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ON SPECTRA AND BROWN’S SPECTRAL MEASURES
OF ELEMENTS IN FREE PRODUCTS OF
MATRIX ALGEBRAS
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Abstract
We compute spectra and Brown measures of some non self-adjoint operators in (M (C), % Tr) *

(M>(Q), % Tr), the reduced free product von Neumann algebra of M,(C) with M,(C). Examples

include AB and A + B, where A and B are matrices in (M2(C), § Tr) * 1 and 1 % (M2(C), 5 Tr),
respectively. We prove that A B is an R-diagonal operator (in the sense of Nica and Speicher [12])
if and only if Tr(A) = Tr(B) = 0. We show thatif X = ABor X = A+ B and A, B are not
scalar matrices, then the Brown measure of X is not concentrated on a single point. By a theorem
of Haagerup and Schultz [9], we obtain that if X = AB or X = A+ B and X # X1, then X has
a nontrivial hyperinvariant subspace affiliated with (M>(C), % Tr) % (M>(C), % Tr).

1. Introduction

In 1983, L. G. Brown [2] introduced a spectral distribution measure for non-
normal elements in a finite von Neumann algebra with respect to a fixed normal
faithful tracial state, which is called the Brown measure of the operator. Re-
cently, U. Haagerup and H. Schultz [9] proved a remarkable result which states
that if the support of Brown measure of an operator in a type II; factor con-
tains more than two points, then the operator has a non-trivial hyperinvariant
subspace affiliated with the type II; factor. In general cases, the computation
of Brown measures of non-normal operators are nontrivial. The first essential
result was given by Haagerup and F. Larsen. In [8], Haagerup and Larsen com-
puted the spectrum and Brown measure of R-diagonal operators in a finite von
Neumann algebra, in terms of the distribution of its radial part. Brown measures
of some non-normal and non-R-diagonal operators, examples include u,, + 1,
where u,, and u, are the generators of Z,, and Z respectively, in the free product
Z, = Z, and elements of the form S, 4 iSg, where S, and Sg are free semi-
circular elements of variance o and g, are computed by P. Biane and F. Lehner
in [1]. The purpose of this paper is to compute the spectra and Brown measures
of some non hermitian operators in (M;(C), % Tr) * (M, (C), % Tr), the reduced
free product von Neumann algebra of M,(C) with M,(C) (cf [3]). Examples
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include AB and A + B, where A and B are matrices in (M, (C), % Tr) % 1 and
1 % (M,(C), % Tr), respectively. This paper is organized as follows.

In section 2 we recall some preliminary facts about Brown measures, R-
diagonal operators, Haagerup and Larsen’s result on Brown measures of R-
diagonal operators and some notation used in this paper. In section 3, we
provide some results on the spectra and spectral radius of operators in M (C) *
M, (C), the universal free product C*-algebra of M,(C) with M,(C). Firstly
we compute the spectral radius of A B for two normal matrices A € M (C) 1
and B € 1 x* M,(C) relative to M, (C) x M,(C). As a corollary, we also get the
spectrum radius of AB for normal matrices A € (M,(C), %Tr) ¥ 1 and B €
1% (M5(Q), % Tr), relative to the reduced free product von Neumann algebra of
M, (C) with M;(C). Then we obtain the following result: Let A, B be matrices
in M>(C) = 1 and 1 * M,(C), respectively, such that Tr(A) = Tr(B) = 0.
Then o (A B), the spectrum of A B, relative to M, (C) x M;(C), is the closure of
the annulus centered at 0 with inner radius ||A~"'||~!||B~"||~! and outer radius
Al B]l, where we use the convention co~! = 0 and if A is not invertible
then |A~!| := oo.

In section 4 we prove that AB is an R-diagonal operator if and only if
Tr(A) = Tr(B) = 0, where A € (M»(C), 3 Tr) 1 and B € 1% (M>(C), 3Tr).
As a corollary, we explicitly compute the spectrum and Brown measure of AB
(Tr(A) = Tr(B) = 0) in terms of S-transform of A*A and B*B.

In section 5, we develop algebraic techniques used in [4]. Let X € 1 x
(M>(C), § Tr). With respect to the matrix units of (M>(C), $Tr) x 1, X =
<2 ﬁ) By [4], (Ma(C), L Tr) % (M5(C), 1 Tr) = L(F3) ® Ma(C). So
X1, X2, X3, x4 € L(F3). In section 5, we find *x-free generators &, u, v of L(F3)
(different from the free generators given in [4]) so that we may explicitly write
out x1, X2, X3, X4 in terms of &, u, v.

In section 6, we compute miscellaneous examples of Brown measures of op-
erators A+ B and AB, where A € (M>(C), 3 Tr)x1and B € 1x(M>(C), § Tr).
As a corollary, we show that A + B is an R-diagonal operator if and only if
A+B=0.

In section 7, we prove the following result: Let A € (M,(C), % Tr) % 1 and
B e 1x (MO, %Tr). if X =A+ Bor X = AB and A, B are not scalar
matrices, then the Brown measure of X is not concentrated on a single point.
As a corollary of Theorem 7.1 of [9], we prove thatif X = A+ Bor X = AB
and X # Al, then X has a nontrivial hyperinvariant subspace affiliated with
(M>(C), $ Tr) * (Ma(C), 4 Tr).

