
MATH. SCAND. 103 (2008), 97–110

COMPOSITION, NUMERICAL RANGE AND
ARON-BERNER EXTENSION

YUN SUNG CHOI, DOMINGO GARCÍA, SUNG GUEN KIM and MANUEL MAESTRE∗

Abstract

Given an entire mapping f ∈ Hb(X,X) of bounded type from a Banach space X into X, we
denote by f the Aron-Berner extension of f to the bidual X∗∗ of X. We show that g ◦ f = g ◦ f
for all f, g ∈ Hb(X,X) if X is symmetrically regular. We also give a counterexample on l1 such
that the equality does not hold. We prove that the closure of the numerical range of f is the same
as that of f̄ .

1. Introduction

Given complex Banach spaces X and Y , we denote by P(nX, Y ) the Banach
space of bounded n-homogeneous polynomials of X into Y . When Y is the
scalar field C, we denote this space by P(nX). We recall that a bounded
n-homogeneous polynomial P ∈ P(nX, Y ) is the restriction to the diag-
onal of a continuous n-linear mapping A from X into Y , that is, P(x) =
A(x, . . . , x), x ∈ X. Each such P has a unique associated bounded sym-
metric n-linear mapping A from X into Y . Each bounded n-homogeneous
polynomial P has a canonical extension P ∈ P(nX∗∗, Y ∗∗) to the bidual X∗∗
of X, which is called the Aron-Berner extension of P ([2]) (see the next sec-
tion for definitions). By [10, Theorem 3] (see also [2]), every entire mapping
f ∈ Hb(X, Y ) of bounded type extends in a canonical fashion to a mapping
f ∈ Hb(X

∗∗, Y ∗∗) in the following way. Given the Taylor series expansion of
f at 0, f = ∑∞

n=0 Pn, f is defined as f = ∑∞
n=0 Pn.

Our first interest in this paper is to verify if g ◦ f = g◦f for f ∈ Hb(X, Y )

and g ∈ Hb(Y, Z). We are motivated by the following two problems: We
consider the case X = Y = Z.

(1) The Aron-Berner extension is an isomorphism of the Fréchet space
Hb(X,X) into the Fréchet space Hb(X

∗∗, X∗∗) and both spaces are Fréchet
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algebras under composition. Is it true that the Aron-Berner extension is an
isomorphism into between Fréchet algebras ?

(2) Given g ∈ Hb(X,X) consider the composition operator ϕg : Hb(X,X)

→ Hb(X,X) defined by ϕg(f ) = g ◦ f . This composition operator ϕg is
extended to the composition operator ϕg : Hb(X

∗∗, X∗∗) → Hb(X
∗∗, X∗∗).

Does the following diagram commute?

Hb(X,X) −−−→ Hb(X
∗∗, X∗∗)

↑ϕg ↑ϕg
Hb(X,X) −−−→ Hb(X

∗∗, X∗∗)

The answer to our questions is, in general, negative. In Section 2 we show
the existence of a 2-homogeneous continuous polynomial P : �1 −→ �1 such
that P ◦ P �= P ◦ P .

Our second interest is to know if the Aron-Berner extension preserves nu-
merical ranges. Lumer in 1961 ([14]) gave a theory of numerical range for
bounded linear operators on Banach spaces. Harris in 1971 ([13]) developed a
theory of numerical range and numerical radius for a holomorphic mapping.
This theory has many applications. For example, he obtained an inequality
([13, Theorem 1]) which is a bound for each of the terms of the Taylor series
expansion of a holomorphic mapping in terms of the numerical radius of the
mapping. This inequality implies some results concerning the spectrum of
holomorphic mappings ([13, Proposition 5]), the rotundity at the identity of
the sup norm on holomorphic mappings ([12, Theorem 2]) and the extremal
case of the Schwarz lemma ([11, Theorem 1]). We prove that the closure of the
numerical range of f ∈ Hb(X,X) is the same as that of f ∈ Hb(X

∗∗, X∗∗),
which implies that the numerical radius of f is the same as that of f .

