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L2-HOMOLOGY FOR COMPACT
QUANTUM GROUPS

DAVID KYED

Abstract

A notion of L2-homology for compact quantum groups is introduced, generalizing the classical
notion for countable, discrete groups. If the compact quantum group in question has tracial Haar
state, it is possible to define its L2-Betti numbers and Novikov-Shubin invariants/capacities. It is
proved that these L2-Betti numbers vanish for the Gelfand dual of a compact Lie group and that
the zeroth Novikov-Shubin invariant equals the dimension of the underlying Lie group. Finally,
we relate our approach to the approach of A. Connes and D. Shlyakhtenko by proving that the
L2-Betti numbers of a compact quantum group, with tracial Haar state, are equal to the Connes-
Shlyakhtenko L2-Betti numbers of its Hopf ∗-algebra of matrix coefficients.

1. Introduction and definitions

The notion of L2-invariants was introduced by M. F. Atiyah in [1] in the
setting of a Riemannian manifold endowed with a free, proper and cocompact
action of a discrete, countable group. Later this notion was generalized by
J. Cheeger and M. Gromov in [4] and by W. Lück in [16]. The latter of these
generalizations makes it possible to defineL2-homology andL2-Betti numbers
of an arbitrary topological space equipped with an arbitrary action of a discrete,
countable group �. In particular, the L2-homology and L2-Betti numbers of
�, which are defined in [16] using the action of � on E�, make sense and can
be expressed in the language of homological algebra as

H(2)
n (�) = TorC�

n (L (�),C) and β(2)n (�) = dimL (�) H
(2)
n (�),

where dimL (�)(·) is W. Lück’s generalized Murray-von Neumann dimension
introduced in [16]. A detailed introduction to this dimension theory can be
found in [17].

Consider now a compact quantum group G = (A,�) in the sense of
S. L. Woronowicz; i.e. A is a unital C∗-algebra and �:A → A ⊗ A is a
unital, coassociative ∗-homomorphism satisfying a certain non-degeneracy
condition. We shall not elaborate further on the notion of compact quantum
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groups, but refer the reader to the survey articles [19] and [13] for more details.
Denote by h the Haar state on G and by (A0,�, S, ε) the Hopf ∗-algebra of
matrix coefficients arising from irreducible corepresentations of G. We recall
([19, Prop. 7.8]) that h is faithful on A0. Consider the GNS-representation
πh of A on L2(A, h) and denote by M the enveloping von Neumann algebra
πh(A)

′′. We then make the following definition:

Definition 1.1. The n-th L2-homology of the compact quantum group
G = (A,�) is defined as

H(2)
n (G) = TorA0

n (M,C).

Here C is considered a left A0-module via the counit ε and M is considered a
right A0-module via the natural inclusion πh:A0 → M. The groups H(2)

n (G)
have a natural left M-module structure and when the Haar state h is tracial we
may therefore define the n-th L2-Betti number of G as

β(2)n (G) = dimM H(2)
n (G),

where dimM(·) is W. Lück’s extended dimension function arising from the
extension to M of the tracial Haar state h.

Similar to the algebraic extension of the notion of Murray-von Neumann
dimension, the classical notion of Novikov-Shubin invariants was transported
to an algebraic setting by W. Lück ([15]) using finitely presented modules,
and generalized to arbitrary modules by W. Lück, H. Reich and T. Schick
in [18]. This generalization was worked out using capacities which are es-
sentially inverses of Novikov-Shubin invariants (cf. [18, Section 2]). In par-
ticular, they defined the n-th capacity of a discrete countable group � as
cn(�) = c(H (2)

n (�)), the right-hand side being the capacity of the n-th L2-
homology of � considered as a left module over the group von Neumann
algebra L (�). Following this approach we make the following definition:

Definition 1.2. If h is tracial we define the n-th capacity of G as cn(G) =
c(H (2)

n (G)).

To justify Definition 1.1 and Definition 1.2 we prove the following:

Proposition 1.3. Let� be a countable discrete group and consider the com-
pact quantum group G = (C∗

red(�),�red) where �red is defined by �redλγ =
λγ ⊗ λγ and λ denotes the left regular representation of �. Then H(2)

n (G) =
H(2)
n (�) and in particular

β(2)n (G) = β(2)n (�) and cn(G) = cn(�),

for all n ∈ N0.
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Here, and in what follows, N0 denotes the set of non-negative integers.
Proof. Since the Haar state on G is the trace state τ(x) = 〈xδe |δe〉, the

GNS-action ofC∗
red(�) onL2(C∗

red(�), τ ) is naturally identified with the stand-
ard action of C∗

red(�) on �2(�). Note that each λγ is a one-dimensional (hence
irreducible) corepresentation of G and that these span a dense subspace in
L2(C∗

red(�), h) 	 �2(�). It now follows from the quantum Peter-Weyl The-
orem (cf. [13, Thm. 3.2.3]) that the Hopf ∗-algebra of matrix coefficients
coincides with λ(C�) and from this we see that the counit coincides with the
trivial representation of �. Thus

H(2)
n (G) = Tor

(C∗
red(�))0

n (L (�),C) = TorC�
n (L (�),C) = H(2)

n (�).

