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COMPOSITION, NUMERICAL RANGE AND
ARON-BERNER EXTENSION

YUN SUNG CHOI, DOMINGO GARCIA, SUNG GUEN KIM and MANUEL MAESTRE*

Abstract

Given an entire mapping f € #,(X, X) of bounded type from a Banach space X into X, we
denote by f the Aron-Berner extension of f to the bidual X** of X. We show that go f =go f
forall f, g € 7,(X, X) if X is symmetrically regular. We also give a counterexample on /; such
that the equality does not hold. We prove that the closure of the numerical range of f is the same
as that of f.

1. Introduction

Given complex Banach spaces X and Y, we denote by ("X, Y) the Banach
space of bounded n-homogeneous polynomials of X into Y. When Y is the
scalar field C, we denote this space by 2("X). We recall that a bounded
n-homogeneous polynomial P € 2("X,Y) is the restriction to the diag-
onal of a continuous n-linear mapping A from X into Y, that is, P(x) =
A(x,...,x), x € X. Each such P has a unique associated bounded sym-
metric n-linear mapping A from X into Y. Each bounded n-homogeneous
polynomial P has a canonical extension P € 2 (" X**, Y**) to the bidual X**
of X, which is called the Aron-Berner extension of P ([2]) (see the next sec-
tion for definitions). By [10, Theorem 3] (see also [2]), every entire mapping
f € #,(X,Y) of bounded type extends in a canonical fashion to a mapping
f € d,(X**, Y**) in the following way. Given the Taylor series expansion of
fato, f =312, P, fisdefinedas f =) o0, P,.

Our first interest in this paper is to verify if g o f = go f for f € (X, Y)
and g € #,(Y,Z). We are motivated by the following two problems: We
consider thecase X =Y = Z.

(1) The Aron-Berner extension is an isomorphism of the Fréchet space
Hp(X, X) into the Fréchet space #;,(X™*, X**) and both spaces are Fréchet
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algebras under composition. Is it true that the Aron-Berner extension is an
isomorphism into between Fréchet algebras ?

(2) Given g € (X, X) consider the composition operator ¢, : 75, (X, X)
— (X, X) defined by ¢,(f) = g o f. This composition operator ¢, is
extended to the composition operator gz : 3, (X™*, X**) — J,(X**, X*).
Does the following diagram commute?

(X, X) —— (X, X*)

4 or

%b(X, X) — %b(X**, X**)

The answer to our questions is, in general, negative. In Section 2 we show
the existence of a 2-homogeneous continuous polynomial P : £; —> £; such
that Po P # P o P.

Our second interest is to know if the Aron-Berner extension preserves nu-
merical ranges. Lumer in 1961 ([14]) gave a theory of numerical range for
bounded linear operators on Banach spaces. Harris in 1971 ([13]) developed a
theory of numerical range and numerical radius for a holomorphic mapping.
This theory has many applications. For example, he obtained an inequality
([13, Theorem 1]) which is a bound for each of the terms of the Taylor series
expansion of a holomorphic mapping in terms of the numerical radius of the
mapping. This inequality implies some results concerning the spectrum of
holomorphic mappings ([13, Proposition 5]), the rotundity at the identity of
the sup norm on holomorphic mappings ([12, Theorem 2]) and the extremal
case of the Schwarz lemma ([11, Theorem 1]). We prove that the closure of the
numerical range of f € 9,(X, X) is the same as that of f € ,(X**, X**),
which implies that the numerical radius of f is the same as that of f.

2. Aron-Berner extension and composition

A bounded n-homogeneous polynomial P € 2 ("X, Y) has an extension P €
P X**, Y**) to the bidual X** of X, whichis called the Aron-Berner extension
of P.1In fact, P is defined in the following way. Let A be the symmetric n-
linear mapping associated to P, A can be extended to an n-linear mapping A
from X** into Y** in such a way that for each fixed j, 1 < j < n, and for each

fixed xy,...,xj—; € X and zj41, ..., 2n € X™, the linear mapping

Z2—=> A(X1, oo X1 2, Tt -0 Zn)s z€X™,
is (w*, w*)-continuous. In other words, we define A(xy, .. s X215 25 Tt
..., Zp) to be the weak-star limit of the net (A(xy, ..., Xj_1, Xa, Zj+1, - - - » Zn))

for a weak-star convergent net (x,) C X to z. By this (w*, w*)-continuity A
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can be extended to an n-linear mapping A from X** into Y**, beginning with
the last variable and working backwards to the first. Then the restriction

F(z) = Z(z, ees 2)
is called the Aron-Berner extension of P. Givenz € X* and w € Y*, we have
P(z)(w) =wo P(2).