2. Aron-Berner extension and composition

A bounded n-homogeneous polynomial P ∈ P(nX, Y ) has an extension P ∈
P(nX∗∗, Y ∗∗) to the bidualX∗∗ ofX, which is called the Aron-Berner extension
of P . In fact, P is defined in the following way. Let A be the symmetric n-
linear mapping associated to P , A can be extended to an n-linear mapping A
fromX∗∗ into Y ∗∗ in such a way that for each fixed j , 1 ≤ j ≤ n, and for each
fixed x1, . . . , xj−1 ∈ X and zj+1, . . . , zm ∈ X∗∗, the linear mapping

z → A(x1, . . . , xj−1, z, zj+1, . . . , zn), z ∈ X∗∗,

is (w∗, w∗)-continuous. In other words, we define A(x1, . . . , xj−1, z, zj+1,

. . . , zn) to be the weak-star limit of the net (A(x1, . . . , xj−1, xα, zj+1, . . . , zn))

for a weak-star convergent net (xα) ⊂ X to z. By this (w∗, w∗)-continuity A



composition, numerical range and aron-berner extension 99

can be extended to an n-linear mapping A from X∗∗ into Y ∗∗, beginning with
the last variable and working backwards to the first. Then the restriction

P(z) = A(z, . . . , z)

is called the Aron-Berner extension of P . Given z ∈ X∗∗ andw ∈ Y ∗, we have

P(z)(w) = w ◦ P(z).
Actually this equality is often used as the definition of the vector-valued Aron-
Berner extension based upon the scalar-valued Aron-Berner extension. Davie
and Gamelin [10, Theorem 8] proved that ‖P ‖ = ‖P ‖. It is also worth re-
marking that A is not symmetric in general.

A complex Banach space X is called symmetrically regular if every con-
tinuous symmetric linear mapping T : X → X∗ is weakly compact. Recall
that T is symmetric means that T (x)(y) = T (y)(x) for all x, y ∈ X. If
X is symmetrically regular then, by [3, 8.3 Theorem], A is also symmetric
and separately weak-star continuous on X∗∗, for all symmetric n-linear form
A : X × · · · ×X → C.

Theorem 2.1. LetX, Y and Z be complex Banach spaces. If Y is symmet-
rically regular then Q ◦ (P0 + P1 + · · · + Pm) = Q ◦ (P0 + P1 + · · · + Pm)

for every Pi ∈ P(iX, Y ), for i = 0, 1, . . . , m, Q ∈ P(kY, Z) and m, k ≥ 1.

Proof. Let us denote P = P0 +P1 + . . .+Pm, and let B be the symmetric
k-linear form associated to Q. We put J = {

j = (j0, . . . , jm) | ∑m
h=0 jh =

k, 0 ≤ jh ≤ k, h = 0, 1, . . . , m
}

and |j| = ∑m
h=0 hjh. We have

Q ◦ P(x) =
∑

(j0,...,jm)∈J

(
k

j0, . . . , jm

)
B(P

j0
0 , P

j1
1 (x), . . . , P

jm
m (x)),

for all x ∈ X, where P jii means that the coordinate Pi is repeated ji-times.
The mapping Rj(x) = B(P

j0
0 , P

j1
1 (x), . . . , P

jm
m (x)) is a continuous |j|-homo-

geneous polynomial on X for all j ∈ J . Hence

Q ◦ P(z) =
∑

j=(j0,...,jm)∈J

(
k

j0, . . . , jm

)
Rj(z),

for all z ∈ X∗∗. On the other hand, as Y is symmetrically regular, B is sym-
metric and hence

Q ◦ P(z) =
∑

j=(j0,...,jm)∈J

(
k

j0, . . . , jm

)
Tj(z),
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where Tj(z) = B(P
j0
0 , P1

j1
(z), . . . , Pm

jm
(z)) for all z ∈ X∗∗. If we prove that

Rj = Tj for all j ∈ J with |j| > 0, then Q ◦ P = Q ◦ P .
Recall that the differential of a polynomial P ∈ P(kX, Y ) is the (k − 1)-

homogeneous polynomial D(P ) : X → L (X, Y ) given by D(P )(x)(z) =
kA(x, . . . , x, z), (x, z ∈ X), where A is the symmetric k-linear mapping
associated to P .