In the following sections we shall focus on computations of L2-invariants
for some concrete compact quantum groups. More precisely, the paper is or-
ganized as follows: In Section 2 we focus on the zeroth L2-Betti number
and capacity and prove that if the compact quantum group in question is the
Gelfand dual C(G) of a compact Lie group G with dim(G) ≥ 1, then the
zeroth L2-Betti number vanishes and the zeroth capacity equals the inverse of
dim(G). Section 3 is devoted to proving that also the higher L2-Betti numbers
of the abelian quantum group C(G) vanish in the case when G is a compact,
connected Lie group. In Section 4 we prove that the L2-Betti numbers of a
compact quantum group G = (A,�) with tracial Haar state h are equal to
the Connes-Shlyakhtenko L2-Betti numbers (see [6]) of the tracial ∗-algebra
(A0, h).

Notation. All tensor products between C∗-algebras occurring in the fol-
lowing are assumed to be minimal/spatial. These will be denoted ⊗ while
tensor products in the category of Hilbert spaces and the category of von Neu-
mann algebras will be denoted ⊗̄. Algebraic tensor products will be denoted
�.

Acknowledgements. I wish to thank my supervisor Ryszard Nest for sug-
gesting that I study L2-invariants in the context of quantum groups, and for
the many discussions and ideas about the subject along the way. Moreover, I
thank the people at the Mathematics department in Göttingen for their hospit-
ality during the early summer of 2006 where parts of the work were carried
out.
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2. The zeroth L2-invariants

In this section we focus on the zeroth L2-Betti number and capacity. The
first aim is to prove that the zeroth L2-Betti number of a compact quantum
group, whose enveloping von Neumann algebra is a finite factor, vanishes.
After that we compute the zeroth L2-Betti number and capacity for Gelfand
duals of compact Lie groups and finally we study the L2-invariants of finite
dimensional quantum groups.

2.1. The factor case

In this subsection we investigate the case when the enveloping von Neumann
algebra is a finite factor. First a small observation.

Observation 2.1. Let M be a von Neumann algebra and let A0 be a
strongly dense ∗-subalgebra of M. Let J0 be a two-sided ideal in A0 and
denote by J the left ideal in M generated by J0. Then the strong operator
closure J̄ is a two-sided ideal in M. Clearly J̄ is a left ideal and because A0

is dense in M we get that xm ∈ J̄ whenever x ∈ J and m ∈ M. From this it
follows that J̄ is also a right ideal in M.

The following proposition should be compared to [6, Cor. 2.8].

Proposition 2.2. Let G = (A,�) be a compact quantum group with
tracial Haar state h. Denote by πh the GNS-representation of A on L2(A, h)

and assume that M = πh(A0)
′′ is a factor. If A �= C then β(2)0 (G) = 0.

Proof. First note that

H
(2)
0 (G) = TorA0

0 (M,C) 	 M �
A0

C 	 M/J,

where J is the left ideal in M generated by πh(ker(ε)). Since the counit
ε:A0 → C is a ∗-homomorphism its kernel is a two-sided ideal in A0, and by
Observation 2.1 we conclude that the strong closure J̄ is a two-sided ideal in
M. Since A �= C the kernel of ε is non-trivial and hence J̄ is nontrivial. Any
finite factor is simple ([10, Cor. 6.8.4]) and therefore J̄ = M. Now note that

J ⊆ J̄ ⊆ J
alg =

⋂
f∈HomM (M,M)

J⊆ker(f )

ker(f ).

Since M is finitely (singly) generated as an M-module, [16, Thm. 0.6] implies
that dimM(J ) = dimM(J̄

alg) and thus

dimM(J ) = dimM(J̄ ) = dimM(M) = 1.
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Additivity of the dimension function ([16, Thm. 0.6]) now yields the desired
conclusion.

Denote by Ao(n) the free orthogonal quantum group. The underlying C∗-
algebra A is the universal, unital C∗-algebra generated by n2 elements {uij |
1 ≤ i, j ≤ n} subject to the relations making the matrix (uij ) orthogonal. The
comultiplication is defined by

�(uij ) =
n∑
k=1

uik ⊗ ukj

and the antipode S:A0 → A0 by S(uij ) = uji . These quantum groups were
discovered by S. Wang in [24] and studied further by T. Banica in [2]. See also
[3] and [22].

