COMPOSITION, NUMERICAL RANGE AND ARON-BERNER EXTENSION

YUN SUNG CHOI, DOMINGO GARCÍA, SUNG GUEN KIM and MANUEL MAESTRE*

Abstract

Given an entire mapping $f \in \mathcal{H}_b(X, X)$ of bounded type from a Banach space X into X, we denote by \overline{f} the Aron-Berner extension of f to the bidual X^{**} of X. We show that $\overline{g \circ f} = \overline{g} \circ \overline{f}$ for all $f, g \in \mathcal{H}_b(X, X)$ if X is symmetrically regular. We also give a counterexample on l_1 such that the equality does not hold. We prove that the closure of the numerical range of f is the same as that of \overline{f} .

1. Introduction

Given complex Banach spaces X and Y, we denote by $\mathcal{P}({}^{n}X, Y)$ the Banach space of bounded *n*-homogeneous polynomials of X into Y. When Y is the scalar field C, we denote this space by $\mathcal{P}({}^{n}X)$. We recall that a bounded *n*-homogeneous polynomial $P \in \mathcal{P}({}^{n}X, Y)$ is the restriction to the diagonal of a continuous *n*-linear mapping A from X into Y, that is, P(x) = $A(x, \ldots, x), x \in X$. Each such P has a unique associated bounded symmetric *n*-linear mapping A from X into Y. Each bounded *n*-homogeneous polynomial P has a canonical extension $\overline{P} \in \mathcal{P}({}^{n}X^{**}, Y^{**})$ to the bidual X^{**} of X, which is called the Aron-Berner extension of P ([2]) (see the next section for definitions). By [10, Theorem 3] (see also [2]), every entire mapping $\underline{f} \in \mathcal{H}_b(X, Y)$ of bounded type extends in a canonical fashion to a mapping $f \in \mathcal{H}_b(X^{**}, Y^{**})$ in the following way. Given the Taylor series expansion of f at 0, $f = \sum_{n=0}^{\infty} P_n, \overline{f}$ is defined as $\overline{f} = \sum_{n=0}^{\infty} \overline{P_n}$.

Our first interest in this paper is to verify $\overline{ifg} \circ \overline{f} = \overline{g} \circ \overline{f}$ for $f \in \mathscr{H}_b(X, Y)$ and $g \in \mathscr{H}_b(Y, Z)$. We are motivated by the following two problems: We consider the case X = Y = Z.

(1) The Aron-Berner extension is an isomorphism of the Fréchet space $\mathscr{H}_b(X, X)$ into the Fréchet space $\mathscr{H}_b(X^{**}, X^{**})$ and both spaces are Fréchet

^{*} The first named author's research is supported in part by KOSEF Interdisciplinary Research Program Grant 1999-2-102-003-5 of Korea. The second and fourth authors were supported by MEC and FEDER Project MTM2005-08210. The third author wishes to acknowledge the financial support of Korea Research Foundation Grant (KRF-2002-070-C00006).

Received January 30, 2007.

algebras under composition. Is it true that the Aron-Berner extension is an isomorphism into between Fréchet algebras ?

(2) Given $g \in \mathcal{H}_b(X, X)$ consider the composition operator $\varphi_g : \mathcal{H}_b(X, X) \to \mathcal{H}_b(X, X)$ defined by $\varphi_g(f) = g \circ f$. This composition operator φ_g is extended to the composition operator $\varphi_{\overline{g}} : \mathcal{H}_b(X^{**}, X^{**}) \to \mathcal{H}_b(X^{**}, X^{**})$. Does the following diagram commute?

$$\begin{aligned} \mathscr{H}_b(X,X) & \longrightarrow \mathscr{H}_b(X^{**},X^{**}) \\ & \varphi_g & & \uparrow^{\varphi_{\overline{g}}} \\ & \mathscr{H}_b(X,X) & \longrightarrow \mathscr{H}_b(X^{**},X^{**}) \end{aligned}$$

The answer to our questions is, in general, negative. In Section 2 we show the existence of a 2-homogeneous continuous polynomial $P : \ell_1 \longrightarrow \ell_1$ such that $\overline{P \circ P} \neq \overline{P} \circ \overline{P}$.

Our second interest is to know if the Aron-Berner extension preserves numerical ranges. Lumer in 1961 ([14]) gave a theory of numerical range for bounded linear operators on Banach spaces. Harris in 1971 ([13]) developed a theory of numerical range and numerical radius for a holomorphic mapping. This theory has many applications. For example, he obtained an inequality ([13, Theorem 1]) which is a bound for each of the terms of the Taylor series expansion of a holomorphic mapping in terms of the numerical radius of the mapping. This inequality implies some results concerning the spectrum of holomorphic mappings ([13, Proposition 5]), the rotundity at the identity of the sup norm on holomorphic mappings ([12, Theorem 2]) and the extremal case of the Schwarz lemma ([11, Theorem 1]). We prove that the closure of the numerical range of $f \in \mathscr{H}_b(X, X)$ is the same as that of $\overline{f} \in \mathscr{H}_b(X^{**}, X^{**})$, which implies that the numerical radius of f is the same as that of \overline{f} .