Given j ∈ J with |j| > 0, we have Rj(x) = Tj(x) for all x ∈ X, hence,
by [7, Proposition 1.1] (see also [15, Theorem 2]), Rj = Tj if and only if the
following two properties hold:

(a) For every x ∈ X, D(Tj)(x) : X∗∗ → Z∗∗ is (w∗, w∗)-continuous.

(b) For every z ∈ X∗∗ and every net (xμ) ⊂ X such that (xμ) converges
weak-star to z,D(Tj)(z)(xμ) converges weak-star toD(Tj)(z)(z) inZ∗∗.

We consider Cj : X∗∗ −→ Y ∗∗ the bounded |j|-linear mapping defined by

Cj(z1, . . . , z|j|)

= B
(
P
j0
0 , A1(z1), . . . , A1(zj1), A2(zj1+1, zj1+2), . . . , A2(zj1+2j2−1, zj1+2j2),

. . . , Am
(
z∑m−1

h=1 hjh+1, . . . , z
∑m−1

h=1 hjh+m
)
, . . . , Am

(
z|j|−m+1, . . . , z|j|

))
,

whereAh is the symmetrich-linear mapping associated toPh forh = 1, . . . , m.
Clearly Tj(z) = Cj(z, . . . , z) for all z ∈ X∗∗. If SCj denotes the symmetriza-
tion of Cj, we have that

SCj(z1, . . . , z|j|) = 1

|j|!
∑
σ∈S|j|

Cσ j(z1, . . . , z|j|),

where S|j| stands for the group of permutations of {1, 2, . . . , |j|} and

Cσ j(z1, . . . , z|j|) = Cj(zσ(1), . . . , zσ(|j|)).

With this notation

D(Tj)(z)(w) = |j|SCj(z, . . . , z, w) = 1

(|j| − 1)!

∑
σ∈S|j|

Cσ j(z, . . . , z, w),

for all z,w ∈ X∗∗.
We know that B is symmetric. On the other hand

Ah(z, . . . , z, x) = Ah(z, . . . , z, x, z) = · · · = Ah(x, z, . . . , z)
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for all z ∈ X∗∗, x ∈ X and h = 1, . . . , m. Thus, for fixed σ ∈ S|j| there exists
a unique h = 1, . . . , m such that

Cσ j(z, . . . , z, x) = B(P
j0
0 , P1

j1
(z), . . . , Ph−1

jh−1
(z),

Ah(x, z, . . . , z), Ph+1
jh+1
(z), . . . , Pm

jm
(z)).

The linear mapping Ah(−, z . . . , z) is weak-star continuous on X∗∗. Since
Y is symmetrically regular, B is weak-star separately continuous. Hence, if
(xμ) ⊂ X converges weak-star to z in X∗∗, then Cσ j(z, . . . , z, xμ) converges
weak-star to Tj(z). As an immediate consequence D(Tj)(z)(xμ) converges to
|j|Tj(z) = D(Tj)(z)(z) for all z ∈ X∗∗ and property (b) holds for every Tj.

Finally, given x ∈ X and w ∈ X∗∗, we have Ah(x, . . . , x, w) =
Ah(x, . . . , x, w, x) = · · · = Ah(w, x, . . . , x) and the linear mapping
Ah(x, . . . , x,−) is weak-star continuous on X∗∗ for all h = 1, . . . , m. As

Cσ j(x, . . . , x, w) = B(P
j0
0 , P

j1
1 (x), . . . , P

jh−1
h−1 (x),

Ah(x, . . . , x, w), P
jh+1
h+1 (x), . . . , P

jm
m (x)),

the proof that property (a) holds for every Tj can be obtained in a similar way.