Corollary 2.3. For n ≥ 3 we have β(2)0 (Ao(n)) = 0.

Proof. Denote by (uij ) the fundamental corepresentation of Ao(n). Since
S(uij ) = uji we have S2 = idA0 and therefore the Haar state h is tracial ([11,
p. 424]). By [22, Thm. 7.1] the enveloping von Neumann algebra πh(A0)

′′ is
a II1-factor and Proposition 2.2 applies.

2.2. The commutative case

Next we want to investigate the commutative quantum groups. Consider a
compact group G and the associated abelian, compact quantum group G =
(C(G),�c). Recall that the comultiplication �c:C(G) → C(G) ⊗ C(G) =
C(G×G) is defined by

�c(f )(s, t) = f (st),

and that the Haar state and counit are given, respectively, by integration against
the Haar probability measure and by evaluation at the identity. In the case
when G is a connected abelian Lie group then G is isomorphic to Tm for
some m ∈ N ([12, Cor. 1.103]) and therefore the Pontryagin dual group is
Zm. Moreover, the Fourier transform is an isomorphism of quantum groups
between G = (C(Tm),�c) and (C∗

red(Z
m),�red). In particular we have, by

Proposition 1.3, that β(2)0 (G) = β
(2)
0 (Zm) = 0 and

c0(G) = c0(Zm) = 1

m
= 1

dim(G)
,

where the second equality follows from [18, Thm. 3.7]. This motivates the
following result.
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Theorem 2.4. Let G be a compact Lie group with dim(G) ≥ 1 and Haar
probability measure μ. Denote by G the corresponding compact quantum
group (C(G),�c). Then H(2)

0 (G) is a finitely presented and zero-dimensional
L∞(G,μ)-module, in particular β(2)0 (G) = 0, and

c0(G) = 1

dim(G)
.

Here dim(G) is the dimension of G considered as a real manifold.

For the proof we will need a couple of lemmas/observations probably well
known to most readers. The first one is a purely measure theoretic result.

Lemma 2.5. Let (X,μ) be measure space and consider [f1], . . . , [fn] ∈
L∞(X,R). If we denote by f the function

X � x �−→
√
f1(x)2 + · · · + fn(x)2 ∈ R,

then the ideal 〈[f1], . . . , [fn]〉 in L∞(X,C) generated by the [fi]’s is equal to
the ideal 〈[f ]〉 generated by [f ].

Here, and in the sequel, [g] denotes the class inL∞(X,C)of a given function
g.

Proof. Consider the real-valued representatives f1, . . . , fn. PutNi = {x ∈
X | fi(x) = 0} and N = ∩iNi . Note that N is exactly the set of zeros for f .

“⊆” Let i ∈ {1, . . . , n} be given. We seek [T ] ∈ L∞(X,C) such that
[fi] = [T ][f ]. The set N may be disregarded since fi is zero here. Outside of
N we may write

fi(x) = fi(x)

f (x)
f (x),

and we have
∣∣ fi (x)
f (x)

∣∣ =
√

fi (x)2∑
j fj (x)

2 ≤ 1. The function

T (x) =
⎧⎨
⎩

0 if x ∈ N ;

fi(x)

f (x)
if x ∈ X \N ,

therefore defines a class [T ] in L∞(X,C) with the required properties.

“⊇” We must find [T1], . . . , [Tn] ∈ L∞(X,C) such that

(1) f (x) = T1(x)f1(x)+ · · · + Tn(x)fn(x) for μ-almost all x ∈ X.
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For any choice of T1, . . . , Tn both left- and right-hand side of (1) is zero when
x ∈ N , and it is therefore sufficient to define T1, . . . , Tn outside of N . Choose
a disjoint measurable partition of X \N into n sets A1, . . . , An such that

|fk(x)| = max
i

|fi(x)| > 0 when x ∈ Ak.

Then 1 − χ
N

= ∑n
i=1 χAi and for x /∈ N we therefore have

f (x) =
n∑
i=1

χAi (x)f (x) =
n∑
i=1

(
χAi (x)

f (x)

fi(x)

)
fi(x),

and ∣∣∣∣χAi (x) f (x)fi(x)

∣∣∣∣ = χAi (x)

√∑
j fj (x)

2

fi(x)2
≤ √

n.

Hence the functions T1, . . . , Tn defined by

Ti(x) =
⎧⎨
⎩

0 if x ∈ N ;

χAi (x)
f (x)

fi(x)
if x ∈ X \N ,

determines classes [T1], . . . , [Tn] in L∞(X,C) with the required properties.