2. Aron-Berner extension and composition

A bounded *n*-homogeneous polynomial $P \in \mathcal{P}({}^{n}X, Y)$ has an extension $\overline{P} \in \mathcal{P}({}^{n}X^{**}, Y^{**})$ to the bidual X^{**} of X, which is called the *Aron-Berner extension* of P. In fact, \overline{P} is defined in the following way. Let A be the symmetric *n*-linear mapping associated to P, A can be extended to an *n*-linear mapping \overline{A} from X^{**} into Y^{**} in such a way that for each fixed $j, 1 \leq j \leq n$, and for each fixed $x_1, \ldots, x_{j-1} \in X$ and $z_{j+1}, \ldots, z_m \in X^{**}$, the linear mapping

$$z \to \overline{A}(x_1,\ldots,x_{j-1},z,z_{j+1},\ldots,z_n), \qquad z \in X^{**},$$

is (w^*, w^*) -continuous. In other words, we define $\overline{A}(x_1, \ldots, x_{j-1}, z, z_{j+1}, \ldots, z_n)$ to be the weak-star limit of the net $(\overline{A}(x_1, \ldots, x_{j-1}, x_\alpha, z_{j+1}, \ldots, z_n))$ for a weak-star convergent net $(x_\alpha) \subset X$ to z. By this (w^*, w^*) -continuity A

can be extended to an *n*-linear mapping \overline{A} from X^{**} into Y^{**} , beginning with the last variable and working backwards to the first. Then the restriction

$$\overline{P}(z) = \overline{A}(z, \dots, z)$$

is called the Aron-Berner extension of P. Given $z \in X^{**}$ and $w \in Y^*$, we have

$$\overline{P}(z)(w) = \overline{w \circ P}(z).$$

Actually this equality is often used as the definition of the vector-valued Aron-Berner extension based upon the scalar-valued Aron-Berner extension. Davie and Gamelin [10, Theorem 8] proved that $||P|| = ||\overline{P}||$. It is also worth remarking that \overline{A} is not symmetric in general.

A complex Banach space X is called *symmetrically regular* if every continuous symmetric linear mapping $T : X \to X^*$ is weakly compact. Recall that T is symmetric means that T(x)(y) = T(y)(x) for all $x, y \in X$. If X is symmetrically regular then, by [3, 8.3 Theorem], \overline{A} is also symmetric and separately weak-star continuous on X^{**} , for all symmetric *n*-linear form $A : X \times \cdots \times X \to C$.

THEOREM 2.1. Let X, Y and Z be complex Banach spaces. If Y is symmetrically regular then $\overline{Q} \circ (P_0 + P_1 + \cdots + P_m) = \overline{Q} \circ (P_0 + \overline{P_1} + \cdots + \overline{P_m})$ for every $P_i \in \mathcal{P}(^iX, Y)$, for $i = 0, 1, \dots, m, Q \in \mathcal{P}(^kY, Z)$ and $m, k \ge 1$.

PROOF. Let us denote $P = P_0 + P_1 + \ldots + P_m$, and let *B* be the symmetric *k*-linear form associated to *Q*. We put $\mathscr{J} = \{\mathbf{j} = (j_0, \ldots, j_m) \mid \sum_{h=0}^m j_h = k, 0 \le j_h \le k, h = 0, 1, \ldots, m\}$ and $|\mathbf{j}| = \sum_{h=0}^m h j_h$. We have

$$Q \circ P(x) = \sum_{(j_0, \dots, j_m) \in \mathscr{J}} {\binom{k}{j_0, \dots, j_m}} B(P_0^{j_0}, P_1^{j_1}(x), \dots, P_m^{j_m}(x)),$$

for all $x \in X$, where $P_i^{j_i}$ means that the coordinate P_i is repeated j_i -times. The mapping $R_{\mathbf{j}}(x) = B(P_0^{j_0}, P_1^{j_1}(x), \dots, P_m^{j_m}(x))$ is a continuous $|\mathbf{j}|$ -homogeneous polynomial on X for all $\mathbf{j} \in \mathcal{J}$. Hence

$$\overline{\mathcal{Q} \circ P}(z) = \sum_{\mathbf{j}=(j_0,\ldots,j_m) \in \mathscr{J}} \binom{k}{j_0,\ldots,j_m} \overline{R_{\mathbf{j}}}(z),$$

for all $z \in X^{**}$. On the other hand, as Y is symmetrically regular, \overline{B} is symmetric and hence

$$\overline{Q} \circ \overline{P}(z) = \sum_{\mathbf{j}=(j_0,\ldots,j_m) \in \mathscr{J}} \binom{k}{j_0,\ldots,j_m} T_{\mathbf{j}}(z),$$

where $T_{\mathbf{j}}(z) = \overline{B}(P_0^{j_0}, \overline{P_1}^{j_1}(z), \dots, \overline{P_m}^{j_m}(z))$ for all $z \in X^{**}$. If we prove that $\overline{R_{\mathbf{j}}} = T_{\mathbf{j}}$ for all $\mathbf{j} \in \mathscr{J}$ with $|\mathbf{j}| > 0$, then $\overline{Q \circ P} = \overline{Q} \circ \overline{P}$.

Recall that the differential of a polynomial $P \in \mathscr{P}({}^{k}X, Y)$ is the (k-1)-homogeneous polynomial $D(P) : X \to \mathscr{L}(X, Y)$ given by $D(P)(x)(z) = kA(x, \ldots, x, z), (x, z \in X)$, where A is the symmetric k-linear mapping associated to P.

Given $\mathbf{j} \in \mathscr{J}$ with $|\mathbf{j}| > 0$, we have $R_{\mathbf{j}}(x) = T_{\mathbf{j}}(x)$ for all $x \in X$, hence, by [7, Proposition 1.1] (see also [15, Theorem 2]), $\overline{R_{\mathbf{j}}} = T_{\mathbf{j}}$ if and only if the following two properties hold:

- (a) For every $x \in X$, $D(T_j)(x) : X^{**} \to Z^{**}$ is (w^*, w^*) -continuous.
- (b) For every $z \in X^{**}$ and every net $(x_{\mu}) \subset X$ such that (x_{μ}) converges weak-star to z, $D(T_{\mathbf{i}})(z)(x_{\mu})$ converges weak-star to $D(T_{\mathbf{i}})(z)(z)$ in Z^{**} .