Corollary 2.2. Suppose that Y is symmetrically regular. Then g ◦ f =
g ◦ f for f ∈ Hb(X, Y ) and g ∈ Hb(Y, Z).

Proof. We first note that the Taylor series
∑∞

n=0 Qn of g at 0 converges to
g in the Fréchet space Hb(Y, Z). Since the Aron-Berner extension induces a
Fréchet isomorphism from Hb(Y, Z) into Hb(Y

∗∗, Z∗∗), it is enough to con-
sider only the case where g = Q ∈ P(kY, Z), for all k ≥ 1.

ForR > 0 we consider on Hb(X, Y ) the norm ‖f ‖R = sup{|f (x)| : ‖x‖ ≤
R}. We fix Q ∈ P(kY, Z) and f ∈ Hb(X, Y ). There exists S > 0 such that
f (RBX) ⊂ SBY . Since Q is uniformly continuous on the ball (S + 1)BY and
sinceQ is also uniformly continuous on (S+ 1)BY ∗∗ , given ε > 0 we can find
0 < δ < 1 such that ‖Q(y1) −Q(y2)‖ < ε for all y1, y2 ∈ (S + 1)BY with
‖y1 − y2‖ < δ and ‖Q(v1) −Q(v2)‖ < ε for all v1, v2 ∈ (S + 1)BY ∗∗ with
‖v1 − v2‖ < δ.

The Taylor series expansion
∑∞

m=0 Pm of f at zero converges absolutely
and uniformly to f on any bounded set of X, and hence there exists m0 such
that

(1)

∥∥∥∥f −
m0∑
m=0

Pm

∥∥∥∥
R

< δ.
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Thus,
∥∥Q ◦ f −Q ◦ (∑m0

m=0 Pm
)∥∥
R
< ε. Hence, by [10, Theorem 8],

∥∥∥∥Q ◦ f −Q ◦
( m0∑
m=0

Pm

)∥∥∥∥
R

=
∥∥∥∥Q ◦ f −Q ◦

( m0∑
m=0

Pm

)∥∥∥∥
R

< ε,

which, by Theorem 2.1, implies

(2)

∥∥∥∥Q ◦ f −Q ◦
( m0∑
m=0

Pm

)∥∥∥∥
R

=
∥∥∥∥Q ◦ f −Q ◦

( m0∑
m=0

Pm

)∥∥∥∥
R

< ε

On the other hand, by (1) and [10, Theorem 8] we have
∥∥f − ∑m0

m=0 Pm
∥∥
R

=∥∥f − ∑m0
m=0 Pm

∥∥
R
< δ, from which

(3)

∥∥∥∥Q ◦ f −Q ◦
( m0∑
m=0

Pm

)∥∥∥∥
R

< ε.

Now the conclusion is clear from (2) and (3).

An f ∈ Hb(X, Y ) is called weakly compact if f (rBX) is a relatively weakly
compact set for all r > 0. Let

∑∞
m=0 Pm be the Taylor series expansion of

f at zero. An obvious modification of [4, Proposition 3.4] shows that f is
weakly compact if and only if Pm(BX) is a relatively weakly compact set for
all m = 1, 2, . . ..

Proposition 2.3. Let X, Y and Z be complex Banach spaces and m ≥ 1.
If Ph ∈ P(hX, Y ) is a weakly compact polynomial for all h = 1, . . . , m and
P = ∑m

h=0 Ph, then Q ◦ P = Q ◦ P for every Q ∈ P(kY, Z) and k ≥ 1.

Proof. Let B be the k-linear symmetric mapping associated to Q and
B be its Aron-Berner extension. An inspection of the proof of Theorem 2.1
shows that the symmetry of B on

(
span(P (X∗∗)

)k
is a sufficient condition for

the equality Q ◦ P = Q ◦ P . Since P(X∗∗) = P(X) ⊂ Y , the conclusion
follows.