Observation 2.6. Every compact Lie groupGhas a faithful representation
in GLn(C) for some n ∈ N and for such a representation π it holds that the
algebra of all matrix coefficientsC(G)0 is generated by the real and imaginary
parts of the matrix coefficients of π . The existence of a faithful representation
π follows from [12, Cor. 4.22]. Denote by πkl its complex matrix coefficients.
The fact that C(G)0 is generated by the set

{Re(πkl), Im(πkl) | 1 ≤ k, l ≤ n}

is the content of [5, VI, Prop. 3].

Observation 2.7. Let A be a unital C-algebra generated by elements
x1, . . . , xn. If ε:A → C is a unital algebra homomorphism then ker(ε) is the
two-sided ideal generated by the elements x1 − ε(x1), . . . , xn − ε(xn). This
essentially follows from the formula

ab − ε(ab) = (a − ε(a))b + ε(a)(b − ε(b))
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Observation 2.8. Denote by ��n(C) = Mn(C) the Lie algebra of GLn(C)
and by exp the exponential function

��n(C) � X �−→
∞∑
k=0

Xk

k!
∈ GLn(C),

and consider the map f : Mn(C) → Mn(C) given by f (X) = exp(X)− 1. For
any norm ‖·‖ on Mn(C) there exist r, R > 0 and λ0 ∈ ]0, 1

2 ] such that the
following holds: If X ∈ Mn(C) has ‖X‖∞ ≤ 1

2 then for all λ ∈ [0, λ0] we
have

• ‖X‖ ≤ λ ⇒ ‖f (X)‖ ≤ Rλ

• ‖f (X)‖ ≤ λ ⇒ ‖X‖ ≤ rλ

In the case when the norm in question is the operator norm ‖·‖∞ this is proven,
with λ0 = 1

2 and R = r = 2, by considering the Taylor expansion around 0
for the scalar versions (i.e. n = 1) of f and f −1. Since all norms on finite
dimensional vector spaces are equivalent, the general statement follows from
this.

We are now ready to give the proof of Theorem 2.4.
Proof of Theorem 2.4. By Observation 2.6, we may assume that G

is contained in GLn(C) so that each g ∈ G can be written as g = (xkl(g) +
iykl(g))kl ∈ GLn(C). Again by Observation 2.6, we have thatA0 ⊆ A = C(G)

is given by
A0 = AlgC(xkl, ykl | 1 ≤ k, l ≤ n),

where xkl and ykl are now considered as functions on G. Since ε:A0 → C is
given by evaluation at the identity have

ε(xkl) = ε(ykl) = 0 when k �= l,

ε(xkk) = ε(1) = 1,

ε(ykk) = 0.

From Observation 2.7 we now get

ker(ε) = 〈xkl, ykl, xkk − 1, ykk | 1 ≤ k, l ≤ n, k �= l〉 ⊆ A0

Thus

H
(2)
0 (G) = TorA0

0 (L
∞(G),C) 	 L∞(G)�

A0

C 	 L∞(G)/〈ker(ε)〉,

where 〈ker(ε)〉 is the ideal in L∞(G) generated by ker(ε) ⊆ A0. That is, the
ideal 〈xkl, ykl, 1 − xkk, ykk | 1 ≤ k, l ≤ n, k �= l〉 ⊆ L∞(G),
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which by Lemma 2.5 is the principal ideal generated by the (class of the)
function

f (g) =
√∑

k,l

(xkl(g)− δkl)2 + ykl(g)2

Note that the zero-set for f consists only of the identity 1 ∈ G and is therefore
a null-set with respect to the Haar measure. Hence we have a short exact
sequence

(2) 0 −→ L∞(G)
·f−→ L∞(G) −→ H

(2)
0 (G) −→ 0.

By additivity of the dimension function ([16, Thm. 0.6]), this means that
β
(2)
0 (G) = 0. Moreover, the short exact sequence (2) is a finite presentation of
H
(2)
0 (G) and hence this module has a Novikov-Shubin invariant α(H(2)

0 (G))
(in the sense of [15, Section 3]) which can be computed using the spectral
density function

λ �−→ h(χ
[0,λ2]

(f 2)) = μ({g ∈ G | f (g)2 ≤ λ2}).

Put Aλ = {g ∈ G | f (g)2 ≤ λ2}. Since the zero-set for f is a μ-null-set we
have

α(H
(2)
0 (G)) =

⎧⎨
⎩ lim inf

λ↘0

ln(μ(Aλ))

ln(λ)
if ∀λ > 0 : μ(Aλ) > 0;

∞+ otherwise.