We consider $C_{\mathbf{j}}: X^{**} \longrightarrow Y^{**}$ the bounded $|\mathbf{j}|$ -linear mapping defined by

$$C_{\mathbf{j}}(z_{1},...,z_{|\mathbf{j}|}) = \overline{B}\Big(P_{0}^{j_{0}},\overline{A_{1}}(z_{1}),...,\overline{A_{1}}(z_{j_{1}}),\overline{A_{2}}(z_{j_{1}+1},z_{j_{1}+2}),...,\overline{A_{2}}(z_{j_{1}+2j_{2}-1},z_{j_{1}+2j_{2}}), \dots,\overline{A_{m}}(z_{j_{1}+2j_{2}-1},z_{j_{1}+2j_{2}}), \dots,\overline{A_{m}}(z_{|\mathbf{j}|-m+1},...,z_{|\mathbf{j}|})\Big),$$

where A_h is the symmetric *h*-linear mapping associated to P_h for h = 1, ..., m. Clearly $T_j(z) = C_j(z, ..., z)$ for all $z \in X^{**}$. If SC_j denotes the symmetrization of C_j , we have that

$$SC_{\mathbf{j}}(z_1,\ldots,z_{|\mathbf{j}|}) = \frac{1}{|\mathbf{j}|!} \sum_{\sigma \in S_{|\mathbf{j}|}} C_{\sigma \mathbf{j}}(z_1,\ldots,z_{|\mathbf{j}|}),$$

where $S_{|\mathbf{j}|}$ stands for the group of permutations of $\{1, 2, \dots, |\mathbf{j}|\}$ and

$$C_{\sigma \mathbf{j}}(z_1,\ldots,z_{|\mathbf{j}|})=C_{\mathbf{j}}(z_{\sigma(1)},\ldots,z_{\sigma(|\mathbf{j}|)}).$$

With this notation

$$D(T_{\mathbf{j}})(z)(w) = |\mathbf{j}|SC_{\mathbf{j}}(z,\ldots,z,w) = \frac{1}{(|\mathbf{j}|-1)!} \sum_{\sigma \in \mathbf{S}_{|\mathbf{j}|}} C_{\sigma \mathbf{j}}(z,\ldots,z,w),$$

for all $z, w \in X^{**}$.

We know that \overline{B} is symmetric. On the other hand

$$\overline{A_h}(z,\ldots,z,x) = \overline{A_h}(z,\ldots,z,x,z) = \cdots = \overline{A_h}(x,z,\ldots,z)$$

for all $z \in X^{**}$, $x \in X$ and h = 1, ..., m. Thus, for fixed $\sigma \in S_{|j|}$ there exists a unique h = 1, ..., m such that

$$C_{\sigma \mathbf{j}}(z,\ldots,z,x) = \overline{B}(P_0^{j_0},\overline{P_1}^{j_1}(z),\ldots,\overline{P_{h-1}}^{j_{h-1}}(z),$$
$$\overline{A_h}(x,z,\ldots,z),\overline{P_{h+1}}^{j_{h+1}}(z),\ldots,\overline{P_m}^{j_m}(z)).$$

The linear mapping $\overline{A_h}(-, z \dots, z)$ is weak-star continuous on X^{**} . Since Y is symmetrically regular, \overline{B} is weak-star separately continuous. Hence, if $(x_\mu) \subset X$ converges weak-star to z in X^{**} , then $C_{\sigma \mathbf{j}}(z, \dots, z, x_\mu)$ converges weak-star to $T_{\mathbf{j}}(z)$. As an immediate consequence $D(T_{\mathbf{j}})(z)(x_\mu)$ converges to $|\mathbf{j}|T_{\mathbf{j}}(z) = D(T_{\mathbf{j}})(z)(z)$ for all $z \in X^{**}$ and property (b) holds for every $T_{\mathbf{j}}$.

Finally, given $x \in X$ and $w \in X^{**}$, we have $\overline{A_h}(x, \ldots, x, w) = \overline{A_h}(x, \ldots, x, w, x) = \cdots = \overline{A_h}(w, x, \ldots, x)$ and the linear mapping $\overline{A_h}(x, \ldots, x, -)$ is weak-star continuous on X^{**} for all $h = 1, \ldots, m$. As

$$C_{\sigma \mathbf{j}}(x, \dots, x, w) = \overline{B}(P_0^{j_0}, P_1^{j_1}(x), \dots, P_{h-1}^{j_{h-1}}(x), \frac{\overline{A_h}(x, \dots, x, w), P_{h+1}^{j_{h+1}}(x), \dots, P_m^{j_m}(x))}{\overline{A_h}(x, \dots, x, w), P_{h+1}^{j_{h+1}}(x), \dots, P_m^{j_m}(x))},$$

the proof that property (a) holds for every T_j can be obtained in a similar way.

COROLLARY 2.2. Suppose that Y is symmetrically regular. Then $\overline{g \circ f} = \overline{g} \circ \overline{f}$ for $f \in \mathcal{H}_b(X, Y)$ and $g \in \mathcal{H}_b(Y, Z)$.

PROOF. We first note that the Taylor series $\sum_{n=0}^{\infty} Q_n$ of g at 0 converges to g in the Fréchet space $\mathcal{H}_b(Y, Z)$. Since the Aron-Berner extension induces a Fréchet isomorphism from $\mathcal{H}_b(Y, Z)$ into $\mathcal{H}_b(Y^{**}, Z^{**})$, it is enough to consider only the case where $g = Q \in \mathcal{P}({}^kY, Z)$, for all $k \ge 1$.

For R > 0 we consider on $\mathcal{H}_b(X, Y)$ the norm $||f||_R = \sup\{|f(x)| : ||x|| \le R\}$. We fix $Q \in \mathcal{P}({}^kY, Z)$ and $f \in \mathcal{H}_b(X, Y)$. There exists S > 0 such that $f(RB_X) \subset SB_Y$. Since Q is uniformly continuous on the ball $(S + 1)B_Y$ and since \overline{Q} is also uniformly continuous on $(S + 1)B_{Y^{**}}$, given $\varepsilon > 0$ we can find $0 < \delta < 1$ such that $||Q(y_1) - Q(y_2)|| < \varepsilon$ for all $y_1, y_2 \in (S + 1)B_Y$ with $||y_1 - y_2|| < \delta$ and $||\overline{Q}(v_1) - \overline{Q}(v_2)|| < \varepsilon$ for all $v_1, v_2 \in (S + 1)B_{Y^{**}}$ with $||v_1 - v_2|| < \delta$.