It is well-known that the Banach space l1 is not symmetrically regular ([3]).
In the following we construct a 2-homogeneous polynomial P : l1 → l1 such
that P ◦ P �= P ◦ P .
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Example 2.4. Define the bounded symmetric bilinear mappings A1, A2 :
l1 × l1 → l1 by

A1(x, y) =
∞∑
n=1

[
(x1e1 + x3e3 + · · · + x2n−1e2n−1)y2n

+ (y1e1 + y3e3 + · · · + y2n−1e2n−1)x2n
]
,

A2(x, y) =
∞∑
n=1

[
(x1 + x3 + · · · + x2n−1)y2n

+ (y1 + y3 + · · · + y2n−1)x2n
]
e2n,

where x = (xi), y = (yi) ∈ l1 and {en} is the canonical basis of l1. Let
A = A1 + A2.

LetP be the 2-homogeneous polynomial from l1 to l1 associated toA. Then
P ◦ P �= P ◦ P .

Proof. We can see easily that

A1(e2p, e2q) = 0,

A2(e2p, e2q) = 0,

A1(e2p−1, e2q−1) = 0,

A2(e2p−1, e2q−1) = 0

for every positive integers p, q. Further, we obtain that

A1(e2p, e2q−1) =
{
e2q−1 if p ≥ q,

0 if p < q

and

A2(e2p, e2q−1) =
{
e2p if p ≥ q,

0 if p < q.

Let α and β be weak-star limit points in �∗∗
1 \ �1 of the sets {e2k−1 : k ∈ N}

and {e2k : k ∈ N}, respectively. It follows immediately from the above that

A1(e2q−1, α) = A1(e2p, α) = A1(e2p, β) = 0,

A2(e2q−1, α) = A2(e2p, α) = A2(e2p, β) = 0,

A1(e2q−1, β) = e2q−1,

A2(e2q−1, β) = β
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for every positive integers p and q. By taking limits we have that

A1(α, α) = A1(β, α) = A1(β, β) = 0,

A2(α, α) = A2(β, α) = A2(β, β) = 0,

A1(α, β) = α,

A2(α, β) = β,

which implies that

A(α, α) = A(β, β) = A(β, α) = 0, A(α, β) = α + β.

A simple computation shows that

(4)
P (α + β) = A(α + β, α + β) = α + β,

A(e2q−1 + e2p, α + β) = e2q−1 + β,

for every positive integers p and q. Therefore, it is clear that (P ◦P)(α+β) =
P(α+β) = α+β. However, it can be computed thatP ◦ P(α+β) = 5

3 (α+β).
Indeed, let (xμ) be a net in X converging weak-star to (α + β) such that each
xμ is of the form (e2q−1 + e2p). Let C be the bounded symmetric 4-linear
mapping associated to Q ◦ P . Then

C(x1, x2, x3, x4) = 1

3

[
A

(
A(x1, x2), A(x3, x4)

)
+ A

(
A(x1, x3), A(x2, x4)

) + A
(
A(x1, x4), A(x2, x3)

)]
.

Let xjμ = xμ for j = 1, 2, 3, 4. We also write each form of xjμ as (ej2q−1 + ej2p)
if necessary. Since (xμ) converges weak-star to α + β, we have

P ◦ P(α + β) = (w∗ − lim)x1
μ
· · · (w∗ − lim)x4

μ
C(x1

μ, x
2
μ, x

3
μ, x

4
μ).

The computation of the limit is as follows:

(1)

(w∗ − lim)x1
μ
· · · (w∗ − lim)x4

μ
A

(
A(x1

μ, x
2
μ), A(x

3
μ, x

4
μ)

)
= (P ◦ P)(α + β)

= α + β,
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(2)

(w∗ − lim)x1
μ
· · · (w∗ − lim)x4

μ
A

(
A(x1

μ, x
3
μ), A(x

2
μ, x

4
μ)

)
= (w∗ − lim)x1

μ
(w∗ − lim)x2

μ
A

(
A(x1

μ, α + β),A(x2
μ, α + β)

)
= (w∗ − lim)x1

μ(w
∗ − lim)x2

μ
A(e1

2q−1 + β, e2
2q−1 + β)