Actually this equality is often used as the definition of the vector-valued Aron-
Berner extension based upon the scalar-valued Aron-Berner extension. Davie
and Gamelin [10, Theorem 8] proved that || P|| = || P]|. It is also worth re-
marking that A is not symmetric in general.

A complex Banach space X is called symmetrically regular if every con-
tinuous symmetric linear mapping 7 : X — X* is weakly compact. Recall
that 7 is symmetric means that T (x)(y) = T(y)(x) for all x,y € X. If
X is symmetrically regular then, by [3, 8.3 Theorem], A is also symmetric
and separately weak-star continuous on X**, for all symmetric n-linear form
A:Xx---xX—C

THEOREM 2.1. Let X, Y and Z be complex Banach spaces. If Y is symmet-
rically regular then Q o (Py+ Py +---+ Py) = Qo (Py+ P+ ---+ Py)
forevery P e P(X,Y), fori =0,1,....,m, Q € P*Y,Z)andm, k > 1.

PrOOF. Letusdenote P = Py+ P;+ ...+ P,, and let B be the symmetric
k-linear form associated to Q. We put £ = {j = (Jos---» Jm) | ZZ’ZO Jjn =
k,0<jys <k,h=0,1,...,m}and |j| = };_ hj,. We have

QoPx)= Y ( g ,)B(PJ'O,P{‘(x),...,P,{;m(x)),

.101--~7jm

for all x € X, where Pij" means that the coordinate P; is repeated j;-times.

The mapping Rj(x) = B(P, Plj1 (x), ..., PJ"(x)) is a continuous lj|-homo-
geneous polynomial on X for all j € #. Hence

k I
QoPR) = Y, (m. .)&@x

i=Goses ) €L weo Jm

for all z € X**. On the other hand, as Y is symmetrically regular, B is sym-
metric and hence

— k
QoP@)= Y, (b‘” j>n@x

=y jm)EF
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where Tj(z) = E(Pj”, 71]' @,..., P_m]m (z)) for all z € X**. If we prove that
R; = T;forall j € ¢ with |j| > 0,then Qo P = Qo P.

Recall that the differential of a polynomial P € #(*X,Y) is the (k — 1)-
homogeneous polynomial D(P) : X — £ (X,Y) given by D(P)(x)(z) =
kA(x,...,x,z2), (x,z € X), where A is the symmetric k-linear mapping
associated to P.

Given j € ¢ with [j| > 0, we have Rj(x) = Tj(x) for all x € X, hence,
by [7, Proposition 1.1] (see also [15, Theorem 2]), R; = Tj if and only if the
following two properties hold:

(a) Forevery x € X, D(T;)(x) : X** — Z** is (w*, w*)-continuous.

(b) For every z € X** and every net (x,) C X such that (x,) converges
weak-star to z, D(7})(z) (x,) converges weak-star to D(7j)(z)(z) in Z**.

We consider Cj : X** — Y** the bounded |j|-linear mapping defined by
Ci(z1, .., 7))

i — _ _ _
= B<P0°, A1(z1), ... A1(z))s A2(Zi 415 Zji42) s -+ o5 A2(Zji 1215 Zji42)0) s

LA (ZZZ«:—ll hjpt1o o Tyl hj,,+m)’ R A_m(Z|j|_m+1, e, Zm)),

where Aj, is the symmetric A#-linear mapping associatedto P, forh =1, ..., m.
Clearly Tj(z) = Cj(z, ..., z) for all z € X**. If SC; denotes the symmetriza-
tion of Cj, we have that

1
SCj(zi, ..., z5) = il Z Coj(z1, -0y i),

UESm
where Sjj stands for the group of permutations of {1, 2, ..., |j|} and
Coj(zty s 2) = Ci(Zo(1)s - - -+ Zoqjl))-

With this notation

D(T)(@)(w) = [jISCj(z, ..., z, w) = 3 Gz zow),

O'ESm

(il = D!

forall z, w € X**.
We know that B is symmetric. On the other hand

A_h(z9"'1zax):A_h(Z7‘-~7Z,x,Z):"':A_h(x,z,...,z)
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forallz € X**,x e Xand h =1, ..., m. Thus, for fixed o € S); there exists
aunique i =1, ..., m such that

ng(Z, s x) = E(POJO’ Fljl (Z)7 ) Ph—ljhil(Z)9
Az, 2, P (@ P ().