The Taylor series expansion $\sum_{m=0}^{\infty} P_m$ of f at zero converges absolutely and uniformly to f on any bounded set of X, and hence there exists m_0 such that

(1)
$$\left\|f-\sum_{m=0}^{m_0}P_m\right\|_R<\delta.$$

Thus, $\|Q \circ f - Q \circ (\sum_{m=0}^{m_0} P_m)\|_R < \varepsilon$. Hence, by [10, Theorem 8],

$$\left\|\overline{Q\circ f}-Q\circ\left(\sum_{m=0}^{m_0}P_m\right)\right\|_R=\left\|Q\circ f-Q\circ\left(\sum_{m=0}^{m_0}P_m\right)\right\|_R<\varepsilon,$$

which, by Theorem 2.1, implies

(2)
$$\left\|\overline{Q \circ f} - \overline{Q} \circ \left(\sum_{m=0}^{m_0} \overline{P_m}\right)\right\|_R = \left\|\overline{Q \circ f} - Q \circ \left(\sum_{m=0}^{m_0} P_m\right)\right\|_R < \varepsilon$$

On the other hand, by (1) and [10, Theorem 8] we have $\|\overline{f} - \sum_{m=0}^{m_0} \overline{P_m}\|_{R} =$ $\|f - \sum_{m=0}^{m_0} P_m\|_{R} < \delta$, from which

(3)
$$\left\|\overline{Q}\circ\overline{f}-\overline{Q}\circ\left(\sum_{m=0}^{m_0}\overline{P_m}\right)\right\|_{R}<\varepsilon.$$

Now the conclusion is clear from (2) and (3).

An $f \in \mathcal{H}_b(X, Y)$ is called *weakly compact* if $f(rB_X)$ is a relatively weakly compact set for all r > 0. Let $\sum_{m=0}^{\infty} P_m$ be the Taylor series expansion of f at zero. An obvious modification of [4, Proposition 3.4] shows that f is weakly compact if and only if $P_m(B_X)$ is a relatively weakly compact set for all m = 1, 2, ...

PROPOSITION 2.3. Let X, Y and Z be complex Banach spaces and $m \ge 1$. If $P_h \in \mathcal{P}(^hX, Y)$ is a weakly compact polynomial for all h = 1, ..., m and $P = \sum_{h=0}^{m} P_h$, then $\overline{Q \circ P} = \overline{Q} \circ \overline{P}$ for every $Q \in \mathcal{P}(^kY, Z)$ and $k \ge 1$.

PROOF. Let B be the k-linear symmetric mapping associated to Q and B be its Aron-Berner extension. An inspection of the proof of Theorem 2.1 shows that the symmetry of \overline{B} on $(\operatorname{span}(\overline{P}(X^{**}))^k)$ is a sufficient condition for the equality $\overline{Q \circ P} = \overline{Q} \circ \overline{P}$. Since $\overline{P}(X^{**}) = P(X) \subset Y$, the conclusion follows.

It is well-known that the Banach space l_1 is not symmetrically regular ([3]). In the following we construct a 2-homogeneous polynomial $P: l_1 \rightarrow l_1$ such that $\overline{P \circ P} \neq \overline{P} \circ \overline{P}$.

102

EXAMPLE 2.4. Define the bounded symmetric bilinear mappings A_1 , A_2 : $l_1 \times l_1 \rightarrow l_1$ by

$$A_{1}(x, y) = \sum_{n=1}^{\infty} [(x_{1}e_{1} + x_{3}e_{3} + \dots + x_{2n-1}e_{2n-1})y_{2n} + (y_{1}e_{1} + y_{3}e_{3} + \dots + y_{2n-1}e_{2n-1})x_{2n}],$$

$$A_{2}(x, y) = \sum_{n=1}^{\infty} [(x_{1} + x_{3} + \dots + x_{2n-1})y_{2n} + (y_{1} + y_{3} + \dots + y_{2n-1})x_{2n}]e_{2n},$$

where $x = (x_i), y = (y_i) \in l_1$ and $\{e_n\}$ is the canonical basis of l_1 . Let $A = A_1 + A_2$.

Let *P* be the 2-homogeneous polynomial from l_1 to l_1 associated to *A*. Then $\overline{P \circ P} \neq \overline{P} \circ \overline{P}$.

PROOF. We can see easily that

$$A_1(e_{2p}, e_{2q}) = 0, \quad A_1(e_{2p-1}, e_{2q-1}) = 0,$$
$$A_2(e_{2p}, e_{2q}) = 0, \quad A_2(e_{2p-1}, e_{2q-1}) = 0$$

for every positive integers p, q. Further, we obtain that

$$A_1(e_{2p}, e_{2q-1}) = \begin{cases} e_{2q-1} & \text{if } p \ge q, \\ 0 & \text{if } p < q \end{cases}$$

and

$$A_2(e_{2p}, e_{2q-1}) = \begin{cases} e_{2p} & \text{if } p \ge q, \\ 0 & \text{if } p < q. \end{cases}$$