= 2(α + β),

and

(3)

(w∗ − lim)x1
μ
· · · (w∗ − lim)x4

μ
A

(
A(x1

μ, x
4
μ), A(x

2
μ, x

3
μ)

)
= (w∗ − lim)x1

μ
· · · (w∗ − lim)x4

μ
A

(
A(x2

μ, x
3
μ), A(x

1
μ, x

4
μ)

)
= (w∗ − lim)x1

μ
A

(
P(α + β),A(x1

μ, α + β)
)

= (w∗ − lim)x1
μ
A(α + β, e1

2q−1 + β)

= 2(α + β).

Therefore, P ◦ P(α + β) = 5
3 (α + β).

The above example solves our main question in the negative, but the present-
ation given here is not our original point of view. Actually we found it by a
more general mathematical tool, that is, the next lemma.

Lemma 2.5. Given two bounded 2-homogeneous polynomialsP ∈ P(2X,Y )

and Q ∈ P(2Y,Z), let A and B be the bounded symmetric bilinear mappings
associated to P and Q, respectively. Then

Q ◦ P = Q ◦ P

if and only if B(P (z), A(xμ, z)) converges weak-star toQ◦P(z) for every net
(xμ) ⊂ X converging weak-star to z ∈ X∗∗.

Proof. By [7, Proposition 1.1], Q ◦ P = Q ◦ P holds if and only if the
properties (a) and (b) stated at the beginning of the proof of Theorem 2.1
hold. We have that A(x, z) = A(z, x) for all x ∈ X and z ∈ X∗∗ and that
B(y, u) = B(u, y) for all y ∈ Y and u ∈ Y ∗∗. Hence it is easily checked that
the property (a) holds always.

The bilinear mapping SA : X∗∗ × X∗∗ −→ Y ∗∗ defined by SA(z1, z2) =
1
2 (A(z1, z2) + A(z2, z1)) is the symmetrization of A. If we consider C :
(X∗∗)4 −→ Z∗∗ defined by C(z1, z2, z3, z4) = B(S(A)(z1, z2), S(A)(z3, z4))

satisfies that C(z, z, z, z) = Q ◦ P(z) for all z ∈ X∗∗. Hence the 4-linear
symmetric mapping associated to Q ◦ P is SC, the symmetrization of C. A
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straightforward calculation gives

SC(z1, z2, z3, z4)

= 1

6

(
B

(
SA(z1, z2), SA(z3, z4)

) + B
(
SA(z1, z3), SA(z2, z4)

)
+ B

(
SA(z1, z4), SA(z2, z3)

) + B
(
SA(z2, z3), SA(z1, z4)

)
+ B

(
SA(z2, z4), SA(z1, z3)

) + B
(
SA(z3, z4), SA(z1, z2)

))
.

Hence

D(Q ◦ P)(z)(x) = 4SC(z, z, z, x)

= 2B(P (z), SA(z, x))+ 2B(SA(x, z), P (z)),

for all x ∈ X and z ∈ X∗∗. As SA(z, x) = SA(x, z) = A(x, z) for all x ∈ X
and z ∈ X∗∗ we obtain that

(5) D(Q ◦ P)(z)(x) = 2(B(P (z), A(x, z))+ B(A(x, z), P (z))),

for all x ∈ X and z ∈ X∗∗. The linear mappings B(−, P (z)) and A(−, z)
are (w	,w	)-continuous. Hence, given a net (xμ) ⊂ X converging weak-star
to z ∈ X∗∗ we have that the net B(A(xμ, z), P (z))) converges to Q ◦ P(z).
Thus, by (5), the property (b) holds forQ◦P if and only if B(P (z), A(xμ, z))
converges weak-star toQ◦P(z) for every net (xμ) ⊂ X converging weak-star
to z ∈ X∗∗.

In Proposition 2.3 we have shown, roughly speaking, that if the “size” of
the image of P is “small", then the equality Q ◦ P = Q ◦ P holds even if
the middle space Y is not symmetrically regular. The next example shows that
even in the case Z = C we can find P and Q such that Q ◦ P �= Q ◦ P .