Put m = dim(G) and choose a linear identification of the Lie algebra � of G
with Rm. By [25, Thm. 3.31], we can choose neighborhoodsV ⊆ � andU ⊆ G,
around 0 and 1 respectively, such that exp:V → U is a diffeomorphism. This
means that

ϕ = (exp |V )−1:U → V ⊆ � = Rm,

constitutes a chart around 1 ∈ G. Assume without loss of generality that

V ⊆ � ∩ {
x ∈ ��n(C) | ‖x‖∞ ≤ 1

2

}
.

For g ∈ G we have

g ∈ Aλ ⇔
∑
k,l

(xkl(g)−δkl)2 +ykl(g)2 ≤ λ2 ⇔ ‖1−g‖2
2 ≤ λ2 ⇔ g ∈ Bλ(1),

where Bλ(1) is the closed λ-ball in (R2n2
, ‖·‖2) with center 1. Thus Aλ =

G∩Bλ(1) and we can therefore choose λ0 ∈ ]0, 1
2 ] such that Aλ0 ⊆ U . Let ω
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denote the unique, positive, probability Haar volume form on G (see e.g. [12,
Thm. 8.21, 8.23] or [14, Cor. 15.7]) and let λ ∈ [0, λ0]. Then

μ(Aλ) =
∫
G

χAλ dμ =
∫
U

χAλω

=
∫
V

(χAλ ◦ ϕ−1)(x1, . . . , xm)F (x1, . . . , xm) dx1 · · · dxm

=
∫
ϕ(Aλ)

F (x1, . . . , xm) dx1 · · · dxm,

where F :V → R is the unique positive function describing ω in the local
coordinates (U, ϕ). By construction we have F > 0 on all of V and since
ϕ(Aλ0) is a compact set there exist C, c > 0 such that

c ≤ F(x1, . . . , xm) ≤ C for all (x1, . . . , xm) ∈ ϕ(Aλ0)

For any λ ∈ [0, λ0] we therefore have

(3) cνm(ϕ(Aλ)) ≤ μ(Aλ) ≤ Cνm(ϕ(Aλ)),

where νm denotes the Lebesgue measure in Rm = �. Since Aλ = G ∩ Bλ(1)
and ϕ is (exp |V )−1, it follows from Observation 2.8 that there exist d,D > 0
and λ1 ∈ ]0, λ0] such that for all λ ∈ [0, λ1]

Bdλ(0) ∩ V ⊆ ϕ(Aλ) ⊆ BDλ(0) ∩ V.
Hence there exist d ′,D′ > 0 such that for all λ ∈ [0, λ1]

(4) d ′λm ≤ νm(ϕ(Aλ)) ≤ D′λm.

From (3) and (4) we see that μ(Aλ) > 0 for λ ∈]0, λ1] and since

lim
λ↘0

ln(d ′λm)
ln(λ)

= lim
λ↘0

ln(D′λm)
ln(λ)

= m,

we also conclude that

α(H
(2)
0 (G)) = lim inf

λ↘0

ln(μ(Aλ))

ln(λ)
= m = dim(G).

By definition ([18, Def. 2.2]), the capacity of a finitely presented zero-dimen-
sional module is the inverse of its Novikov-Shubin invariant and thus

c0(G) = c(H
(2)
0 (G)) = 1

dim(G)
.
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2.3. The finite dimensional case

In Theorem 2.4 above we only considered compact Lie groups of positive
dimension. What is left is the case when G is finite. When G is finite the
algebra C(G) is finite dimensional and we have C(G)0 = C(G) = L∞(G),
which implies vanishing of H(2)

n (C(G),�c) for n ≥ 1. For n = 0 we get

H
(2)
0 (C(G),�c) = C(G) �

C(G)
C 	 C(G)δe.

This proves that H(2)
0 (C(G),�c) is a finitely generated projective C(G)-

module and hence

β
(2)
0 (C(G),�c) = h(δe) =

∫
G

δe(g) dμ(g) = 1

|G| .

Projectivity of H(2)
0 (C(G),�c) implies (cf. [18]) that c0(C(G),�c) = 0−.

This argument generalizes in the following way.

Proposition 2.9. Let G = (A,�) be a quantum group and assume that A
has finite linear dimension N . Then

β
(2)
0 (G) = 1

N
,

and β(2)n (G) = 0 for all n ≥ 1. Moreover, cn(G) = 0− for all n ∈ N0.