Let α and β be weak-star limit points in $\ell_1^{**} \setminus \ell_1$ of the sets $\{e_{2k-1} : k \in \mathbb{N}\}$ and $\{e_{2k} : k \in \mathbb{N}\}$, respectively. It follows immediately from the above that

$$\overline{A_1}(e_{2q-1}, \alpha) = \overline{A_1}(e_{2p}, \alpha) = \overline{A_1}(e_{2p}, \beta) = 0,$$

$$\overline{A_2}(e_{2q-1}, \alpha) = \overline{A_2}(e_{2p}, \alpha) = \overline{A_2}(e_{2p}, \beta) = 0,$$

$$\overline{A_1}(e_{2q-1}, \beta) = e_{2q-1},$$

$$\overline{A_2}(e_{2q-1}, \beta) = \beta$$

for every positive integers p and q. By taking limits we have that

$$\overline{A_1}(\alpha, \alpha) = \overline{A_1}(\beta, \alpha) = \overline{A_1}(\beta, \beta) = 0,$$

$$\overline{A_2}(\alpha, \alpha) = \overline{A_2}(\beta, \alpha) = \overline{A_2}(\beta, \beta) = 0,$$

$$\overline{A_1}(\alpha, \beta) = \alpha,$$

$$\overline{A_2}(\alpha, \beta) = \beta,$$

which implies that

$$\overline{A}(\alpha, \alpha) = \overline{A}(\beta, \beta) = \overline{A}(\beta, \alpha) = 0, \qquad \overline{A}(\alpha, \beta) = \alpha + \beta.$$

A simple computation shows that

(4)
$$\overline{P}(\alpha + \beta) = \overline{A}(\alpha + \beta, \alpha + \beta) = \alpha + \beta,$$
$$\overline{A}(e_{2q-1} + e_{2p}, \alpha + \beta) = e_{2q-1} + \beta,$$

for every positive integers p and q. Therefore, it is clear that $(\overline{P} \circ \overline{P})(\alpha + \beta) = \overline{P}(\alpha + \beta) = \alpha + \beta$. However, it can be computed that $\overline{P \circ P}(\alpha + \beta) = \frac{5}{3}(\alpha + \beta)$. Indeed, let (x_{μ}) be a net in X converging weak-star to $(\alpha + \beta)$ such that each x_{μ} is of the form $(e_{2q-1} + e_{2p})$. Let C be the bounded symmetric 4-linear mapping associated to $Q \circ P$. Then

$$C(x_1, x_2, x_3, x_4) = \frac{1}{3} \Big[A \Big(A(x_1, x_2), A(x_3, x_4) \Big) \\ + A \Big(A(x_1, x_3), A(x_2, x_4) \Big) + A \Big(A(x_1, x_4), A(x_2, x_3) \Big) \Big].$$

Let $x_{\mu}^{j} = x_{\mu}$ for j = 1, 2, 3, 4. We also write each form of x_{μ}^{j} as $(e_{2q-1}^{j} + e_{2p}^{j})$ if necessary. Since (x_{μ}) converges weak-star to $\alpha + \beta$, we have

$$\overline{P \circ P}(\alpha + \beta) = (w^* - \lim)_{x_{\mu}^1} \cdots (w^* - \lim)_{x_{\mu}^4} C(x_{\mu}^1, x_{\mu}^2, x_{\mu}^3, x_{\mu}^4).$$

The computation of the limit is as follows:

(1)

$$(w^* - \lim)_{x_{\mu}^1} \cdots (w^* - \lim)_{x_{\mu}^4} A\left(A(x_{\mu}^1, x_{\mu}^2), A(x_{\mu}^3, x_{\mu}^4)\right)$$

$$= (\overline{P} \circ \overline{P})(\alpha + \beta)$$

$$= \alpha + \beta,$$

$$(w^{*} - \lim)_{x_{\mu}^{1}} \cdots (w^{*} - \lim)_{x_{\mu}^{4}} A \left(A(x_{\mu}^{1}, x_{\mu}^{3}), A(x_{\mu}^{2}, x_{\mu}^{4}) \right)$$

(2)
$$= (w^{*} - \lim)_{x_{\mu}^{1}} (w^{*} - \lim)_{x_{\mu}^{2}} \overline{A} \left(\overline{A}(x_{\mu}^{1}, \alpha + \beta), \overline{A}(x_{\mu}^{2}, \alpha + \beta) \right)$$

$$= (w^{*} - \lim) x_{\mu}^{1} (w^{*} - \lim)_{x_{\mu}^{2}} \overline{A}(e_{2q-1}^{1} + \beta, e_{2q-1}^{2} + \beta)$$

$$= 2(\alpha + \beta),$$

and

$$(w^{*} - \lim)_{x_{\mu}^{1}} \cdots (w^{*} - \lim)_{x_{\mu}^{4}} A(A(x_{\mu}^{1}, x_{\mu}^{4}), A(x_{\mu}^{2}, x_{\mu}^{3}))$$

$$= (w^{*} - \lim)_{x_{\mu}^{1}} \cdots (w^{*} - \lim)_{x_{\mu}^{4}} A(A(x_{\mu}^{2}, x_{\mu}^{3}), A(x_{\mu}^{1}, x_{\mu}^{4}))$$

$$(3) = (w^{*} - \lim)_{x_{\mu}^{1}} \overline{A}(\overline{P}(\alpha + \beta), \overline{A}(x_{\mu}^{1}, \alpha + \beta))$$

$$= (w^{*} - \lim)_{x_{\mu}^{1}} \overline{A}(\alpha + \beta, e_{2q-1}^{1} + \beta)$$

$$= 2(\alpha + \beta).$$

Therefore, $\overline{P \circ P}(\alpha + \beta) = \frac{5}{3}(\alpha + \beta).$

The above example solves our main question in the negative, but the presentation given here is not our original point of view. Actually we found it by a more general mathematical tool, that is, the next lemma.

LEMMA 2.5. Given two bounded 2-homogeneous polynomials $P \in \mathcal{P}(^{2}X, Y)$ and $Q \in \mathcal{P}(^{2}Y, Z)$, let A and B be the bounded symmetric bilinear mappings associated to P and Q, respectively. Then

$$\overline{Q \circ P} = \overline{Q} \circ \overline{P}$$

if and only if $\overline{B}(\overline{P}(z), \overline{A}(x_{\mu}, z))$ converges weak-star to $\overline{Q} \circ \overline{P}(z)$ for every net $(x_{\mu}) \subset X$ converging weak-star to $z \in X^{**}$.