Example 2.6. Define the bounded symmetric bilinear mappings A : l1 ×
l1 → l1 by

A(x, y) =
∞∑
n=1

[
(x1e1 + x3e3 + · · · + x2n−1e2n−1)y2n

+ (y1e1 + y3e3 + · · · + y2n−1e2n−1)x2n
]

+
∞∑
n=1

[
(x1 + x3 + · · · + x2n−1)y2n

+ (y1 + y3 + · · · + y2n−1)x2n
]
e2n,
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and B : l1 × l1 → C

B(x, y) =
∞∑
n=1

(x1 + x3 + · · · + x2n−1)y2n + (y1 + y3 + · · · + y2n−1)x2n,

where x = (xi), y = (yi) ∈ l1 and {en} is the canonical basis of l1. Let P
and Q be the 2-homogeneous polynomials from l1 to l1 associated to A and
B, respectively. Then Q ◦ P �= Q ◦ P .

Proof. Clearly

B(e2p, e2q) = 0, B(e2p−1, e2q−1) = 0

for every positive integers p, q. Further, we obtain that

B(e2p, e2q−1) =
{

1 if p ≥ q,

0 if p < q.

Let α and β be weak-star limit points in �∗∗
l \ �l of the sets {e2k−1 : k ∈ N} and

{e2k : k ∈ N}, respectively. It follows immediately from the above that

B(e2q−1, α) = B(e2p, α) = B(e2p, β) = 0, B(e2q−1, β) = 1

for every positive integers p and q. By taking limits we have that

B(α, α) = B(β, β) = B(β, α) = 0, B(α, β) = 1.

Hence

(6) Q(α + β) = B(α + β, α + β) = 1, B(α + β, e2q−1 + β) = 2,

for every positive integer q.
Therefore, combining (4) and (6) we have that

(Q ◦ P)(α + β) = Q(α + β) = 1

and
B(P (α + β),A(e2q−1 + e2p, α + β)) = 2,

for every positive integers p and q. Hence if (xμ) is a net in X converging
weak-star to (α + β) such that each xμ is of the form e2q−1 + e2p we have
that B(P (α + β),A(xμ, α + β)) does not converge to (Q ◦ P)(α + β). By
Lemma 2.5 we obtain that Q ◦ P �= Q ◦ P .

It is possible in the above example to proceed as in Example 2.4 to obtain
that Q ◦ P(α + β) = 1 but Q ◦ P(α + β) = 5

3 .
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3. Numerical range of a holomorphic mapping

Let T be a bounded linear operator from a complex Banach space X into X.
The numerical range of T is defined as

V (T ) = {φ(T x) : x ∈ SX, φ ∈ SX∗ , φ(x) = 1},
where SX denotes the unit sphere of X ([6]). The numerical range for a holo-
morphic mapping was introduced by L. Harris [13]. We define the numerical
range of f ∈ Hb(X,X) to be the set

V (f ) = {φ(f (x)) : x ∈ SX, φ ∈ SX∗ , φ(x) = 1}.
The numerical ranges of multilinear mappings and polynomials have also been
studied since 1996 ([1], [9]).

Bollobás [5] showed that cl(V (T )) = cl(V (T ∗)), where T ∗ is the adjoint
of T and cl(S) is the norm closure of the subset S of X. In the following we
will prove that cl(V (f )) = cl(V (f )) for f ∈ Hb(X,X).

Theorem 3.1. cl(V (f )) = cl(V (f )) for f ∈ Hb(X,X).

Proof. Without loss of generality, we may assume that supx∈BX ‖f (x)‖ ≤
1. It is obvious that cl(V (f )) ⊂ cl(V (f )). Thus it suffices to show thatV (f ) ⊂
cl(V (f )).

