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ON SPECTRA AND BROWN’S SPECTRAL MEASURES
OF ELEMENTS IN FREE PRODUCTS OF

MATRIX ALGEBRAS
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Abstract
We compute spectra and Brown measures of some non self-adjoint operators in (M2(C), 1

2 Tr) ∗
(M2(C), 1

2 Tr), the reduced free product von Neumann algebra of M2(C) with M2(C). Examples
include AB and A+B, where A and B are matrices in (M2(C), 1

2 Tr) ∗ 1 and 1 ∗ (M2(C), 1
2 Tr),

respectively. We prove thatAB is an R-diagonal operator (in the sense of Nica and Speicher [12])
if and only if Tr(A) = Tr(B) = 0. We show that if X = AB or X = A + B and A,B are not
scalar matrices, then the Brown measure ofX is not concentrated on a single point. By a theorem
of Haagerup and Schultz [9], we obtain that if X = AB or X = A+ B and X �= λ1, then X has
a nontrivial hyperinvariant subspace affiliated with (M2(C), 1

2 Tr) ∗ (M2(C), 1
2 Tr).

1. Introduction

In 1983, L. G. Brown [2] introduced a spectral distribution measure for non-
normal elements in a finite von Neumann algebra with respect to a fixed normal
faithful tracial state, which is called the Brown measure of the operator. Re-
cently, U. Haagerup and H. Schultz [9] proved a remarkable result which states
that if the support of Brown measure of an operator in a type II1 factor con-
tains more than two points, then the operator has a non-trivial hyperinvariant
subspace affiliated with the type II1 factor. In general cases, the computation
of Brown measures of non-normal operators are nontrivial. The first essential
result was given by Haagerup and F. Larsen. In [8], Haagerup and Larsen com-
puted the spectrum and Brown measure of R-diagonal operators in a finite von
Neumann algebra, in terms of the distribution of its radial part. Brown measures
of some non-normal and non-R-diagonal operators, examples include un+u∞,
where un and u∞ are the generators of Zn and Z respectively, in the free product
Zn ∗ Z, and elements of the form Sα + iSβ , where Sα and Sβ are free semi-
circular elements of variance α and β, are computed by P. Biane and F. Lehner
in [1]. The purpose of this paper is to compute the spectra and Brown measures
of some non hermitian operators in (M2(C), 1

2 Tr)∗(M2(C), 1
2 Tr), the reduced

free product von Neumann algebra of M2(C) with M2(C) (cf [3]). Examples
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include AB and A+B, where A and B are matrices in (M2(C), 1
2 Tr) ∗ 1 and

1 ∗ (M2(C), 1
2 Tr), respectively. This paper is organized as follows.

In section 2 we recall some preliminary facts about Brown measures, R-
diagonal operators, Haagerup and Larsen’s result on Brown measures of R-
diagonal operators and some notation used in this paper. In section 3, we
provide some results on the spectra and spectral radius of operators inM2(C)∗
M2(C), the universal free product C*-algebra of M2(C) with M2(C). Firstly
we compute the spectral radius ofAB for two normal matricesA ∈ M2(C)∗ 1
and B ∈ 1 ∗M2(C) relative to M2(C) ∗M2(C). As a corollary, we also get the
spectrum radius of AB for normal matrices A ∈ (M2(C), 1

2 Tr) ∗ 1 and B ∈
1∗(M2(C), 1

2 Tr), relative to the reduced free product von Neumann algebra of
M2(C) withM2(C). Then we obtain the following result: Let A,B be matrices
in M2(C) ∗ 1 and 1 ∗ M2(C), respectively, such that Tr(A) = Tr(B) = 0.
Then σ(AB), the spectrum ofAB, relative toM2(C)∗M2(C), is the closure of
the annulus centered at 0 with inner radius ‖A−1‖−1‖B−1‖−1 and outer radius
‖A‖‖B‖, where we use the convention ∞−1 = 0 and if A is not invertible
then ‖A−1‖ := ∞.

In section 4 we prove that AB is an R-diagonal operator if and only if
Tr(A) = Tr(B) = 0, whereA ∈ (M2(C), 1

2 Tr)∗ 1 and B ∈ 1 ∗ (M2(C), 1
2 Tr).

As a corollary, we explicitly compute the spectrum and Brown measure ofAB
(Tr(A) = Tr(B) = 0) in terms of S-transform of A∗A and B∗B.

In section 5, we develop algebraic techniques used in [4]. Let X ∈ 1 ∗
(M2(C), 1

2 Tr). With respect to the matrix units of (M2(C), 1
2 Tr) ∗ 1, X =(

x1 x2

x3 x4

)
. By [4], (M2(C), 1

2 Tr) ∗ (M2(C), 1
2 Tr) ∼= L(F3) ⊗ M2(C). So

x1, x2, x3, x4 ∈ L(F3). In section 5, we find ∗-free generators h, u, v of L(F3)

(different from the free generators given in [4]) so that we may explicitly write
out x1, x2, x3, x4 in terms of h, u, v.

In section 6, we compute miscellaneous examples of Brown measures of op-
eratorsA+B andAB, whereA ∈ (M2(C), 1

2 Tr)∗1 andB ∈ 1∗(M2(C), 1
2 Tr).

As a corollary, we show that A + B is an R-diagonal operator if and only if
A+ B = 0.

In section 7, we prove the following result: Let A ∈ (M2(C), 1
2 Tr) ∗ 1 and

B ∈ 1 ∗ (M2(C), 1
2 Tr). if X = A + B or X = AB and A,B are not scalar

matrices, then the Brown measure of X is not concentrated on a single point.
As a corollary of Theorem 7.1 of [9], we prove that ifX = A+B orX = AB

and X �= λ1, then X has a nontrivial hyperinvariant subspace affiliated with
(M2(C), 1

2 Tr) ∗ (M2(C), 1
2 Tr).

Many concrete examples of spectra and Brown measures are given in this
paper. For some interesting applications, we refer to [5].
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2. Preliminaries

2.1. Fuglede-Kadison determinant and Brown’s spectral measure

Let M be a finite von Neumann algebra with a faithful normal tracial state τ .
The Fuglede-Kadison determinant [6], � : M → [0,∞[, is given by

�(T ) = exp{τ(log |T |)}, T ∈ M,

with exp{−∞} := 0. For an arbitrary element T in M the function λ →
log�(T − λ1) is subharmonic on C, and its Laplacian

dμT (λ) := 1

2π

2 log�(T − λ1),

in the distribution sense, defines a probability measure μT on C, called the
Brown’s measure[2] of T . From the definition, Brown measure μT only de-
pends on the joint distribution of T and T ∗.

