, operator
ideals supplied with the operator norm. We also work with the Banach ideal
[N∞, ν∞] of the ∞-nuclear operators.

2. The property (P0)

We have studied the property (P0) considering separately the inclusions
c0(A (X, Y )) ⊂ A (X, c0(Y )) and A (X, c0(Y )) ⊂ c0(A (X, Y )). Then, we
say that the ideal [A , a] has the property (P0r ) if the inclusion c0(A (X, Y )) ⊂
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A (X, c0(Y )) holds for all Banach spaces X and Y . In the same way, [A , a]
has the property (P0l) if the inclusion A (X, c0(Y )) ⊂ c0(A (X, Y )) holds for
all Banach spaces X and Y .

Theorem 2.1. The Banach ideal [A , a] has the property (P0r ) if and only
if there exists a positive constant C such that

(1) a((Tk)
n
k=1) ≤ C · sup{a(Tk) : 1 ≤ k ≤ n},

regardless of the Banach spaces X and Y and the finite set {T1, . . . , Tn} ⊂
A (X, Y ).

Proof. Given a null sequence (Tn) in A (X, Y ), we prove that the operator
U : x ∈ X �−→ (Tnx) ∈ c0(Y ) belongs to A (X, c0(Y )). Notice that

a(Un − Um) = a
(
(Tk)

n
k=m+1

)

when n > m. Then, by hypothesis, we have

a(Un − Um) ≤ C · sup{a(Tk) : m < k ≤ n},
so (Un) is a Cauchy sequence in the Banach space [A (X, c0(Y )), a] and,
therefore, (Un) is a-convergent. As U = limn→∞ Un for the operator norm, it
must be U = a-limn→∞(Un) and then U ∈ A (X, c0(Y )).

Conversely, suppose that [A , a] is a Banach ideal satisfying the property
(P0r ). We have to find a positive constant C for which the inequality (1) holds,
regardless of the Banach spaces X and Y and the finite subset {T1, . . . , Tn} of
A (X, Y ). By contradiction, for each n ∈ N there exist Banach spaces Xn and
Yn and operators T n

1 , . . . , T n
p(n) ∈ A (Xn, Yn) such that sup{a(T n

k ) : 1 ≤ k ≤
p(n)} = 1 and

(2) a
(
(T n

k )
p(n)

k=1

) ≥ n2.

Put X = (∑∞
n=1 Xn

)
∞ and Y = (∑∞

n=1 Yn

)
∞. Given n, k ∈ N so that 1 ≤ k ≤

p(n), consider the operator Sn
k : X −→ Y defined by

Sn
k (xm) = n−1

(
χ{n}(m)T n

k xn

)
m

,

for all (xm) ∈ X. It is a standard argument to show that a(Sn
k ) = n−1a(T n

k ). So
the sequence (S1

1 , . . . , S
1
p(1), S

2
1 , . . . , S2

p(2), . . .) is null in [A (X, Y ), a] and, by
hypothesis, the operator

U : (xn) ∈ X

�−→ (S1
1(xm), . . . , S1

p(1)(xm), S2
1 (xm), . . . , S2

p(2)(xm), . . .) ∈ c0(Y )
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belongs to A (X, c0(Y )). In particular, we have

(3) a
(
(Sn

k )
p(n)

k=1

) ≤ a(U)

for all n ∈ N. Since a
(
(Sn

k )
p(n)

k=1

) = n−1a((T n
k )

p(n)

k=1 ), the inequalities (3) and (2)
lead to

a(U) ≥ n

for all n ∈ N, in contradiction to U ∈ A (X, c0(Y )).

The operator norm satisfies inequality (1). This yields the following result:

Corollary 2.2. Every classical Banach ideal has the property (P0r ).

Corollary 2.3. [N∞, ν∞] has the property (P0r ).

Proof. Given T1, . . . , TN ∈ N∞(X, Y ) and ε > 0, for each n ≤ N we can
choose operators An ∈ K (X, c0) and Bn ∈ L (c0, Y ) such that Tn = Bn ◦ An,
‖An‖ = 1 and ‖Bn‖ < ε+ν∞(Tn). Then, consider the operators A ∈ K (X, c0)

and B ∈ L (c0, �
∞
N (Y )) defined by

Ax = (〈A1x, e∗
1〉, . . . , 〈ANx, e∗

1〉, 〈A1x, e∗
2〉, . . . 〈ANx, e∗

2〉, . . .
)

B(αn)n = (
B1(α(n−1)·N+1)n, B2(α(n−1)·N+2)n, . . . , BN(αn·N)n

)

for all x ∈ X and α = (αn)n ∈ c0 (here, (e∗
k )k is the unit vector basis of �1).