The linear mapping A, (—, z ..., z) is weak-star continuous on X**. Since
Y is symmetrically regular, B is weak-star separately continuous. Hence, if
(x,) C X converges weak-star to z in X**, then Cyj(z, ..., z, x,) converges
weak-star to Tj(z). As an immediate consequence D(7j)(z)(x,) converges to
lil7;(z) = D(T;)(z)(z) for all z € X** and property (b) holds for every T;.

_Finally, given x € X and w € X*, we have A,(x,...,x,w) =
ﬂ(x,...,x,w,x) = -+ = Ap(w,x,...,x) and the linear mapping
Ap(x,...,x,—)is weak-star continuous on X** forallh =1, ..., m. As

Coj(x,...,x,w) = B(PP, P/'(x), ..., P/ (x),

Ap(x, ey x,w), PO, L P (X)),

the proof that property (a) holds for every 7j can be obtained in a similar way.

COROLLARY 2.2. Suppose that Y is symmetrically regular. Then g o f =
go ffor fed,(X,Y)and g € 7,(Y, Z).

ProOF. We first note that the Taylor series Y .-, O, of g at 0 converges to
g in the Fréchet space 7, (Y, Z). Since the Aron-Berner extension induces a
Fréchet isomorphism from 7, (Y, Z) into 7, (Y™**, Z**), it is enough to con-
sider only the case where g = Q € Py, 7), forall k > 1.

For R > 0 we consider on 7,(X, Y) the norm || f||g = sup{| f (x)] : [|x|| <
R}. We fix Q € P(*Y, Z) and f € 9,(X,Y). There exists S > 0 such that
f(RBx) C SBy. Since Q is uniformly continuous on the ball (S + 1) By and
since Q is also uniformly continuous on (S + 1) By, given &¢ > 0 we can find
0 <8 < 1suchthat |Q(y;) — Q)| < € forall y;, y, € (S + 1)By with
lyi — y2ll < 8and [Q(v1) — Q(w2)|l < & for all vy, va € (S + 1) By« with
i — vl <é.

The Taylor series expansion Y - P, of f at zero converges absolutely
and uniformly to f on any bounded set of X, and hence there exists m( such
that

(1) W—Zm
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o (Xmo Pu) HR < ¢. Hence, by [10, Theorem 8],

7 0x(E )] <Jovs-0o(Er) <
m=0 R m=0 R
which, by Theorem 2.1, implies
o [o-0n(Em) <o oo (Er), -
m=0 R m=0 R

On the other hand, by (1) and [10, Theorem 8] we have H? - Zﬁozo P_Yn” R
|f = >mio Pz < 8. from which

) 0e7-0:(x7)
m=0 R

Now the conclusion is clear from (2) and (3).

< E&.

An f € #,(X, Y)is called weakly compact if f (r Bx) is arelatively weakly
compact set for all r > 0. Let Y > P,, be the Taylor series expansion of
f at zero. An obvious modification of [4, Proposition 3.4] shows that f is
weakly compact if and only if P, (By) is a relatively weakly compact set for
allm=1,2,....

ProPOSITION 2.3. Let X, Y and Z be complex Banach spaces and m > 1.
IfP, e "X, Y)isa “a weakly compact polynomial forallh = 1, ..., m and
P =Y Py then Qo P =QoPforevery Q € P(*Y, Z) andk > 1.

__ Proor. Let B be the k-linear symmetric mapping associated to Q and
B be its Aron-Berner extension. An inspection of the proof of Theorem 2.1
shows that the symmetry of B on (span(P(X **)) is a sufficient condition for
the equality Q o P = Q o P. Since P(X**) = P(X) C Y, the conclusion
follows.