If T is normal, μT is the trace τ composed with the spectral projections of
T . If M = Mn(C) and τ = 1

n
Tr is the normalized trace on Mn(C), then μT is

the normalized counting measure 1
n

(
δλ1 + δλ2 · · · + δλn

)
, where λ1, λ2 · · · , λn

are the eigenvalues of T repeated according to root multiplicity.
The Brown measure has the following properties (see [2], [10]): μT is

the unique compactly supported measure on C such that log�(T − λ1) =∫
C log |z − λ|dμT (z) for all λ ∈ C. The support of μT is contained in σ(T ),

the spectrum of T . μST = μTS for arbitrary S, T in M, and if f (z) is analytic
in a neighborhood of σ(T ), μf (T ) = (μT )f , the push-forward measure of μT
under the map λ → f (λ). If E ∈ M is a projection such that E ∈ Lat T , then
with respect to E, I − E we can write

T =
(
A B

0 C

)
,

where A = ETE and C = (I − E)T (I − E) are elements of M1 = EME

and M2 = (I − E)M(I − E), respectively. Let μA and μC be the Brown
measures of A and C computed relative to M1 and M2, respectively. Then
μT = αμA + (1 − α)μC , where α = τ(E).

For a generalization of Brown measures of sets of commuting operators in
a type II1 factor, we refer to [15].

2.2. R-diagonal operators

In 1995, A. Nica and S. Speicher [12] introduced the class of R-diagonal
operators in non-commutative probability spaces. Recall that an operator T
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in a non-commutative probability space is an R-diagonal operator if the R-
transform Rμ(T,T ∗) of the joint distribution μ(T , T ∗) of T , T ∗ is of the form

Rμ(T,T ∗)(z1, z2) =
∞∑
n=1

αn(z1z2)
n +

∞∑
n=1

αn(z2z1)
n.

Nica and Speicher [12] proved that T is an R-diagonal operator if and only if
T has same ∗-distribution as product UH , where U and H are ∗-free random
variables in some tracial non commutative probability space, U is a Haar
unitary operator and H is positive. If T is an R-diagonal operator, then the
∗-distribution of T is uniquely determined by the distribution of T ∗T = |T |2.
If T is an R-diagonal operator and S is ∗-free with T , then both ST and T S
are R-diagonal operators (see [12]). If T is an R-diagonal operator and n ∈ N,
then T n is also an R-diagonal operator (see [8], [11]). For other important
properties of R-diagonal operators, we refer to [8], [11], [12], [13].

2.3. Brown measures of R-diagonal operators

In [8], Haagerup and Larson explicitly computed the Brown measures of R-
diagonal operators in a finite von Neumann algebra.

Theorem 2.1 (Theorem 4.4 of [8]). Let U,H be ∗-free random variables
in a noncommutative probability space (M, τ ), with U a Haar unitary oper-
ator and H a positive operator such that the distribution μH of H is not a
Dirac measure. Then the Brown measure μUH of UH can be computed as the
following.

(1) μUH is rotation invariant and its support is the annulus with inner radius
‖H−1‖−1

2 and outer radius ‖H‖2.

(2) μUH({0}) = μH({0}) and for t ∈ ]μH({0}), 1],

μUH
(
B
(
0, (SμH2 (t − 1))−1/2

)) = t,

where SμH2 is the S-transform of H 2 and B(0, r) is the open disc with
center 0 and radius r;

(3) μUH is the only rotation invariant symmetric probability measure satis-
fying (2).

Furthermore, if H is invertible, then σ(UH) = suppμUH ; if H is not invert-
ible, then σ(UH) = B(0, ‖H‖2).
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2.4. Some Notation

The following notation will be used in the rest of the paper

• (M, τ ) = (M2(C), 1
2 Tr) ∗ (M2(C), 1

2 Tr) denotes the reduced free pro-
duct von Neumann algebra ofM2(C)withM2(C)with the unique tracial
state τ ;

• M2(C)(1) := (M2(C), 1
2 Tr) ∗ 1 and M2(C)(2) := 1 ∗ (M2(C), 1

2 Tr);

• {Eij }i,j=1,2, {Fij }i,j=1,2 are matrix units of M2(C)(1) and M2(C)(2), re-
spectively;

• P = E11 and Q = F11;

• M ∼= N ⊗M2(C)(1) ∼= N ⊗M2(C)(2). ForX ∈ M,X =
(
x1 x2

x3 x4

)
(1)

=(
x ′

1 x ′
2

x ′
3 x ′

4

)
(2)

means the decomposition is with respect to above matrix

units of M2(C)(1) and M2(C)(2), respectively.

• W0 =
(

1 0
0 1

)
(1)

, W1 =
(

1 0
0 −1

)
(1)

, W2 =
(

0 −1
1 0

)
(1)

,

W3 =
(

0 1
1 0

)
(1)

;

• V0 =
(

1 0
0 1

)
(2)

, V1 =
(

1 0
0 −1

)
(2)

, V2 =
(

0 −1
1 0

)
(2)

,

V3 =
(

0 1
1 0

)
(2)

;

• A,A1, . . . , An denote elements in M2(C)(1), B,B1, . . . , Bn denote ele-
ments in M2(C)(2), X, Y,Z denote general elements in M;

• An element X in M is called centered if τ(X) = 0.

We end this section with the following lemma. The proof is an easy exercise.

Lemma 2.2. V1M2(C)(1)V1 is free with M2(C)(1).