PROOF. By [7, Proposition 1.1], $\overline{Q \circ P} = \overline{Q} \circ \overline{P}$ holds if and only if the properties (a) and (b) stated at the beginning of the proof of Theorem 2.1 hold. We have that $\overline{A}(x, z) = \overline{A}(z, x)$ for all $x \in X$ and $z \in X^{**}$ and that $\overline{B}(y, u) = \overline{B}(u, y)$ for all $y \in Y$ and $u \in Y^{**}$. Hence it is easily checked that the property (a) holds always.

The bilinear mapping $S\overline{A} : X^{**} \times X^{**} \longrightarrow Y^{**}$ defined by $S\overline{A}(z_1, z_2) = \frac{1}{2}(\overline{A}(z_1, z_2) + \overline{A}(z_2, z_1))$ is the symmetrization of \overline{A} . If we consider $C : (X^{**})^4 \longrightarrow Z^{**}$ defined by $C(z_1, z_2, z_3, z_4) = \overline{B}(S(\overline{A})(z_1, z_2), S(\overline{A})(z_3, z_4))$ satisfies that $C(z, z, z, z) = \overline{Q} \circ \overline{P}(z)$ for all $z \in X^{**}$. Hence the 4-linear symmetric mapping associated to $\overline{Q} \circ \overline{P}$ is SC, the symmetrization of C. A

straightforward calculation gives

$$SC(z_1, z_2, z_3, z_4) = \frac{1}{6} \Big(\overline{B} \Big(S\overline{A}(z_1, z_2), S\overline{A}(z_3, z_4) \Big) + \overline{B} \Big(S\overline{A}(z_1, z_3), S\overline{A}(z_2, z_4) \Big) \\ + \overline{B} \Big(S\overline{A}(z_1, z_4), S\overline{A}(z_2, z_3) \Big) + \overline{B} \Big(S\overline{A}(z_2, z_3), S\overline{A}(z_1, z_4) \Big) \\ + \overline{B} \Big(S\overline{A}(z_2, z_4), S\overline{A}(z_1, z_3) \Big) + \overline{B} \Big(S\overline{A}(z_3, z_4), S\overline{A}(z_1, z_2) \Big) \Big).$$

Hence

$$D(\overline{Q} \circ \overline{P})(z)(x) = 4SC(z, z, z, x)$$

= $2\overline{B}(\overline{P}(z), S\overline{A}(z, x)) + 2\overline{B}(S\overline{A}(x, z), \overline{P}(z)),$

for all $x \in X$ and $z \in X^{**}$. As $S\overline{A}(z, x) = S\overline{A}(x, z) = \overline{A}(x, z)$ for all $x \in X$ and $z \in X^{**}$ we obtain that

(5)
$$D(\overline{Q} \circ \overline{P})(z)(x) = 2(\overline{B}(\overline{P}(z), \overline{A}(x, z)) + \overline{B}(\overline{A}(x, z), \overline{P}(z))),$$

for all $x \in X$ and $z \in X^{**}$. The linear mappings $\overline{B}(-, \overline{P}(z))$ and $\overline{A}(-, z)$ are (w^*, w^*) -continuous. Hence, given a net $(x_{\mu}) \subset X$ converging weak-star to $z \in X^{**}$ we have that the net $\overline{B}(\overline{A}(x_{\mu}, z), \overline{P}(z)))$ converges to $\overline{Q} \circ \overline{P}(z)$. Thus, by (5), the property (b) holds for $\overline{Q} \circ \overline{P}$ if and only if $\overline{B}(\overline{P}(z), \overline{A}(x_{\mu}, z))$ converges weak-star to $\overline{Q} \circ \overline{P}(z)$ for every net $(x_{\mu}) \subset X$ converging weak-star to $z \in X^{**}$.

In Proposition 2.3 we have shown, roughly speaking, that if the "size" of the image of \overline{P} is "small", then the equality $\overline{Q \circ P} = \overline{Q} \circ \overline{P}$ holds even if the middle space Y is not symmetrically regular. The next example shows that even in the case Z = C we can find P and Q such that $\overline{Q \circ P} \neq \overline{Q} \circ \overline{P}$.

EXAMPLE 2.6. Define the bounded symmetric bilinear mappings $A: l_1 \times l_1 \to l_1$ by

$$A(x, y) = \sum_{n=1}^{\infty} [(x_1e_1 + x_3e_3 + \dots + x_{2n-1}e_{2n-1})y_{2n} + (y_1e_1 + y_3e_3 + \dots + y_{2n-1}e_{2n-1})x_{2n}] + \sum_{n=1}^{\infty} [(x_1 + x_3 + \dots + x_{2n-1})y_{2n} + (y_1 + y_3 + \dots + y_{2n-1})x_{2n}]e_{2n},$$

and $B: l_1 \times l_1 \rightarrow \mathsf{C}$

$$B(x, y) = \sum_{n=1}^{\infty} (x_1 + x_3 + \dots + x_{2n-1}) y_{2n} + (y_1 + y_3 + \dots + y_{2n-1}) x_{2n},$$

where $x = (x_i)$, $y = (y_i) \in l_1$ and $\{e_n\}$ is the canonical basis of l_1 . Let P and Q be the 2-homogeneous polynomials from l_1 to l_1 associated to A and B, respectively. Then $\overline{Q \circ P} \neq \overline{Q} \circ \overline{P}$.