It is well-known that the Banach space /; is not symmetrically regular ([3]).
In the following we construct a 2-homogeneous polynomial P : /; — [; such
that Po P # P o P.
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ExAMPLE 2.4. Define the bounded symmetric bilinear mappings A, A; :
ll X ll —> l] by

o0

A(x,y) = Z[(xlel + x3e3 + -+ + Xop—1€20-1) Y2n
n=1
+ (yie1 + y3e3 + - -+ 4 Yoan—1€m-1)%2n ],

o0

Ax(x,y) = Z[(xl + X34+ X20-1) Y0
n=1
+ 1+ Y3+ YD) Xou €2,
where x = (x;),y = (y;) € [; and {e,} is the canonical basis of ;. Let
A=A+ A,

Let P be the 2-homogeneous polynomial from/; to /; associated to A. Then
PoP #PoP.

PrROOF. We can see easily that

Al(eZpa eZq) = 0, Al(eZP—lv e2q—l) = Oa

Az(ezp, e9) =0, Az(ezp-1,€29-1) =0

for every positive integers p, g. Further, we obtain that

ey—1 ifp>gq,
Aj(exp, e24-1) = )
0 if p<gqg
and
ep ifp=>gq,
AZ(eZps eZq—l) = .
0 if p <gq.

Let « and 8 be weak-star limit points in £7* \ £; of the sets {ex—; : k € N}
and {ey : k € N}, respectively. It follows immediately from the above that

Ai(ezg—1,0) = Af(ezp, @) = A(e25, B) =0,
As(erg—1,0) = Ay(ezp, ) = Ax(ezp, B) =0,
Ay (exg-1, B) = exg-1,

As(ezg-1,B) =B
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for every positive integers p and ¢. By taking limits we have that

A, @) = Ay (B, @) = Ai(B, B) =0,
Az, @) = Ar(B, @) = A2(B, B) = 0,
A, B) =«
As(a, B) = B,

which implies that
Ala,0) =AB, B)=AB,a) =0, A, p)=a+p.
A simple computation shows that

Pla+pB) =Al+B,a+B) =a+p,

€] _
Aerg—1 +ep,a+pB) =ey1+B,

for every positive integers p and ¢. Therefore, it is clear that (P o P)(a + ) =
P(a+pB) = a+pB. However, itcan be computed that P o P(e+f) = %(ot—i—,B).
Indeed, let (x,,) be a netin X converging weak-star to (o + 8) such that each
x,, is of the form (ex,—1 + e2)). Let C be the bounded symmetric 4-linear
mapping associated to Q o P. Then

1
C(x1, x2, X3, X4) = g[A(A(Xl, x2), A(x3, x4))

+ A(A(x1, x3), A(x2, x4)) + A(A(x1, x4), A(x, x3)) ]

Let x,{ =x, for j =1, 2, 3, 4. We also write each form ofx;i as (eé.q_1 +e'2ip)
if necessary. Since (x,,) converges weak-star to o + 8, we have

PoP(a+p) =" —lim), - (w* —1im), C(x,, X}, X3, X))

The computation of the limit is as follows:
(w* —1lim),1 - - (w* = lim)s A(A(x,, x;), Alx;,, x71))

@) =(PoP)a+p)
=a+189
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(w* —lim)y -+ (w* — lim) 4 A(A(xy, x,), A(x;, X))
- = (w* —lim),y (w* — lim) 2 A(A(x}. o + B), Ax,. & + B))
= (w* — lim)x}, (w* — lim),2 A(e3, | + B. €3, | + B)
=2+ p),
and
(w* —lim)y -+ (w* = lim) 4 A(A(x,, x3), A(x], X))
= (w* —lim)yy - (w* = lim)4 A(A(x,, x;), Alx,,, X))
(3) = (w* —lim) A(P(a + ), A(x,, « + B))

= (w* — lim)y A + B. e}, + B)

Therefore, P o P(a + B) = 3 (o + B).

The above example solves our main question in the negative, but the present-
ation given here is not our original point of view. Actually we found it by a
more general mathematical tool, that is, the next lemma.

LEMMA 2.5. Given two bounded 2-homogeneous polynomials P € P(*X,Y)
and Q € P (Y, Z), let A and B be the bounded symmetric bilinear mappings
associated to P and Q, respectively. Then

QoP=QoP

if and only if B(P(2), Z(xﬂ, 7)) converges weak-star to QoP(2) for every net
(x,) C X converging weak-star to z € X**.