3. Spectra of elements in the universal free product of M2(C) and
M2(C)

Let Å = M2(C)∗M2(C) denote the universal free product C*-algebra ofM2(C)
withM2(C). Then there is a * homomorphism π from Å onto the reduced free
product C*-algebra of M2(C) and M2(C), the C*-subalgebra generated by
M2(C)(1) and M2(C)(2) in M. Since σ(π(a)) ⊆ σ(a) for a ∈ Å, it is useful
to obtain some information of spectrum of AB, where A ∈ M2(C) ∗ 1 and
B ∈ 1 ∗M2(C).
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3.1. “Free product” of normal matrices

Lemma 3.1. LetA ∈ M2(C)∗1 and B ∈ 1∗M2(C) be normal matrices. Then
r(AB) = ‖A‖ · ‖B‖ relative to Å.

Proof. r(AB) ≤ ‖AB‖ ≤ ‖A‖ · ‖B‖. We need only to prove r(AB) ≥
‖A‖·‖B‖. SinceA is a normal matrix, there is a unitary matrixU1 ∈ M2(C)∗1

such thatU1AU
∗
1 =

(
α1 0
0 β1

)
and ‖α1‖ = ‖A‖. Similarly, there is a unitary

matrix U2 ∈ 1 ∗ M2(C) such that U2BU
∗
2 =

(
α2 0
0 β2

)
and ‖α2‖ = ‖B‖.

Let π1(X) = U1XU
∗
1 and π2(Y ) = U2YU

∗
2 be ∗-representations ofM1(C) ∗ 1

and 1 ∗M2(C) to M2(C), respectively. Then there is a ∗-representation π =
π1 ∗ π2 from Å to M2(C) and π(AB) =

(
α1α2 0

0 β1β2

)
. Therefore, α1α2 ∈

σ(π(AB)) ⊆ σ(AB). So r(AB) ≥ |α1α2| = ‖A‖ · ‖B‖.

Corollary 3.2. LetA ∈ M2(C)(1) and B ∈ M2(C)(2) be normal matrices.
Then r(AB) = ‖A‖ · ‖B‖ relative to M.

Proof. We may assume that A and B are diagonal matrices. Then we can
treat AB as an operator in the full free product C∗(Z2 ∗ Z2). Same technique
used in the previous lemma gives the corollary.

3.2. “Free product” of non-normal matrices

It is well-known that two matrices X, Y in M2(C) are unitarily equivalent if
and only if Tr(X) = Tr(Y ),Tr(X2) = Tr(Y 2) and Tr(X∗X) = Tr(Y ∗Y ). The
proof of the following lemma now is an easy exercise.

Lemma 3.3. If A ∈ M2(C) and Tr(A) = 0, then A is unitarily equivalent

to a matrix of form

(
0 α

β 0

)
, where α, β are complex numbers.

Remark 3.4. We have the following useful observations:

•
(

0 1
1 0

)(
0 α

β 0

)(
0 1
1 0

)
=
(

0 β

α 0

)
.

•
(

1 0
0 ei(θ1−θ2)/2

)(
0 |α|eiθ1

|β|eiθ2 0

)(
1 0
0 e−i(θ1−θ2)/2

)
=

ei(θ1+θ2)/2

(
0 |α|

|β| 0

)
.

Lemma 3.5. Let A ∈ M2(C) ∗ 1 and B ∈ 1 ∗M2(C) be matrices such that
Tr(A) = Tr(B) = 0. Then r(AB) = ‖A‖ · ‖B‖ relative to Å.
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Proof. We need only to prove r(AB) ≥ ‖A‖ · ‖B‖. By Lemma 3.3 and
Remark 3.4, there are unitary matrices U,V in M2(C) such that UAU ∗ =(

0 α1

β1 0

)
and VBV ∗ =

(
0 α2

β2 0

)
and |α1| = ‖A‖, |β2| = ‖B‖. Let

π1(X) = UXU ∗ andπ2(Y ) = V YV ∗ be ∗-representations ofM2(C)∗1 and 1∗
M2(C) toM2(C), respectively. Letπ = π1∗π2 be the induced ∗-representation
ofÅ toM2(C). Thenσ(AB) ⊇ σ(π(AB)) = σ(π1(A)π2(B)) = {α1β2, α2β1}.
Therefore, r(AB) ≥ |α1β2| = ‖A‖ · ‖B‖.

Theorem 3.6. Let A ∈ M2(C) ∗ 1 and B ∈ 1 ∗M2(C) be matrices such
that Tr(A) = Tr(B) = 0. Then

σ(AB) = [‖A−1‖−1‖B−1‖−1, ‖A‖‖B‖] ×p [0, 2π ],

where ×p denotes the polar set product {reiθ : r ∈ [‖A−1‖−1‖B−1‖−1,

‖A‖‖B‖], θ ∈ [0, 2π ]}.
Proof. We will prove the theorem for two cases.
Case 1. Either A or B is not invertible. We may assume that A is not

invertible. By Tr(A) = 0, Lemma 3.3 and Remark 3.4,A is unitarily equivalent

to

(
0 α1

0 0

)
. Without loss of generality, we assume that A =

(
0 1
0 0

)
∈

M2(C) ∗ 1. By Lemma 3.3 and Remark 3.4, we may also assume that B =(
0 α

β 0

)
∈ 1 ∗ M2(C) and β ≥ α ≥ 0. We need to prove that σ(AB)

is the closed disc of complex plane with center 0 and radius β. Since A is
unitarily equivalent to eiθA in M2(C) ∗ 1, σ(AB) is rotation invariant. For

θ ∈ [0, 2π ], letU =
(

cos θ sin θ
− sin θ cos θ

)
. Letπ1(X) = X andπ2(Y ) = UYU ∗

be ∗-representations of M2(C) ∗ 1 and 1 ∗M2(C) to M2(C), respectively. Let
π = π1 ∗ π2 be the induced ∗-representation of Å to M2(C). Then

π(AB) = AUBU ∗ =
(−α sin2 θ + β cos2 θ −(α + β) sin θ cos θ

0 0

)
.