Obviously, we have T = (Tn)
N
n=1 = B ◦ A and

ν∞(T ) ≤ ‖B‖ ≤ max
n≤N

‖Bn‖ < max
n≤N

(ν∞(Tn) + ε)

for all ε > 0.

Theorem 2.4. If [A , a] is a Banach ideal, the following statements are
equivalent:

(a) [A , a] has the property (P0l).

(b) For all Banach spaces X and Y , the sequence (U − Un)n is null in
A (X, c0(Y )) whenever U ∈ A (X, c0(Y )).

(c) For all Banach spaces X, Y and Z, all operators T ∈ A (X, Y ) and all
SOT-null sequences (Sn) in L (X, Y ), the sequence (Sn ◦ T ) is null in
A (X, Y ).

Proof. In order to prove (a) ⇒ (b), suppose, by contradiction, that U : x ∈
X �−→ (Tnx) ∈ c0(Y ) belongs to A (X, c0(Y )) but (U − Un)n is not a null
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sequence in A (X, c0(Y )). Then, there exists ε > 0 and finite sets Jn ⊂ N such
that max(Jn) < min(Jn+1) and

(4) a(UJn
) > ε

for all n ∈ N. For each finite set J ⊂ N, let us consider the operator φJ

from c0(Y ) into c0(Y ) defined by φJ (yk)k = (χJ (k) · yk)k and define φ =
(φJn

)n. Put Y0 = c0(Y ) and consider the operator Û : x ∈ X �−→ (UJn
x) ∈

c0(Y0). It follows from the equality Û = φ ◦ U that the operator Û belongs to
A (X, c0(Y0)). Hence, limn a(UJn

) = 0, which is in contradiction to (4).
Now, let us show (b) ⇒ (c). Given T ∈ A (X, Y ) and a SOT-null sequence

(Sn) in L (Y, Z), we consider the operator U : x ∈ X �−→ (Sn(T x))n ∈ c0(Z).
Since U ∈ A (X, c0(Z)), it follows that limn a(U − Un) = 0, so

lim
n

a(Sn ◦ T ) = lim
n

a(Un − Un−1) = 0.

Finally, suppose that the operator U : x ∈ X �−→ (Tn)n ∈ c0(Y ) belongs to
A (X, c0(Y )). For each n ∈ N, we consider Sn: (yk)k ∈ c0(Y ) �−→ yn ∈ Y . In
view of (c), we can ensure that

lim
n

a(Tn) = lim
n

(Sn ◦ U) = 0

and (a) is proved from (c).

Since [K , ‖·‖] enjoys the property (P0) (proposition 1.1) we have:

Corollary 2.5. If [A , a] is a classical normed ideal contained in [K , ‖·‖],
then [A , a] has the property (P0l).

Corollary 2.6. [N∞, ν∞] has the property (P0l).

Proof. Let us consider T ∈ N∞(X, Y ) and (Sn) a SOT-null sequence in
L (Y, Z). Take an ∞-nuclear representation T = ∑

m x∗
m ⊗ ym, where (ym) is

an unconditionally summable sequence. Then, Sn ◦ T = ∑
m x∗

m ⊗ Snym and

ν∞(Sn ◦ T ) ≤ (
sup
m

‖x∗
m‖) · sup

‖y∗‖≤1

∑
m

|〈y∗, Snym〉|.

Hence, it is easy to show that limn ν∞(Sn ◦ T ) = 0.

3. Relationship between the properties (P0) and (P )

We say that a Banach ideal [A , a] has the property (Pr ) if, for all Banach spaces
X and Y , the operator V : x ∈ X �−→ (T x)T ∈M ∈ �∞

c (M, Y ) is well defined
and belongs to A (X, �∞

c (M, Y )) whenever the set M ⊂ A (X, Y ) is relatively
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compact. We say that [A , a] enjoys the property (Pl) if, whenever the operator
V belongs to A (X, �∞

c (M, Y )), the set M is relatively compact regardless of
the Banach spaces X and Y . We have found the following relations:

Proposition 3.1. Let [A , a] be a Banach ideal. The following hold:

(a) If [A , a] has the property (Pl), then it has the property (P0l).

(b) If [A , a] has the property (P ), then it has the property (P0).

(c) If [A , a] has the property (P0r ), then it has the property (Pr ).

Proof. Suppose that the operator U : x ∈ X �−→ (Tnx) ∈ c0(Y ) belongs to
A (X, c0(Y )) and let us denote by i the inclusion map from c0(Y ) into �∞

c (Y ).
As i ◦ U ∈ A (X, �∞

c (Y )), the set {Tn : n ∈ N} is relatively compact in
A (X, Y ). Since limn ‖Tnx‖ = 0 for all x ∈ X, it follows that limn a(Tn) = 0.
This proves (a).