ProOF. By [7, Proposition 1.1], Qo P = a o P holds if and only if the
properties (a) and (b) stated at the beginning of the proof of Theorem 2.1
hold. We have that A(x, z) = A(z,x) for all x € X and z € X** and that
B(y,u) = B(u, y) forall y € Y and u € Y**. Hence it is easily checked that
the property (a) holds always.

The bilinear mapping SA : X** x X** — Y** defined by SA(z;, 20) =
%(Z(zl, 22) + A(z2,71)) is the symmetrization of A. If we consider C :
(X**)* —> Z** defined by C(z1, 22, 23, 24) = B(S(A) (21, 22), S(A) (23, 24))
satisfies that C(z,z,z,2) = Q o P(z) for all z € X™*. Hence the 4-linear
symmetric mapping associated to Q o P is SC, the symmetrization of C. A
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straightforward calculation gives

SC(z1, 22, 23, 24)
1/—, _ . _
= 2 (B(SAG1. 22). SA(a. 20)) + B(SAG1. 22). SA2.20))
+ E(SZ(ZL 24), SA(z2, Z3)) + F(SZ(ZZ: 23), SA(z1, z4))

+ B(SA(, 20), SA(z1, 29)) + B(SA(z3, 20), SA (21, 22)) )-
Hence

D(Q o P)(2)(x) =4SC(z, 7, 2, X)
=2B(P(z), SA(z, x)) + 2B(SA(x, 2), P(2)),

forallx € X and z € X**. As SA(z, x) = SA(x,z) = A(x,z) forall x € X
and z € X™* we obtain that

(5)  D(Qo P)(2)(x) =2(B(P(2), A(x, 2)) + B(A(x, 2), P(2))),

for all x € X and z € X**. The linear mappings B(—, P(z)) and A(—, z)
are (w*, w*)-continuous. Hence, given a net (x,) C X converging weak-star
to z € X™ we have that the net E(X(xu, 2), P(z))) converges to Q o P(2).
Thus, by (5), the property (b) holds for Q o P if and only if B(P(z), A(x,, z))
converges weak-star to Q o P (z) for every net (x,) C X converging weak-star
toz € X*.

In Proposition 2.3 we have shown, roughly speaking, that if the “size” of
the image of P is “small", then the equality Q o P = Q o P holds even if
the middle space Y is not symmetrically regular. The next example shows that
even in the case Z = C we can find P and Q suchthat Qo P # Q o P.

ExaMPpLE 2.6. Define the bounded symmetric bilinear mappings A : [} X
l] — 1 1 by

ee]

Ax,y) = Z[(xlel + x3e3 + -+ Xop—1€20-1) Yon

n=1

+ (yier + y3e3 + -+ + Yau—1€24—1)x2 |

00
+ Z[(xl +x3+---+ x2n71)y2n
n=l +()’1 +y3 +"'+y2n—1)x2n]62na
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and B:ly xl; - C

o0

B(x,y) =) (x1+X3+ -+ X 1)y + 01+ Y3+ 4 Yan-) X,

n=1

where x = (x;), y = (;) € [1 and {e,} is the canonical basis of /;. Let P
and Q be the 2-homogeneous polynomials from /; to /; associated to A and
B, respectively. Then Q o P £ Q o P.

Proor. Clearly
B(ezp, €24) =0, B(ezp—1,€24-1) =0
for every positive integers p, g. Further, we obtain that

1 ifp=gq,
B(ezp,€2q1)={0 itp<g

Let o and B be weak-star limit points in £;* \ ¢; of the sets {ex—1 : kK € N} and
{ear 1 k € N}, respectively. It follows immediately from the above that

B(ezyg—1,@) = B(ezp, ) = B(eap, f) =0, B(ey-1,B) =1
for every positive integers p and g. By taking limits we have that
Ble,o) =B(B,f)=B(p.0)=0,  B(a.p)=1.
Hence
6) Q@+p)=Bla+pa+p) =1, B@+B,eq-1+8) =2,

for every positive integer g.
Therefore, combining (4) and (6) we have that

(QoP)a+f)=0@@+p) =1

and o _
B(P(a + B), A(ezg—1 +exp,a + B)) =2,

for every positive integers p and g. Hence if (x,) is a net in X converging
weak-star to (o + B) such that each x, is of the form ey, + €5, we have
that B(P(a + B), Z(xﬂ, o + B)) does not converge to (Q o P)(a + B). By
Lemma 2.5 we obtain that Q o P # Q o P.