So σ(π(AB)) = {−α sin2 θ + β cos2 θ, 0}. Since [0, β] ⊆ [−α, β] =
{−α sin2 θ + β cos2 θ : θ ∈ [0, 2π ]}, [0, β] ⊆ σ(AB). Since σ(AB) is
rotation invariant, σ(AB) contains the closed disc with center 0 and radius β.
By Lemma 3.5, σ(AB) is the closed disc of complex plane with center 0 and
radius β.

Case 2. BothA andB are invertible. By Lemma 3.3 and Remark 3.4, we may

assume that A =
(

0 1
β1 0

)
and B =

(
0 1
β2 0

)
such that β1, β2 ≥ 1. Then
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A−1 =
(

0 β−1
1

1 0

)
and B−1 =

(
0 β−1

2
1 0

)
. We need to prove that σ(AB) =

[1, β1β2] ×p [0, 2π ]. By Lemma 3.5, r(AB) = β1β2 and r((AB)−1) = 1.
This implies that σ(AB) ⊆ [1, β1β2] ×p [0, 2π ]. So we need only to prove
σ(AB) ⊇ [1, β1β2] ×p [0, 2π ].

For φ,ψ ∈ [0, 2π ], let U =
(

cosψ eiφ sinψ
− sinψ eiφ cosψ

)
. Then U is a unitary

matrix. Let π1(X) = UXU ∗ and π2(Y ) = Y be ∗-representations ofM2(C)∗1
and 1 ∗ M2(C) to M2(C), respectively. Let π = π1 ∗ π2 be the induced ∗-
representation of Å to M2(C). Then

π(AB)=
(−β1β2e

iφ sin2 ψ + β2e
−iφ cos2 ψ ∗

∗ β1e
iφ cos2 ψ − e−iφ sin2 ψ

)
.

Let λ1(φ, ψ), λ2(φ, ψ) be the eigenvalues of π(AB). Then

(3.1) λ1(φ, ψ)λ2(φ, ψ) = det(π(AB)) = det(A) det(B) = β1β2,

(3.2) λ1(φ, ψ)+ λ2(φ, ψ)

= (β1e
iφ + β2e

−iφ) cos2 ψ − (β1β2e
iφ + e−iφ) sin2 ψ.

Note that σ(AB) ⊇ {λ1(φ, ψ) : φ,ψ ∈ [0, 2π ]}. We only need to prove that
{λ1(φ, ψ) : φ,ψ ∈ [0, 2π ]} ⊇ [1, β1β2] ×p [0, 2π ]. For this purpose, we
need to show for every r ∈ [1, β1β2], θ ∈ [0, 2π ], there are φ,ψ ∈ [0, 2π ]
such that

(3.3) reiθ + β1β2

r
e−iθ = (β1e

iφ+β2e
−iφ) cos2 ψ−(β1β2e

iφ+e−iφ) sin2 ψ.

Let α = cos2 ψ . Simple computations show that equation (3.3) is equivalent
to the following(
r + β1β2

r

)
cos θ + i(r − β1β2

r

)
sin θ = (α(1 +β1)(1 +β2)− (1 +β1β2)) cosφ

+ i(α(β1 − 1)(β2 + 1)+ (1 − β1β2)) sin φ.

Let


1 = {(
r + β1β2

r

)
cos θ + i

(
r − β1β2

r

)
sin θ : r ∈ [1, β1β2], θ ∈ [0, 2π ]

}
,


2 = {
(α(1 + β1)(1 + β2)− (1 + β1β2)) cosφ

+ i(α(β1 − 1)(β2 + 1)+ (1 − β1β2)) sin φ : α ∈ [0, 1], φ ∈ [0, 2π ]
}
.

Now we need only to prove
1 = 
2. Note that
1 is the union of a family of
ellipses with center the origin point and semimajor axis and semiminor axis
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∣∣r + β1β2

r

∣∣ and
∣∣r − β1β2

r

∣∣, 1 ≤ r ≤ β1β2, respectively. Similarly, 
2 is the
union of a family of ellipses with center the origin point and semimajor axis and
semiminor axis |α(1+β1)(1+β2)−(1+β1β2)| and |α(β1 −1)(β2 +1)+(1−
β1β2)|, 0 ≤ α ≤ 1, respectively. Note that the “largest” ellipse in 
1 is with
semimajor axis and semiminor axis |1+β1β2| and |β1β2 −1|, respectively; the
“smallest” ellipse in 
1 is with semimajor axis and semiminor axis 2

√|β1β2|
and 0, respectively. The “largest” ellipse in 
2 is with semimajor axis and
semiminor axis |1 + β1β2| and |β1β2 − 1|, respectively; the “smallest” ellipse
in 
2 is with semimajor axis and semiminor axis 0 and 2β1(β2−1)

β1+1 . So both 
1

and 
2 are the closure of the domain enclosed by the ellipse with center the
origin point and semimajor axis and semiminor axis |1+β1β2| and |β1β2 −1|,
respectively. Thus 
1 = 
2.

4. R-diagonal operators in M

In this section, we prove the following result. We will use the notation intro-
duced in section 2.4.

Theorem 4.1. In M, let A ∈ M2(C)(1) and B ∈ M2(C)(2). Then AB is an
R-diagonal operator if and only if τ(A) = τ(B) = 0.

To prove Theorem 4.1, we need the following lemmas.

Lemma 4.2. {W1, V1,W3V3}′′ ∼= L(Z2) ∗ L(Z2) ∗ L(Z).
Proof. Let U = W3V3. Then U is a Haar unitary operator. We need

only to prove that U is * free with the von Neumann subalgebra generated
by W1 and V1. Let g1g2 · · · gn be an alternating product of {Un : n �= 0}
and {W1, V1,W1V1, V1W1,W1V1W1, V1W1V1, . . .}. By regrouping, it is an al-
ternating product of {W1,W1W3,W

∗
3W1,W

∗
3W1W3,W3,W

∗
3 } and {V1, V3V1,

V1V
∗

3 , V3V1V
∗

3 , V3, V
∗

3 }. Thus the trace is 0.