Proof. We first note that for a finite dimensional (hence compact) quantum
group the Haar state is automatically tracial ([23, Thm. 2.2]), so that the nu-
merical L2-invariants make sense. The fact that the higher L2-Betti numbers
vanish is a trivial consequence of the fact thatA is finite dimensional and there-
fore equal to both A0 and its enveloping von Neumann algebra. To compute
the zeroth L2-Betti number we compute the zeroth L2-homology as

H
(2)
0 (G) = TorA0 (A,C) 	 A�

A
C = Ae,

where e is the projection inA projecting onto the C-summandA/ ker(ε). Hence

β
(2)
0 (G) = dimA Ae = h(e) = 1

N
,

where the last equality follows, for instance, from [26, A.2].
Each finite dimensional C∗-algebra is a semisimple ring and therefore all

modules over it are projective. Hence all capacities of finite dimensional com-
pact quantum groups are 0−.
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3. A vanishing result in the commutative case

Throughout this section,G denotes a compact, connected Lie group of dimen-
sion m ≥ 1 and μ denotes the Haar probability measure on G. We will also
use the following notation:

G = (C(G),�c)

A = C(G)

A0 = The algebra of matrix coefficients

A = L∞(G,μ)
U = The algebra ofμ-measurable functions onG finite almost everywhere

We aim to prove that β(2)n (G) = 0 for all n ≥ 1. Before doing this, a few
comments on the objects defined above. We first note that U may be identified
with the algebra of operators affiliated with A by [9, Thm. 5.6.4]. In [20] it
is proved that there is a well defined dimension function dimU(·) for modules
over U satisfying properties similar to those enjoyed by dimM(·) (cf. [16,
Thm. 0.6]). Moreover, by [20, Thm. 3.1, Prop. 2.1] the functor U�A − is exact
and dimension-preserving from the category of A -modules to the category of
U-modules.

By [12, Cor. 4.22], we know thatG can be faithfully represented in GLn(C)
for some n ∈ N. Since GLn(C) is a real analytic group (in the sense of [5]),
this implies thatG has a unique analytic structure making any faithful repres-
entation π analytic in the following sense: For any g ∈ G and any function
ϕ analytic around π(g) the function ϕ ◦ π is analytic around g. This is the
content of [5] Chapter IV, §XIV Proposition 1 and §XIII Proposition 1. We
now choose some fixed faithful representation of G in GLn(C) which will be
notationally suppressed in the following. That is, we considerG as an analytic
subgroup of GLn(C). Denote by {xkl, ykl | 1 ≤ k, l ≤ n} the natural 2n2 real
functions on GLn(C) determining the analytic structure. As noted in Observa-
tion 2.6, the algebra A0 is generated by the restriction of the functions xkl and
ykl toG. Consider some polynomial in the variables xkl and ykl ; this is clearly
an analytic function on GLn(C) and it therefore defines an analytic function
on G by restriction. Thus every function in A0 is analytic.

The following result is probably well known to experts in Lie theory, but
we were unable to find a suitable reference.

Proposition 3.1. If f ∈ A0 is not constantly zero then

μ({g ∈ G | f (g) = 0}) = 0.

Hence f is invertible in U.
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For the proof we will need the following:

Observation 3.2. LetV ⊆ Rn be connected, convex and open and assume
that f :V → R is analytic. If f is not constantly zero on V then N = {x ∈
V | f (x) = 0} is a set of Lebesgue measure 0. This is well known in the case
n = 1, since in this caseN is at most countable. The general case now follows
from this by induction on n.

Proof of Proposition 3.1. Since f (x) = 0 iff Re(f (x)) = Im(f (x)) =
0 we may assume that f is real valued. CoverGwith finitely many precompact,
connected, analytic charts

(U1, ϕ1), . . . , (Ut , ϕt ),

such that ϕ(Ui) ⊆ Rm is convex for each i ∈ {1, . . . , t}. Using the local
coordinates and the Haar volume form on G, it is not hard to see that
(5)
μ({g ∈ Ui | f (g) = 0}) = 0 ⇔ νm({x ∈ ϕi(Ui) | (f ◦ ϕ−1

i )(x) = 0}) = 0.

Here νm denotes the Lebesgue measure in Rm. Since f ◦ ϕ−1
i is analytic it is

(by Observation 3.2) sufficient to prove that f is not identically zero on any
chart. Assume that f is constantly zero on some chart (Ui1 , ϕi1). We then aim
to show that f is zero on all of G, contradicting the assumption. If G = Ui1
there is nothing to prove. If not, there exists i2 �= i1 such that Ui1 ∩ Ui2 �= ∅,
since otherwise we could split G as the union

Ui1 ∪
(⋃
i �=i1

Ui

)

of to disjoint, non-empty, open sets, contradicting the fact thatG is connected.
Since the intersection Ui1 ∩ Ui2 is of positive measure and f is zero on it
we conclude, by Observation 3.2 and (5), that f is zero on all of Ui2 . If
G = Ui1 ∪ Ui2 we are done. If not, there exists i3 /∈ {i1, i2} such that

Ui1 ∩ Ui3 �= ∅ or Ui2 ∩ Ui3 �= ∅,
since otherwise G would be the union of two disjoint, non-empty, open sets.
In either case we conclude that f is zero on all of Ui3 . Continuing in this way
we conclude that f is zero on all ofG since there are only finitely many charts.