To show (b), suppose [A , a] enjoys the property (P ). In view of the state-
ment (a), we only need to prove that [A , a] has the property (P0r ). By con-
tradiction, consider Banach spaces X and Y and a null sequence (Tn) in
A (X, Y ) so that the operator U : x ∈ X −→ (Tnx) ∈ c0(Y ) does not be-
long to A (X, c0(Y )). An appeal to theorem 2.4 tells us that the sequence (Un)

is not convergent in A (X, c0(Y )). So, there exist ε > 0 and finite sets Jn ⊂ N
such that max(Jn) < min(Jn+1) and

(5) a(UJn
) > ε

for all n ∈ N. As in the proof of theorem 2.4, for each finite set J ⊂ N
we consider the operator φJ from �∞

c (Y ) into c0(Y ) and we put φ = (φJn
)n.

Since A has the property (Pr ), the operator V : x ∈ X �−→ (Tnx) ∈ �∞
c (Y )

belongs to A (X, �∞
c (Y )), so does φ ◦ V . Now, A has the property (Pl), so

the set {UJn
: n ∈ N} is relatively compact in A (X, c0(Y )). Take a convergent

subsequence (UJk(n)
)n for the norm of A (X, c0(Y )); as (UJn

)n is null for the
operator norm, we must have

lim
n

a(UJk(n)
) = 0,

and this is in contradiction to (5).
Finally, let M be a relatively compact subset of A (X, Y ) and let us

show that the operator V : x ∈ X �−→ (T x)T ∈M ∈ �∞
c (M, Y ) belongs to

A (X, �∞
c (M, Y )). Take a null sequence (Tn) in A (X, Y ) so that M ⊂ aco (Tn)

= {∑
n αnTn : (αn) ∈ B�1

}
. For each T ∈ M , choose (αT

n ) ∈ B�1 such that
T = ∑

n αT
n Tn and define the operators U : X −→ c0(Y ) and ĩ: c0(Y ) −→

�∞
c (M, Y ) by Ux = (Tnx) for all x ∈ X and ĩ(yn) = (∑

n αT
n yn

)
T ∈M

for
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all (yn) ∈ c0(Y ). Since A has the property (P0r ), the operator U belongs to
A (X, c0(Y )), so V = ĩ ◦ U belongs to A (X, �∞

c (M, Y ).

Proposition 3.2. Let [A , a] be a Banach ideal. The following hold:

(a) If [A , a] has the property (Pl), then A ⊂ K .

(b) If [A , a] has the property (P0r ), then N∞ ⊂ A .

Proof. Given T ∈ A (X, Y ), let us denote by jY : Y −→ �∞(BY ∗) the ca-
nonical isometry jY (y) = (〈y∗, y〉)y∗∈Y ∗ . The map jY ◦ T belongs to
A ((X, �∞(BY ∗)), so the property (Pl) tells us that the set {T ∗y∗ : y∗ ∈ BY ∗ }
is relatively compact in A (X, R) = X∗.

In order to show (b), first notice that an operatorT ∈ L (X, c0) is compact iff
limn ‖T ∗e∗

n‖ = 0; this yields the equality N∞(X, c0) = K (X, c0) regardless
of the Banach space X. Since the Banach ideal A enjoys the property (P0r ),
we have K (X, c0) ⊂ A (X, c0), so the statement (b) is proved when Y = c0.
Now, for an arbitrary Banach space Y , it suffices to have in mind that every
∞-nuclear operator admits a factorization T = A ◦ B, where A is a compact
map from X into c0 and B an operator from c0 into Y . Hence, the ideal property
produces the inclusion N∞(X, Y ) ⊂ A (X, Y ).

When the Banach ideal is injective, a further result can be deduced:

Proposition 3.3. Let [A , a] be an injective Banach ideal. The following
hold:

(a) If [A , a] has the property (Pr ), then it has the property (P0r ).

(b) If [A , a] has the property (P0l), then A ⊂ K .

(c) If [A , a] has the property (P0l), then it has the property (Pl).

Proof. (a) is evident since A is injective.
Given an operator T belonging to A (X, Y ), we show that T ∈ K (X, Y )

in two steps. First, suppose that the Banach space Y is separable. According
to theorem 2.4, if (y∗

n) is a weak∗ null sequence, then (y∗
n ◦ T ) = (T ∗y∗

n) is
null in A (X, R) = L (X, R) (isometrically). As BY ∗ is weak∗ sequentially
compact, it follows that T ∗ is compact. Now, for arbitrary Banach spaces X

and Y , consider a sequence (xn) in BX and put X0 = span {xn : n ∈ N} and
Y0 = span {T xn : n ∈ N}. If i denotes the inclusion map from X0 into X,
then T ◦ i belongs to A (X0, Y ). Since (T ◦ i)(X0) ⊂ Y0 and A is injective,
it follows that T ◦ i belongs to A (X0, Y0) viewed as an operator from X0 into
Y0. The first part of the proof allows to deduce that such an operator is compact
and, therefore, T is compact too.