Lemma 4.3.

(
0 α1

β1 0

)
(1)

(
0 α2

β2 0

)
(2)

is an R-diagonal operator.

Proof. Note that(
0 α1

β1 0

)
(1)

(
0 α2

β2 0

)
(2)

=
(
α1 0
0 β1

)
(1)

(
0 1
1 0

)
(1)

(
0 1
1 0

)
(2)

(
β2 0
0 α2

)
(2)

.

By Lemma 4.2 and basic properties of R-diagonal operators given in 2.2, we
prove the lemma.
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Lemma 4.4. With the assumption of Theorem 4.1 and assume AB is an
R-diagonal operator and τ(A2) �= 0. Then τ(B) = 0.

Proof. Since AB is an R-diagonal operator, τ(AB) = 0. Since A,B are
∗-free, τ(A)τ(B) = τ(AB) = 0. If τ(B) = 0, then done. Otherwise, assume
τ(A) = 0. Then 0 = τ(ABAB) = τ(A2B)τ(B) = τ(A2)(τ (B))2. By the
assumption, τ(B) = 0.

Lemma 4.5. Let B ∈ M2(C)(2) and λ be a complex number. Then
σ(E12B) = σ(E12(λ+ B)).

Proof. By Jacobson’s theorem,

σ(E12(λ+ B)) ∪ {0} = σ(E11E12(λ+ B)) ∪ {0}
= σ(E12(λ+ B)E11) ∪ {0}
= σ(E12BE11) ∪ {0} = σ(BE12) ∪ {0}.

Proof of Theorem 4.1. If τ(A) = τ(B) = 0, then by Lemma 3.3 and
Lemma 4.3, AB is an R-diagonal operator. Conversely, assume that AB is an
R-diagonal operator. Then 0 = τ(AB) = τ(A) · τ(B). So either τ(A) = 0 or
τ(B) = 0. Without loss of generality, we assume that τ(A) = 0. If τ(A2) �= 0,
then τ(B) = 0 by Lemma 4.4. If τ(A2) = 0, then A is unitary equivalent to
αE12. We may assume that A = E12. By Theorem 2.1, if E12B is an R-
diagonal operator, then (r(E12B))

2 = τ(B∗E21E12B) = τ(E21E12BB
∗) =

‖E12‖2
2 ·‖B‖2

2. Note thatE12(B−τ(B)) is an R-diagonal operator, (r(E12(B−
τ(B)))2 = ‖E12‖2

2 · ‖B − τ(B)‖2
2. By Lemma 4.5, ‖B‖2

2 = ‖B − τ(B)‖2
2.

This implies that τ(B) = 0. This ends the proof.

Combining Theorem 4.1, Theorem 2.1 and the S-transform of Voiculescu
(see [16], [17]), we have the following theorem (It is interesting to compare
the following theorem and Theorem 3.6).

Theorem 4.6. Let A ∈ M2(C)(1), B ∈ M2(C)(2) and τ(A) = τ(B) = 0.
Then

(1) μAB is rotation invariant;

(2) σ(AB) = suppμAB = [‖A−1‖−1
2 ‖B−1‖−1

2 , ‖A‖2‖B‖2] ×p [0, 2π ];

(3) μAB({0}) = max{μA∗A({0}), μB∗B({0})} and

μAB(B(0, (SμA∗ASμB∗B (t − 1))−1/2)) = t, for t ∈ [μAB({0}), 1].
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5. Algebraic techniques

For X ∈ M, define

�(X) =
(
E11XE11 E11XE21

E12XE11 E12XE21

)
.

Then � is a ∗-isomorphism from M onto E11ME11 ⊗ M2(C)(1). We will
identify M withE11ME11 ⊗M2(C)(1) by the canonical isomorphism�. In [4],
K. Dykema proved that E11ME11

∼= L(F3). For B ∈ M2(C)(2), we may write

B =
(
b11 b12

b21 b22

)

with respect to matrix units in M1. Then bij ∈ L(F3). In this section, we will
develop the algebraic techniques used in [4]. Combining the matrix techniques,
we may explicitly express bij in terms of free generators of L(F3).

Let �{W1, V1} be the set of words generated by W1, V1. Note that W 2
1 =

V 2
1 = 1 and τ(W1) = τ(V1) = 0. The following observation is crucial in [4].

The proof is an easy exercise.

Lemma 5.1. τ(g1g2 · · · gn) = 0 for an alternating product of �{W1, V1} \
{1,W1} and {E12, E21}.

Recall thatP = E11 andQ = F11. LetW be the “polar” part of (1−P)QP
and U = E12W . The following corollary is a special case of Theorem 3.5 of
[4].

Corollary 5.2. U is a Haar unitary operator in MP = PMP and U ,
PQP are ∗-free in MP .

With the canonical identification of M with MP ⊗M2(C)(1),

Q =
(

PQP
√
PQP − (PQP)2U

U ∗√PQP − (PQP)2 U ∗(1 − PQP)U

)
.

By [16], the distribution ofPQP (relative to MP ) is non-atomic and the density
function is

(5.1) ρ(t) = 1

π

1√
1
4 − (

1
2 − t

)2
, 0 ≤ t ≤ 1.

By Corollary 5.2, the von Neumann subalgebra M1 generated by M2(C)(1)
andQ is ∗-isomorphic to L(F2)⊗M2(C)(1). Since M1 is also ∗-isomorphic to
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M2(C)∗L(Z2),M2(C)∗L(Z2) ∼= L(F2)⊗M2(C), which is proved by Dykema
in [4].

Since V1 = 2Q− 1,

V1 =
(

2PQP − 1 2
√
PQP − (PQP)2U

2U ∗√PQP − (PQP)2 U ∗(1 − 2PQP)U

)
.

Simple computation shows that the density function of 2PQP − 1 is

σ(t) = 1

π

1√
1 − t2

, −1 ≤ t ≤ 1.