The main result in this section is the following, which should be compared
to [6, Thm. 5.1].

Theorem 3.3. Let Z be any A0-module. Then for all n ≥ 1 we have

dimA TorA0
n (A , Z) = 0.
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Proof. As noted in the beginning of this section, we have

dimA TorA0
n (A , Z) = dimU(U ⊗

A
TorA0

n (A , Z))

= dimU TorA0
n (U, Z).

We now aim to prove that TorA0
n (U, Z) = 0. For this we first prove the fol-

lowing claim:

Each finitely generated A0-submodule in U is contained in a finitely
generated free A0-submodule.

Let F be a non-trivial, finitely generated A0-submodule in U. We prove the
claim by (strong) induction on the minimal number n of generators. If n = 1
then F is generated by a single element ϕ �= 0, and since all elements in
A0 \ {0} are invertible in U (Proposition 3.1) the function ϕ constitutes a
basis for F . Hence F itself is free. Assume now that the result is true for
all submodules that can be generated by n elements, and assume that F is a
submodule with minimal number of generators equal to n+ 1. Choose such a
minimal system of generators ϕ1, . . . , ϕn+1. If these are linearly independent
overA0 there is nothing to prove. So assume that there exists a non-trivial tuple
(a1, . . . , an+1) ∈ An+1

0 such that

a1ϕ1 + · · · + an+1ϕn+1 = 0,

and assume, without loss of generality, that a1 �= 0. Define F1 to be the A0-
submodule in U generated by

a−1
1 ϕ2, . . . , a

−1
1 ϕn+1.

Then F ⊆ F1 and the minimal number of generators for F1 is a most n. By
the induction hypothesis, there exists a finitely generated free submodule F2

with F1 ⊆ F2 and in particular F ⊆ F2. This proves the claim.
Denote by (Fi)i∈I the system of all finitely generated freeA0-submodules in

U. By the above claim, this set is directed with respect to inclusion. Since any
module is the inductive limit of its finitely generated submodules, the claim
also implies that U, as an A0-module, is the inductive limit of the system
(Fi)i∈I . But, since each Fi is free (in particular flat) and since Tor commutes
with inductive limits we get

TorA0
n (U, Z) = lim→

i

TorA0
n (Fi, Z) = 0,

for all n ≥ 1.
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Combining the results of Theorem 3.3 and Theorem 2.4 we get the follow-
ing.

Corollary 3.4. If G is a compact, non-trivial, connected Lie group then

β(2)n (C(G),�c) = 0,

for all n ∈ N0.

4. Relation to the Connes-Shlyakhtenko approach

In [6], A. Connes and D. Shlyakhtenko introduced a notion of L2-homology
and L2-Betti numbers in the setting of tracial ∗-algebras. More precisely, if
A is a weakly dense ∗-subalgebra of a finite von Neumann algebra M with
faithful, normal, trace-state τ , they defined ([6, Def. 2.1])

H(2)
n (A) = TorA�Aop

n (M ⊗̄ Mop, A)

and
β(2)n (A, τ) = dimM⊗̄Mop H(2)

n (A).

This generalizes the notion ofL2-Betti numbers for groups in the sense that for
a discrete group � we have β(2)n (C�, τ) = β(2)n (�), as proven in [6, Prop. 2.3].
In this section we relate the notion of L2-Betti numbers for quantum groups to
the Connes-Shlyakhtenko approach. More precisely we prove the following:

Theorem 4.1. Let G = (A,�) be a compact quantum group with tracial
Haar state h and algebra of matrix coefficients A0. Then, for all n ∈ N0, we
have β(2)n (G) = β(2)n (A0, h), where the latter is the L2-Betti numbers of the
tracial ∗-algebra (A0, h) in the sense of [6].

For the proof of Theorem 4.1 we will need two small results. Denote by
S:A0 → A0 the antipode and by ε:A0 → C the counit. Recall ([11, p. 424])
that the trace property of h implies that S2 = idA0 and hence that S is a ∗-
anti-isomorphism of A0. Denote by M the enveloping von Neumann algebra
πh(A0)

′′. In the following we suppress the GNS-representation πh and put
H = L2(A, h). Denote by H̄ the conjugate Hilbert space, on which the
opposite algebra Aop

0 acts as aop : ξ̄ �→ a∗ξ .