Suppose that z ∈ SX∗∗ , � ∈ SX∗∗∗ and �(z) = 1. Hence �(f (z)) ∈
V (f ). By [10, Theorem 1], there is a net (xα) ⊂ BX such that (xα) converges
polynomial-star to z (i.e., (P (xα)) converges to P(z) for all scalar valued
bounded polynomial P on X). Since

lim inf ‖xα‖ ≥ lim
α

|φ(xα)| = |φ(z)| = |z(φ)|

for all φ ∈ SX∗ , we have that limα ‖xα‖ = 1. Set yα = xα
‖xα‖ . Since

lim
α
Q(yα) = lim

α

1

‖xα‖k Q(xα) = Q(z)

for every Q ∈ P(kX) and every positive integer k, the net (yα) converges
polynomial-star to z.

Let ε > 0 be given. Since f is uniformly continuous on BX, there exists
δ > 0 such that ‖f (x) − f (y)‖ ≤ ε

3 if ‖x − y‖ ≤ δ and x, y ∈ BX. Choose
0 < ε0 <

1
2 so that ε0 + ε0

2 < δ, and 3ε0 ≤ ε. As BX∗ is w(X∗∗∗, X∗∗)-dense
in BX∗∗∗ , considering two elements z and f (z) in X∗∗ there exists ϕ ∈ BX∗

such that
|ϕ(z)−�(z)| = |ϕ(z)− 1| < ε2

0

4
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and ∣∣ϕ(f (z))−�(f (z))
∣∣ < ε2

0

12
,

which implies that 1 − ε2
0
4 < ‖ϕ‖ ≤ 1. Set ψ = ϕ

‖ϕ‖ . We have

∣∣ψ(z)− 1
∣∣ =

∣∣∣∣ ϕ‖ϕ‖ (z)− 1

∣∣∣∣ ≤
∣∣∣∣ ϕ‖ϕ‖ (z)− ϕ(z)

∣∣∣∣ + |ϕ(z)− 1|

≤ (1 − ‖ϕ‖)+ ε2
0

4
<
ε2

0

2
,

and similarly, ∣∣�(f (z))− ψ(f (z))
∣∣ < ε0

3
.

As (yα) converges polynomial-star to z, we have that

1 − ψ(yα) → 1 − ψ(z) and ψ ◦ f (yα) → ψ ◦ f (z).
Hence we can choose y0 := yα0 such that∣∣ψ ◦ f (z)− ψ(f (y0))

∣∣ < ε0/3 and |1 − ψ(y0)| < ε0
2/2.

By [5, Theorem 1], there exist y ∈ SX and φ ∈ SX∗ such that φ(y) = 1,
‖ψ − φ‖ < ε0 and ‖y − y0‖ < ε0 + ε0

2. By the construction of the Aron-
Berner extension f it is easily checked that ψ ◦ f = ψ ◦ f , and it follows
that ∣∣�(f (z))− φ(f (y))

∣∣
≤ ∣∣�(f (z))− ψ(f (z))

∣∣ + ∣∣ψ(f (z))− ψ(f (y0))
∣∣

+ ∣∣ψ(f (y0))− φ(f (y0))
∣∣ + ∣∣φ(f (y0))− φ(f (y))

∣∣
≤ ε0

3
+ ε0

3
+ ‖ψ − φ‖‖f (y0)‖ + ‖φ‖‖f (y0)− f (y)‖

≤ 2

3
ε0 + ε0 + ε

3
< ε,

which implies that �(f (z)) ∈ cl(V (f )), because φ(f (y)) ∈ V (f ).
Corollary 3.2 ([8, Corollary 2.14]). Let P ∈ P(mX,X). Then cl(V (P ))

= cl(V (P )), where P denotes the Aron-Berner extension of P .

During the preparation of an earlier draft of this paper we became aware
that in [1, Lemma 3] the above corollary had been proved for the case P(x) =
x∗

1 (x) . . . x
∗
m(x), where x∗

j ∈ X∗, j = 1, . . . , m. We also want to thank María
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Acosta for pointing out a mistake that we had in the proof of Theorem 3.1 in
that former draft.
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