Let H = 2PQP − 1, then

V1 =
(

H
√

1 −H 2U

U ∗√1 −H 2 −U ∗HU

)
.

Let H = V |H | be the polar decomposition of H . Since H is a symmetric
selfadjoint operator, V 2 = 1 and V is independent with the von Neumann
algebra generated by |H | in the classical probability sense. Let h = |H |, u =
VU, v = UV . Then u, v are Haar unitary operators and the distribution of h
relative to MP is non-atomic.

Lemma 5.3. h, u, v are * free.

Proof. Let g1g2 · · · gn be an alternating product of elements of � =
{|H |}′′ � CI , {(VU)n : n �= 0}, {(UV )n : n �= 0}. By regrouping, it is an
alternating product of elements of {�, V , V�,�V, V�V } and {Un : n �= 0}.
SinceH andU are ∗-free, {�, V , V�,�V, V�V } and {Un : n �= 0} are free.
Since V and � are independent, τ(V S) = τ(SV ) = 0 for S ∈ �. This implies
that τ(g1g2 · · · gn) = 0.

By simple computations, we have the following:

V1E11V1 =
(

h2
√

1 − h2hu

u∗h
√

1 − h2 u∗(1 − h2)u

)
,(5.2)

V1E12V1 =
(

HU ∗√1 −H 2 −HU ∗HU

U ∗√1 −H 2U ∗√1 −H 2 −U ∗√1 −H 2U ∗HU

)
(5.3)

=
(

hv∗√1 − h2 −hv∗hu

u∗√1 − h2v∗√1 − h2 −u∗√1 − h2v∗hu

)
.(5.4)
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By Lemma 2.2, M ∼= M2(C)(1) ∗ (V1M2(C)(1)V1) ∼= MP ⊗M2(C)(1). With
this isomorphism, MP is the von Neumann algebra generated by h, u and v
by (5.2) and (5.4). So MP

∼= L(F3). By simple computations, we have

V1

(
α β

γ σ

)
(1)

V1 =
(
b11 b12

b21 b22

)
,

where

b11 = σ + (α − σ)h2 + γ
√

1 − h2vh+ βhv∗√1 − h2,

b12 = (α − σ)h
√

1 − h2u+ γ
√

1 − h2v
√

1 − h2u− βhv∗hu,

b21 = (α − σ)u∗h
√

1 − h2 − γ u∗hvh+ βu∗√1 − h2v∗√1 − h2,

b22 = α + (σ − α)u∗h2u− γ u∗hv
√

1 − h2u− βu∗√1 − h2v∗hu.

Theorem 5.4. M∼=L(F3) ⊗M2(C)(1); furthermore, let B =
(
α β

γ σ

)
(2)

in M2(C)(2), then with respect to the matrix units {Eij }i,j=1,2 ⊂ M2(C)(1),

B =
(
b11 b12

b21 b22

)
(1)

, where bij are given as above.

Example 5.5. In Theorem 5.4, let β = γ = 0. Then we have(
α 0
0 σ

)
(2)

=
(

σ + (α − σ)h2 (α − σ)h
√

1 − h2u

(α − σ)u∗h
√

1 − h2 α + (σ − α)u∗h2u

)
(1)

.

Example 5.6. In Theorem 5.4, let α = σ and γ = 0. Then we have(
α β

0 α

)
(2)

=
(

α + βhv∗√1 − h2 −βhv∗hu

βu∗√1 − h2v∗√1 − h2 α − βu∗√1 − h2v∗hu

)
(1)

.

Remark 5.7. By equation (5.2), the distribution of h2 is the distribution of
E11V1E11V1E11 relative toMP . So the distribution of h2 is same as the distri-
bution of PQP (relative to MP ). By [16], the distribution of PQP (relative
to MP ) is non-atomic and the density function is

ρ(t) = 1

π

1√
1
4 − (

1
2 − t

)2
, 0 ≤ t ≤ 1.
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6. Miscellaneous examples

Example 6.1. We compute the Brown spectrum of αE12 + βF12. Let F12 =(
0 1
0 0

)
(2)

=
(
b1 b2

b3 b4

)
(1)

. Then

(αE12 + βF12)
2 = αβ(E12F12 + F12E12) = αβ(E12 + F12)

2

= αβ

(
b3 b1 + b4

0 b3

)
(1)

.

Soμ(αE12+βF12)2 = μαβb3 . By equation (5.3), the distribution ofb3 is same as the
distribution of (U ∗√1 −H 2)2. Since U ∗√1 −H 2 is an R-diagonal operator,
(U ∗√1 −H 2)2 is also an R-diagonal operator. Since the distribution ofαE12+
βF12 is rotation invariant, μαE12+βF12 = μ√|αβ|b, where b = U ∗√1 −H 2.
Simple computations show that (or by Proposition 5.10 and Corollary 5.11
of [5])

dμb(z) = 1

π

1

(1 − r2)2
drdθ, 0 ≤ r ≤ 1√

2
.

Hence

dμαE12+βF12(z) = dμ√|αβ|b(z) = 1

π

|αβ|3/2
(|αβ| − r)2

drdθ, 0 ≤ r ≤
√ |αβ|

2

and

σ(αE12 + βF12) = B
(

0,

√ |αβ|
2

)
.

Corollary 6.2. r(αE12 + βF12) =
√

|αβ|
2 .

Corollary 6.3. Let A ∈ M2(C)(1) and B ∈ M2(C)(2). Then A + B is an
R-diagonal operator if and only if A+ B = 0.