Lemma 4.2. There exists a unitary V : H → H̄ such that the map

B(H ) ⊇ A0 � x ψ�−→ (Sx)op ∈ Aop
0 ⊆ B(H̄ )

takes the form ψ(x) = V xV ∗. In particular, ψ extends to a normal ∗-
isomorphism from M to Mop.
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Proof. Denote by η the inclusion A0 ⊆ H and note that since A0 is norm
dense in A the set η(A0) is dense in H . We now define the map V by

η(A0) � η(x) V�−→ η(Sx∗) ∈ η(A0).

It is easy to see that V is linear and

‖V η(x)‖2
2 = ‖η(Sx∗)‖2

2 = 〈η(Sx∗) |η(Sx∗)〉 = h((Sx∗)∗S(x∗))

= h(S(x∗x)) = h(x∗x) = ‖η(x)‖2
2,

and hence V maps the dense subspace η(A0) isometrically onto the dense
subspace η(A0). Thus, V extends to a unitary which will also be denoted V .
Clearly the adjoint of V is determined by

η(x)
V ∗�−→ η(Sx∗).

To see that V implements ψ we choose some a ∈ A0 and calculate:

η(x)
V ∗�−→ η(Sx∗) a�−→ η(aS(x∗))

V�−→ η(S(aS(x∗))∗) = η((Sa∗)x) = ψ(a)η(x).

Proposition 4.3. The map (id ⊗ψ) ◦ �:A0 → A0 � A
op
0 extends to a

trace-preserving ∗-homomorphism ϕ: M −→ M ⊗̄ Mop. Here ψ is the map
constructed in Lemma 4.2 and M⊗̄Mop is endowed with the natural trace-state
h⊗ hop.

Proof. The comultiplication is implemented by a multiplicative unitary
W ∈ B(H ⊗̄ H ) in the sense that

�(a) = W ∗(1 ⊗ a)W,

([13, p. 60]) and it therefore extends to a normal ∗-homomorphism, also de-
noted�, from M to M ⊗̄M. By Lemma 4.2, the mapψ : M → Mop is normal
and therefore ϕ: M → M ⊗̄Mop is well defined and normal. Since ϕ is normal
and A0 is ultra-weakly dense in M it suffices to see that ϕ is trace-preserving
on A0. So, let a ∈ A0 be given and write �a = ∑

i xi ⊗ yi ∈ A0 � A0. We



L2-homology for compact quantum groups 127

then have

(h⊗ hop)ϕ(a) = (h⊗ hop)(1 ⊗ ψ)

(∑
i

xi ⊗ yi

)

= (h⊗ hop)

(∑
i

xi ⊗ (Syi)
op

)

=
∑
i

h(xi)h(yi) (h ◦ S = h)

= h(h⊗ id)�(a)

= h(h(a)1A) (invariance of h)

= h(a).

We are now ready to give the proof of Theorem 4.1.
Proof of Theorem 4.1. By Proposition 4.3, we have that ϕ is a trace-

preserving ∗-homomorphism from M to M ⊗̄ Mop. Via ϕ we can therefore
consider M ⊗̄ Mop as a right M-module and by [21, Thm. 1.48, 3.18] we have
that the functor (M ⊗̄Mop)�M − is exact and dimension-preserving from the
category of M-modules to the category of M ⊗̄ Mop-modules. Hence

β(2)n (G) = dimM TorA0
n (M,C)

= dimM⊗̄Mop(M ⊗̄ Mop)�
M

TorA0
n (M,C)

= dimM⊗̄Mop TorA0
n (M ⊗̄ Mop,C)

By [8, Prop. 2.3] (see also [7]), we have an isomorphism of vector spaces

(6) TorA0
n (M ⊗̄ Mop,C) 	 Tor

A0�Aop
0

n (M ⊗̄ Mop, A0),

where on the right-hand side A0 � A
op
0 acts on A0 in the trivial way and on

M ⊗̄ Mop via the natural inclusion M ⊗̄ Mop ⊇ A0 �A
op
0 . This isomorphism

respects the natural left action of M ⊗̄ Mop, since on both sides of (6) only the
multiplication from the right on M ⊗̄ Mop is used to compute the Tor-groups.
The right-hand side of (6) is, by definition, equal to the L2-homology of A0 in
the sense of [6] and the statement follows.

Corollary 4.4. Let G be a non-trivial, compact, connected Lie group
with Haar measure μ and denote by A0 the algebra of matrix coefficients
arising from irreducible representations of G. Then, for all n ∈ N0, we have
β(2)n (A0, dμ) = 0.

Proof. This follows from Theorem 4.1 and Corollary 3.4 in conjunction.
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