PROOF. Clearly

$$B(e_{2p}, e_{2q}) = 0, \qquad B(e_{2p-1}, e_{2q-1}) = 0$$

for every positive integers p, q. Further, we obtain that

$$B(e_{2p}, e_{2q-1}) = \begin{cases} 1 & \text{if } p \ge q, \\ 0 & \text{if } p < q. \end{cases}$$

Let α and β be weak-star limit points in $\ell_l^{**} \setminus \ell_l$ of the sets $\{e_{2k-1} : k \in \mathbb{N}\}$ and $\{e_{2k} : k \in \mathbb{N}\}$, respectively. It follows immediately from the above that

$$\overline{B}(e_{2q-1},\alpha) = \overline{B}(e_{2p},\alpha) = \overline{B}(e_{2p},\beta) = 0, \qquad \overline{B}(e_{2q-1},\beta) = 1$$

for every positive integers p and q. By taking limits we have that

$$B(\alpha, \alpha) = B(\beta, \beta) = B(\beta, \alpha) = 0, \qquad B(\alpha, \beta) = 1.$$

Hence

(6)
$$\overline{Q}(\alpha + \beta) = \overline{B}(\alpha + \beta, \alpha + \beta) = 1, \qquad \overline{B}(\alpha + \beta, e_{2q-1} + \beta) = 2,$$

for every positive integer q.

Therefore, combining (4) and (6) we have that

$$(\overline{Q} \circ \overline{P})(\alpha + \beta) = \overline{Q}(\alpha + \beta) = 1$$

and

$$B(P(\alpha + \beta), A(e_{2q-1} + e_{2p}, \alpha + \beta)) = 2,$$

for every positive integers p and q. Hence if (x_{μ}) is a net in X converging weak-star to $(\alpha + \beta)$ such that each x_{μ} is of the form $e_{2q-1} + e_{2p}$ we have that $\overline{B}(\overline{P}(\alpha + \beta), \overline{A}(x_{\mu}, \alpha + \beta))$ does not converge to $(\overline{Q} \circ \overline{P})(\alpha + \beta)$. By Lemma 2.5 we obtain that $\overline{Q} \circ \overline{P} \neq \overline{Q} \circ \overline{P}$.

It is possible in the above example to proceed as in Example 2.4 to obtain that $\overline{Q \circ P}(\alpha + \beta) = 1$ but $\overline{Q} \circ \overline{P}(\alpha + \beta) = \frac{5}{3}$.

3. Numerical range of a holomorphic mapping

Let T be a bounded linear operator from a complex Banach space X into X. The numerical range of T is defined as

$$V(T) = \{ \phi(Tx) : x \in S_X, \phi \in S_{X^*}, \phi(x) = 1 \},\$$

where S_X denotes the unit sphere of X ([6]). The numerical range for a holomorphic mapping was introduced by L. Harris [13]. We define the numerical range of $f \in \mathcal{H}_b(X, X)$ to be the set

$$V(f) = \{ \phi(f(x)) : x \in S_X, \phi \in S_{X^*}, \phi(x) = 1 \}.$$

The numerical ranges of multilinear mappings and polynomials have also been studied since 1996 ([1], [9]).

Bollobás [5] showed that $cl(V(T)) = cl(V(T^*))$, where T^* is the adjoint of *T* and cl(S) is the norm closure of the subset *S* of *X*. In the following we will prove that $cl(V(f)) = cl(V(\overline{f}))$ for $f \in \mathcal{H}_b(X, X)$.

THEOREM 3.1. $\operatorname{cl}(V(f)) = \operatorname{cl}(V(\overline{f}))$ for $f \in \mathscr{H}_b(X, X)$.

PROOF. Without loss of generality, we may assume that $\sup_{x \in B_X} ||f(x)|| \le 1$. It is obvious that $\operatorname{cl}(V(f)) \subset \operatorname{cl}(V(\overline{f}))$. Thus it suffices to show that $V(\overline{f}) \subset \operatorname{cl}(V(f))$.

Suppose that $z \in S_{X^{**}}$, $\Psi \in S_{X^{***}}$ and $\Psi(z) = 1$. Hence $\Psi(\overline{f}(z)) \in V(\overline{f})$. By [10, Theorem 1], there is a net $(x_{\alpha}) \subset B_X$ such that (x_{α}) converges polynomial-star to z (i.e., $(P(x_{\alpha}))$ converges to $\overline{P}(z)$ for all scalar valued bounded polynomial P on X). Since

$$\liminf \|x_{\alpha}\| \ge \lim_{\alpha} |\phi(x_{\alpha})| = |\overline{\phi}(z)| = |z(\phi)|$$

for all $\phi \in S_{X^*}$, we have that $\lim_{\alpha} ||x_{\alpha}|| = 1$. Set $y_{\alpha} = \frac{x_{\alpha}}{||x_{\alpha}||}$. Since

$$\lim_{\alpha} Q(y_{\alpha}) = \lim_{\alpha} \frac{1}{\|x_{\alpha}\|^{k}} Q(x_{\alpha}) = \overline{Q}(z)$$

for every $Q \in \mathcal{P}(^kX)$ and every positive integer k, the net (y_α) converges polynomial-star to z.

Let $\varepsilon > 0$ be given. Since f is uniformly continuous on B_X , there exists $\delta > 0$ such that $||f(x) - f(y)|| \le \frac{\varepsilon}{3}$ if $||x - y|| \le \delta$ and $x, y \in B_X$. Choose $0 < \varepsilon_0 < \frac{1}{2}$ so that $\varepsilon_0 + \varepsilon_0^2 < \delta$, and $3\varepsilon_0 \le \epsilon$. As B_{X^*} is $w(X^{***}, X^{**})$ -dense in $B_{X^{***}}$, considering two elements z and $\overline{f}(z)$ in X^{**} there exists $\varphi \in B_{X^*}$ such that

$$|\overline{\varphi}(z) - \Psi(z)| = |\overline{\varphi}(z) - 1| < \frac{\varepsilon_0^2}{4}$$

and

$$\left|\overline{\varphi}(\overline{f}(z)) - \Psi(\overline{f}(z))\right| < \frac{\varepsilon_0^2}{12},$$

which implies that $1 - \frac{\varepsilon_0^2}{4} < \|\varphi\| \le 1$. Set $\psi = \frac{\varphi}{\|\varphi\|}$. We have

$$\begin{split} \left|\overline{\psi}(z) - 1\right| &= \left|\frac{\overline{\varphi}}{\|\varphi\|}(z) - 1\right| \leq \left|\frac{\overline{\varphi}}{\|\varphi\|}(z) - \overline{\varphi}(z)\right| + \left|\overline{\varphi}(z) - 1\right| \\ &\leq (1 - \|\varphi\|) + \frac{\varepsilon_0^2}{4} < \frac{\varepsilon_0^2}{2}, \end{split}$$

and similarly,

$$\left|\Psi(\overline{f}(z))-\overline{\psi}(\overline{f}(z))\right|<\frac{\varepsilon_0}{3}.$$