Proof. Indeed, ifA+B is an R-diagonal operator, then τ(A+B) = 0. So
we may assume that τ(A) = τ(B) = 0. Let λ,−λ and η,−η be the spectra of
A and B, respectively. Then 0 = τ((A+ B)2) = τ(A2)+ τ(B2) = λ2 + η2.
By simple computation we have 0 = τ((A + B)4) = τ(A4) + τ(B4) +
4τ(A2)τ (B2) = λ4 + η4 + 4λ2η2 = (λ2 + η2)2 + 2λ2η2 = 2λ2η2. Thus
λ = η = 0. This implies thatA andB are unitary equivalent to αE12 and βF12,

respectively. By Corollary 6.2, r(A+B) =
√

|αβ|
2 .On the other hand, since we

assume thatA+B is an R-diagonal operator, by Theorem 2.1, (r(A+B))2 =
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τ((A∗ + B∗)(A + B)) = τ((ᾱE21 + β̄F21)(αE12 + βF12)) = |α|2+|β|2
2 . So

|α|2 + |β|2 = |αβ|. This implies that α = 0 and β = 0. Hence A+ B = 0.

Example 6.4. We compute the spectrum and Brown spectrum of

X =
(

1 0
0 0

)
(1)

(
α β

0 α

)
(2)

.

By Example 5.6, we have the following

X =
(

1 0
0 0

)
(1)

(
α β

0 α

)
(2)

=
(

1 0
0 0

)
(1)

(
α + βhv∗√1 − h2 −βhv∗hu

βu∗√1 − h2v
√

1 − h2 α − βu∗√1 − h2v∗hu

)
(1)

=
(
α + βhv∗√1 − h2 −βhv∗hu

0 0

)
(1)

.

So σ(X) = {0} ∪ σ (α + βhv∗√1 − h2
)

and μX = 1
2δ0 + 1

2μα+βhv∗√1−h2 .

Note that μhv∗√1−h2 = μv∗√1−h2h and v∗√1 − h2h is an R-diagonal operator.
We have the following computations:∥∥√1 − h2h

∥∥2
2 = τP ((1 − h2)h2) = τP ((1 − PQP)PQP)

=
∫ 1

0

1

π

t(1 − t)dt√
1
4 − (

1
2 − t

)2
= 1

8
,

∥∥(√1 − h2h
)−1∥∥2

2 = τP (((1 − h2)h2)−1) = τP (((1 − PQP)PQP)−1)

=
∫ 1

0

1

π

dt

t (1 − t)

√
1
4 − (

1
2 − t

)2
= ∞.

By Theorem 2.1,

σ(X) = suppμX = {0} ∪ B
(
α, |β|/2√

2
)
.

Example 6.5. We compute the spectrum and Brown spectrum of

Y =
(

0 1
0 0

)
(1)

(
α 0
0 β

)
(2)

.
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By Example 5.5, we have the following

Y =
(

0 1
0 0

)
(1)

(
α 0
0 β

)
(2)

=
(

0 1
0 0

)
(1)

(
β + (α − β)h2 (α − β)h

√
1 − h2u

(α − β)u∗h
√

1 − h2 α + (β − α)u∗h2u

)
(1)

=
(
(α − β)u∗h

√
1 − h2 α + (β − α)u∗h2u

0 0

)
(1)

.

Since u∗h
√

1 − h2 is an R-diagonal operator, similar computations as Ex-
ample 6.4, we have

σ(Y ) = suppμY = B
(
0, |α − β|/2√

2
)
.

Example 6.6. We compute the spectrum and Brown spectrum of

Z = (1 + αE12)(1 + βF12) =
(

1 α

0 1

)
(1)

(
1 β

0 1

)
(2)

.

For λ ∈ C, we have

Z − λ1 = (1 + αE12)(1 + βF12)− λ(1 + αE12)(1 − αE12)

= (1 + αE12)(λαE12 + βF12 − (λ− 1)).

This implies that λ ∈ σ(Z) if and only if λ − 1 ∈ σ(λαE12 + βF12). By
Example 6.1, λ− 1 ∈ σ(λαE12 + βF12) if and only if

|λ− 1|2 ≤ |αβ||λ|
2

.

So

σ(Z) =
{
λ ∈ C : |λ− 1|2 ≤ |αβ||λ|

2

}
.

In the following, we will show that suppμZ ⊇ ∂σ(Z) = {
λ ∈ C : |λ− 1|2 =

|αβ||λ|
2

}
. For this purpose, we need only to prove that suppμZ−1 ⊇ ∂σ(Z−1) ={

λ ∈ C : |λ|2 = |αβ||λ+1|
2

}
.
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Note that �(1 + αE12) = 1. For λ ∈ C, we have

log�((Z − 1)− λ)

= log�((1 + αE12)(1 + βF12)− (1 + λ)(1 + αE12)(1 − αE12))

= log�(1 + αE12)+ log�(1 + βF12 − λ+ (1 + λ)αE12)

= log�((1 + λ)αE12 + βF12 − λ).

By Example 6.1, μ(1+λ)αE12+βF12 = μ√|1+λ||αβ|b. Hence,

log�((Z − 1)− λ)

= log�(
√|1 + λ||αβ|b − λ)

= log�

(
b − λ√|1 + λ||αβ|

)
− log

|λ|√|1 + λ||αβ| + log |λ|.

Since b is an R-diagonal operator, this implies that

(6.1) log�

(
b − |λ|√|1 + λ||αβ|

)

= log
|λ|√|1 + λ||αβ| − log |λ| + log�((Z − 1)− λ).

Suppose λ0 ∈ ∂σ(Z − 1) and λ0 /∈ suppμZ−1. Then there is δ > 0 such that
B(λ0, δ) ⊂ C \ suppμZ−1. Now log�((Z− 1)−λ) is a harmonic function on
B(λ0, δ). Since τ((Z − 1)n) = 0 for all n = 1, 2, . . .. By Lemma 4.3 of [8],
for λ ∈ C such that |λ| ≥ r(Z − 1), log�((Z − 1) − λ) = log |λ|. By the
uniqueness of harmonic functions, we have log�((Z − 1)− λ) = log |λ| for
λ ∈ B(λ0, δ). By equation (6.1), this implies that

(6.2) log�

(
b − |λ|√|1 + λ||αβ|

)
= log

|λ|√|1 + λ||αβ| .