Finally, let us prove (c). If M ⊂ A (X, Y ) is pointwise compact, we obtain
that M is compact in K (X, Y ) using (b) and the fact that the Banach ideal
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[K , ‖·‖] enjoys the property (Pl). It is easy to deduce that M is compact in
A (X, Y ) thanks to the injectivity of A .

In the following result, it is proved that [K , ‖·‖] is the only injective Banach
ideal satisfying the property (P ) (or (P0)).

Theorem 3.4. Let [A , a] be an injective Banach ideal. The following
statements are equivalent:

(a) [A , a] has the property (P ).

(b) [A , a] has the property (P0).

(c) A = K .

Proof. (a) ⇒ (b) occurs even in the absence of injectivity of the ideal
A (proposition 3.1). In order to show (b) ⇒ (c), we invoke propositions 3.2
and 3.3 to obtain N∞ ⊂ A ⊂ K . Now, (c) is deduced since the injective hull
of N∞ is K and the Banach ideals A and K are injective. Finally, (c) ⇒ (a)
is contained in proposition 1.1 [6].

4. Final notes and open problems

We do not know if the property (P0) implies the property (P ) for arbitrary
Banach ideals. Therefore the following question arises naturally:

Question 1. If [A , a] has the property (P0), has [A , a] necessarily the
property (P )?

[N∞, ν∞] is a noninjective Banach ideal having the property (P0), as we
have proved in section 2. Nevertheless, this ideal does not serve as a counter-
example to give a negative answer to question 1:

Proposition 4.1. [N∞, ν∞] has the property (P ).

Proof. According to corollary 2.3 and proposition 3.1, we only have to
prove that [N∞, ν∞] has the property (Pl). Let M be a bounded subset of
N∞(X, Y ) such that the operator

V : x ∈ X �−→ (T x)T ∈M ∈ �∞
c (M, Y )

belongs to N∞(X, Y ). Then V admits a representation V = ∑
m x∗

m ⊗ ŷm,
where (x∗

m) is a null sequence in X∗ and (ŷm) is an unconditionally summable
sequence in �∞

c (M, Y ). So, each operator T ∈ M admits the representation
T = ∑

m x∗
m ⊗ ŷm

T . Hence, the set H = {(ŷm
T )m : T ∈ M)} is unconditionally

summable uniformly for T ∈ M , that is to say, for every ε > 0 there exists
m0 ∈ N so that ∑

m≥m0

|〈y∗, ŷm
T 〉| < ε
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for all T ∈ M and all y∗ ∈ BY ∗ . Now, consider the continuous linear map

�: (ym) ∈ �1
u(Y ) �−→

∑
m

x∗
m ⊗ ym ∈ N∞(X, Y )

(here, �1
u(Y ) denotes the space of the unconditionally summable sequences in

Y ) and notice that M = �(H), so M must be relatively compact.

By proposition 3.2, if [A , a] has the property (P ), then we have N∞ ⊂ A ⊂
K . Both operators ideals N∞ and K enjoy that property, but the following
question has no answer yet:

Question 2. If [A , a] is a Banach ideal satisfying N∞ ⊂ A ⊂ K , does
A enjoy the property (P ) or (P0)?

Of course, the answer is affirmative for every classical Banach ideal con-
tained in that interval. Indeed, if [A , a] is another Banach ideal satisfying
N∞ ⊂ A ⊂ K and M ⊂ A (X, Y ) is such that the operator V : x ∈ X �−→
(T x)T ∈M ∈ �∞

c (M, Y ) belongs to A (X, �∞
c (M, Y )), then the operator

V̂ : x ∈ X �−→ (
jY (T x)

)
T ∈M

∈ �∞
c (M, �∞(BY ∗))

is compact, jY being the canonical isometry jY (y) = (〈y∗, y〉)y∗∈Y ∗ . Since K

has the property (P ), we deduce that the set jY (M) = {jY ◦ T : T ∈ M}
is relatively compact in K (X, �∞(BY ∗)). The injectivity of the Banach space
�∞(BY ∗) leads to K (X, �∞(BY ∗)) = A (X, �∞(BY ∗)). In other words, we
have shown that M ⊂ A (X, Y ) is relatively compact viewed as a subset of
A (X, �∞(BY ∗)).
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