As (y_{α}) converges polynomial-star to z, we have that

$$1 - \psi(y_{\alpha}) \to 1 - \overline{\psi}(z)$$
 and $\psi \circ f(y_{\alpha}) \to \overline{\psi \circ f}(z)$.

Hence we can choose $y_0 := y_{\alpha_0}$ such that

$$\left|\overline{\psi \circ f}(z) - \psi(f(y_0))\right| < \varepsilon_0/3$$
 and $|1 - \psi(y_0)| < \varepsilon_0^2/2$.

By [5, Theorem 1], there exist $y \in S_X$ and $\phi \in S_{X^*}$ such that $\phi(y) = 1$, $\|\psi - \phi\| < \varepsilon_0$ and $\|y - y_0\| < \varepsilon_0 + \varepsilon_0^2$. By the construction of the Aron-Berner extension \overline{f} it is easily checked that $\overline{\psi \circ f} = \overline{\psi} \circ \overline{f}$, and it follows that

$$\begin{aligned} \left| \Psi(\overline{f}(z)) - \phi(f(y)) \right| \\ &\leq \left| \Psi(\overline{f}(z)) - \overline{\psi}(\overline{f}(z)) \right| + \left| \overline{\psi}(\overline{f}(z)) - \psi(f(y_0)) \right| \\ &+ \left| \psi(f(y_0)) - \phi(f(y_0)) \right| + \left| \phi(f(y_0)) - \phi(f(y)) \right| \\ &\leq \frac{\varepsilon_0}{3} + \frac{\varepsilon_0}{3} + \left\| \psi - \phi \right\| \left\| f(y_0) \right\| + \left\| \phi \right\| \left\| f(y_0) - f(y) \right\| \\ &\leq \frac{2}{3} \varepsilon_0 + \varepsilon_0 + \frac{\varepsilon}{3} < \varepsilon, \end{aligned}$$

which implies that $\Psi(\overline{f}(z)) \in cl(V(f))$, because $\phi(f(y)) \in V(f)$.

COROLLARY 3.2 ([8, Corollary 2.14]). Let $P \in \mathscr{P}(^mX, X)$. Then $cl(V(\overline{P})) = cl(V(P))$, where \overline{P} denotes the Aron-Berner extension of P.

During the preparation of an earlier draft of this paper we became aware that in [1, Lemma 3] the above corollary had been proved for the case $P(x) = x_1^*(x) \dots x_m^*(x)$, where $x_j^* \in X^*$, $j = 1, \dots, m$. We also want to thank María

110 YUN SUNG CHOI, D. GARCÍA, SUNG GUEN KIM AND M. MAESTRE

Acosta for pointing out a mistake that we had in the proof of Theorem 3.1 in that former draft.

REFERENCES

- Acosta, M. D., Guerrero, J. B., and Galán, M. R., *Numerical radius attaining polynomials*, Quarterly J. Math. 54(1) (2003), 1–10.
- Aron, R. M., and Berner, P. D., A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), 3–24.
- Aron, R. M., Cole, B. J., and Gamelin, T. W., Spectra of algebras of analytic functions on a Banach space, J. Reine Angew. Math. 415 (1991), 51–93.
- 4. Aron, R. M., Schottenlocher, M., Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7–30.
- Bollobás, B., An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. 2 (1970), 181–182.
- 6. Bonsall, F. F., and Duncan, J., *Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras*, London Math. Soc. Lecture Note Ser. (1971).
- Carando, D., Extendible polynomials on Banach spaces, J. Math. Anal. Appl. 233 (1999), 359–372.
- Choi, Y. S., García, D., Kim, S. G., and Maestre, M., *The polynomial numerical index of a Banach space*, Proc. Edinburgh Math. Soc. 49 (2006), 32–52.
- 9. Choi, Y. S., and Kim, S. G., Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. (2) 54 (1996), 135–147.
- Davie, A. M., and Gamelin, T. W., A theorem on polynomial-star approximation, Proc. Amer. Math. Soc. 106 (1989), 351–356.
- 11. Harris, L. A., Schwarz lemma in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 1014–1017.
- Harris, L. A., A continuous form of Schwarz's lemma in normed linear spaces, Pacific J. Math. 38 (1971), 635–639.
- Harris, L. A., *The numerical range of holomorphic functions in Banach spaces*, Amer. J. Math. 93 (1971), 1005–1019.
- 14. Lumer, G., Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29-43.
- Zalduendo, I., A canonical extension for analytic functions on Banach spaces, Trans. Amer. Math. Soc. 320 (1990), 747–763.

DEPARTMENT OF MATHEMATICS POSTECH POHANG (790-784) KOREA *E-mail:* mathchoi@postech.ac.kr DEPARTAMENTO DE ANÁLISIS MATEMÁTICO UNIVERSIDAD DE VALENCIA DOCTOR MOLINER 50 46100 BURJASOT (VALENCIA) SPAIN *E-mail:* domingo.garcia@uv.es, manuel.maestre@uv.es

DEPARTMENT OF MATHEMATICS KYUNGPOOK NATIONAL UNIVERSITY TAEGU (702-701) KOREA *E-mail:* sgk317@knu.ac.kr