Let r = |λ|√|1+λ||αβ| . Then equation (6.2) implies that

log�(b − r) = log r

for r ∈ (s, t) ⊆ [
0, 1√

2

]
. Since b is an R-diagonal operator, this implies that

log�(b− z) is harmonic on the annulus with inner radius s and outer radius t ,

0 < s < t < 1√
2
. By Theorem 2.1, suppμb = B

(
0, 1√

2

)
. It is a contradiction.



94 junsheng fang, don hadwin and xiujuan ma

7. Hyperinvariant subspaces for operators in M

Lemma 7.1. ForX ∈ M, if suppμX = {λ}, then τ(Xn) = λn for n = 1, 2, . . ..

Proof. τ(Xn) =
∫

suppμX

zn dμX(z) = λn.

The converse of Lemma 7.1 is not true. Since for an R-diagonal operator
X, we have τ(Xn) = 0 for n = 1, 2, . . ..

Proposition 7.2. LetX = A+B, whereA ∈ M2(C)(1) andB ∈ M2(C)(2).
If A,B are not scalar matrices, then suppμX contains more than two points.

Proof. Suppose A,B are not scalar matrices. Since A + B = τ(A)1 +
τ(B)1+(A−τ(A)1)+(B−τ(B)1), to show suppμX contains more than two
points, we need only to show that μ(A−τ(A)1)+(B−τ(B)1) contains more than two
points. So we may assume that τ(A) = τ(B) = 0 and A,B �= 0. Assume that
the spectra of A and B are λ1,−λ1 and λ2,−λ2. If τ(A2) = τ(B2) = 0, then
A and B are unitarily equivalent to αE12 and βF12 in M2(C)(1) and M2(C)(2),
respectively. Thus μX = μαE12+βF12 . By Example 6.1, suppμX contains more
than two points. Now suppose τ(A2) �= 0 or τ(B2) �= 0. Without loss of
generality, we assume that λ2

1 = τ(A2) �= 0. Note that τ(A + B) = 0 and
τ((A + B)2) = τ(A2) + τ(B2) = λ2

1 + λ2
2. If λ2

1 + λ2
2 �= 0, by Lemma 7.1,

suppμX contains more than two points. Suppose λ2
1 + λ2

2 = 0. Then τ(B2) =
λ2

2 �= 0. Simple computations show that

τ((A+ B)4) = τ(A4)+ τ(B4)+ 4τ(A2)τ (B2)

= λ4
1 + λ4

2 + 4λ2
1λ

2
2 = (λ2

1 + λ2
2)

2 + 2λ2
1λ

2
2 = 2λ2

1λ
2
2 �= 0.

Note that τ(A + B) = 0. By Lemma 7.1, suppμX contains more than two
points.

Proposition 7.3. Let X = AB, where A ∈ M2(C)(1) and B ∈ M2(C)(2).
If A,B are not scalar matrices, then suppμX contains more than two points.

Proof. Suppose A,B are not scalar matrices. We consider the following
cases:

Case 1. τ(A) = τ(B) = 0 and A,B �= 0. By Theorem 4.1, AB( �= 0) is an
R-diagonal operator. So suppμX contains more than two points.

Case 2. τ(A) = 0, τ (B) �= 0 or τ(A) �= 0, τ (B) = 0. Without loss of
generality, we assume that τ(A) = 0 and τ(B) �= 0. Then τ(AB) = 0 and
τ(ABAB) = τ(A2)τ (B). If τ(A2) �= 0, then τ(ABAB) �= 0. By Lemma 7.1,
suppμX contains more than two points. If τ(A2) = 0, then A is unitarily
equivalent to αE12 in M2(C)(1). By Lemma 4.5, μX = μαE12(B−τ(B)). Since
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αE12(B − τ(B)( �= 0) is an R-diagonal operator, suppμX contains more than
two points.

Case 3. τ(A) �= 0 and τ(B) �= 0. We may assume that τ(A) = τ(B) = 1.
Let A = 1 + A1 and B = 1 + B1. Then τ(A1) = τ(B1) = 0.

Subcase 3.1. τ(A2
1) �= 0 or τ(B2

1 ) �= 0. We may assume that τ(A2
1) �= 0.

Simple computation shows that τ(AB) = 1, τ(ABAB) = 1+ τ(A2
1)+ τ(B2

1 )

and τ((AB)3) = 1+3(τ (A2
1)+τ(B2

1 ))+9τ(A2
1)τ (B

2
1 ). If τ(A

2
1)+τ(A2

2) �= 0,
then τ(ABAB) �= 1. By Lemma 7.1, suppμX contains more than two points.
If τ(A2

1) + τ(A2
2) = 0, then τ(A2

2) = −τ(A2
1) �= 0. So τ((AB)3) �= 1. By

Lemma 7.1 again, suppμX contains more than two points.
Subcase 3.2. τ(A2

1) = τ(A2
2) = 0. Then A1 and A2 are unitarily equi-

valent to αE12 and βF12 in M2(C)(1) and M2(C)(2), respectively. So μX =
μ(1+αE12)(1+βF12). We may assume thatA =

(
1 α

0 1

)
(1)

andB =
(

1 β

0 1

)
(2)

.

By Example 6.6, suppμX contains more than two points.

Corollary 7.4. Let X = AB or X = A + B, where A ∈ M2(C)(1) and
B ∈ M2(C)(2). If X �= λ1, then X has a nontrivial hyperinvariant subspace
relative to M.

Proof. If X = A + B and A = λ1 or B = λ1, then X = λ1 + B or
X = λ1 + A. If X is not a scalar matrix and η is an eigenvalue of X, then
ker(X − η1) is a nontrivial hyperinvariant subspace of X. If X = A+ B and
A,B �= λ1, then suppμX contains more than two points by Proposition 7.3.
By [9], X has a nontrivial hyperinvariant subspace relative to M. If X = AB

and A = λ1 or B = λ1, then X = λB or X = λA. If X is not a scalar matrix
and η is an eigenvalue of X, then ker(X − η1) is a nontrivial hyperinvariant
subspace of X. If X = AB and A,B �= λ1, then suppμX contains more than
two points. By [9], X has a nontrivial hyperinvariant subspace relative to M.
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