It is possible in the above example to proceed as in Example 2.4 to obtain
that Q o P(a + B) = 1but Qo P(a + B) = 3.
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3. Numerical range of a holomorphic mapping

Let T be a bounded linear operator from a complex Banach space X into X.
The numerical range of T is defined as

V(T) ={¢(Tx) :x € Sx, ¢ € Sx-, p(x) =1},

where Sy denotes the unit sphere of X ([6]). The numerical range for a holo-
morphic mapping was introduced by L. Harris [13]. We define the numerical
range of f € 7, (X, X) to be the set

V(f)={o(f(x)) :x € Sx, ¢ € Sx-, p(x) =1}.

The numerical ranges of multilinear mappings and polynomials have also been
studied since 1996 ([1], [9]).

Bollobas [5] showed that cl(V (T)) = cl(V(T*)), where T* is the adjoint
of T and cl(S) is the norm closure of the subset S of X. In the following we
will prove that cl(V (f)) = cl(V(?)) for f € #,(X, X).

THEOREM 3.1. cl(V(f)) = cl(V(f)) for f € 9,(X, X).

Proor. Without loss of generality, we may assume that sup, .z || f (x)[| <
1. Itis obvious thatcl(V (£)) C cl(V (f)). Thus it suffices to show that V (f) C
V(). B

Suppose that z € Sx«, ¥ € Sx= and W(z) = 1. Hence ¥ (f(z)) €
V(f). By [10, Theorem 1], there is a net (x,) C By such that (x,) converges
polynomial-star to z (i.e., (P(xy)) converges to P(z) for all scalar valued
bounded polynomial P on X). Since

liminf fxe || = lim ¢ (xo)] = 1$(2)] = 12(9)]

for all ¢ € Sy«, we have that lim,, ||x,|| = 1. Set y, = ”ﬁ—“” Since

lim Q(yy) = lim %Q(xa) = 0(2)
o o« || xell

for every Q € 2(¥X) and every positive integer k, the net (y,) converges
polynomial-star to z.

Let ¢ > 0 be given. Since f is uniformly continuous on By, there exists
8 > O such that || f(x) — f(W)| < % if |x — y|| <8 and x, y € Byx. Choose
0<eg< % so that g9 4+ €9> < 8, and 3gy < €. As By- is w(X***, X**)-dense
in By, considering two elements z and f(z) in X** there exists ¢ € By-
such that

2
7() — U@ = [9() — 1] < %0
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and 2

2(F) — W (F@2)]| < f—g

which implies that 1 — % <ol <1.Setyr = ﬁ. We have

V) -1 = i<z>—1'< ) - 3|+ 9@ — 1]

el — el

2

2

& &

< (1 — -0 _0’
==l + <

and similarly,

— — = &
v(F@) -V < 3
As (y4) converges polynomial-star to z, we have that

1Y) > 1=¥@ and Yo f(y)—> Vo f

Hence we can choose yy := yq, such that

Vo f2)—¥(f()| <e/3 and |1 — (o)l < &/2.

By [5, Theorem 1], there exist y € Sx and ¢ € Sy« such that ¢(y) = 1,
v — @] < e anil Iy — yoll < €0 + &o°. By the cons_trucgon of the Aron-
Berner extension f it is easily checked that ¥ o f = ¥ o f, and it follows
that

| (f(2)—d(f)]
< |W(F@) =¥ (F@)| + [v(F @) — ¥ (f (o)
+ [ (fO0) = d(f )| + |d(f (o) — d(f ()|

< >N &0)
=3 +3 IV = 2lIFGoll+ Iells o) = f DI

£
< —-g +¢ - <&,
_30+ 0+3

which implies that lIl(?(z)) e cl(V(f)), because ¢ (f(¥)) € V(f).

COROLLARY 3.2 ([_8, Corollary 2.14]). Let P € ("X, X). Then cl(V(P))
= cl(V(P)), where P denotes the Aron-Berner extension of P.

During the preparation of an earlier draft of this paper we became aware
that in [1, Lemma 3] the above corollary had been proved for the case P (x) =
x{(x)...x;(x), where x;‘ e X*, j=1,...,m. We also want to thank Maria
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Acosta for pointing out a mistake that we had in the proof of Theorem 3.1 in
that former draft.
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