Many concrete examples of spectra and Brown measures are given in this
paper. For some interesting applications, we refer to [5].
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2. Preliminaries

2.1. Fuglede-Kadison determinant and Brown’s spectral measure

Let ./ be a finite von Neumann algebra with a faithful normal tracial state t.
The Fuglede-Kadison determinant [6], A : M — [0, ool, is given by

A(T) = explz(log T}, T e L,

with exp{—oo} := 0. For an arbitrary element T in ./ the function A —
log A(T — A1) is subharmonic on C, and its Laplacian

diir () = == 7 log AT — A1),
2
in the distribution sense, defines a probability measure ur on C, called the
Brown’s measure[2] of T. From the definition, Brown measure wy only de-
pends on the joint distribution of 7" and T*.

If T is normal, p7 is the trace T composed with the spectral projections of
T.If M = M,(C)and T = % Tr is the normalized trace on M,,(C), then wur is
the normalized counting measure % (8;1 +6, -+ BM), where Ay, Ay -+ -, A,
are the eigenvalues of T repeated according to root multiplicity.

The Brown measure has the following properties (see [2], [10]): ur is
the unique compactly supported measure on C such that log A(T — A1) =
fc log |z — Aldur(z) for all A € C. The support of w7 is contained in o (T),
the spectrum of T'. usr = urs for arbitrary S, T in ., and if f(z) is analytic
in a neighborhood of o (T), p sty = (ur)y, the push-forward measure of
under the map A — f(1).If E €  is a projection such that E € Lat T, then
with respect to E, I — E we can write

A B
=5 ¢)
where A = ETE and C = (I — E)T(I — E) are elements of /#, = EME
and M, = (I — E)A(I — E), respectively. Let us and e be the Brown
measures of A and C computed relative to .4, and .#,, respectively. Then
ur =apus + (1 —a)uc, where o = t(E).
For a generalization of Brown measures of sets of commuting operators in
a type II; factor, we refer to [15].

2.2. R-diagonal operators

In 1995, A. Nica and S. Speicher [12] introduced the class of R-diagonal
operators in non-commutative probability spaces. Recall that an operator T
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in a non-commutative probability space is an R-diagonal operator if the R-
transform R, (r 7+ of the joint distribution (T, T*) of T, T* is of the form

oo oo
Rurr(z1.22) = Y en(2122)" + Y an(z221)".

n=1 n=1

Nica and Speicher [12] proved that 7" is an R-diagonal operator if and only if
T has same *-distribution as product U H, where U and H are *-free random
variables in some tracial non commutative probability space, U is a Haar
unitary operator and H is positive. If T is an R-diagonal operator, then the
s-distribution of 7 is uniquely determined by the distribution of T*T = |T|%.
If T is an R-diagonal operator and S is *-free with T, then both ST and T'S
are R-diagonal operators (see [12]). If T is an R-diagonal operator and n € N,
then T" is also an R-diagonal operator (see [8], [11]). For other important
properties of R-diagonal operators, we refer to [8], [11], [12], [13].

2.3. Brown measures of R-diagonal operators

In [8], Haagerup and Larson explicitly computed the Brown measures of R-
diagonal operators in a finite von Neumann algebra.

THEOREM 2.1 (Theorem 4.4 of [8]). Let U, H be *-free random variables
in a noncommutative probability space (M, t), with U a Haar unitary oper-
ator and H a positive operator such that the distribution py of H is not a
Dirac measure. Then the Brown measure juyy of U H can be computed as the
Jollowing.

(1) pyg is rotation invariant and its support is the annulus with inner radius
|H! ||2_1 and outer radius | H ||».

(2) nuu({0h) = uu({0}) and for t € Juy ({0}), 11,
nun (B0, (S, (t — 1)) =1,
where S, , is the S-transform of H 2 and B(0, r) is the open disc with

center 0 and radius r;

(3) wuyup is the only rotation invariant symmetric probability measure satis-
fying (2).

Furthermore, if H is invertible, then o (U H) = supp uyg, if H is not invert-
ible, then o (UH) = B(0, || H||2).
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2.4. Some Notation
The following notation will be used in the rest of the paper
o (M,T) = (M(Q), %Tr) * (M, (O), %Tr) denotes the reduced free pro-
duct von Neumann algebra of M, (C) with M, (C) with the unique tracial
state T;
o My(Q)y := (Ma(Q), 3 Tr) * 1 and M2(C)p) := 1 % (M2(Q), 1 Tr);
() {Eij}i’jzl,z, {Fij}iyjzlyz are matrix units of Mz(C)(l) and Mz(C)(z), re-
spectively;
o P = Ell and Q = Fll;
o M= NOMyCQ)1y = NOMy(C)py. ForX € M, X = (xl xZ) =

¥ %)y

/ /

Xy x T .

(x} x% ) means the decomposition is with respect to above matrix
3 4/ @

units of M,(C) (1) and M,(C)(z), respectively.

1 0 1 0 0 -1
* Wo—(o 1)(1)’W1_(0_1>(1)’W2_(1 O)(l)’
0 1
W3 < ) ;
1 0 W
1 0 1 O 0 -1
* VO_<O 1)(2)"/1_(0_1)(2),‘/2_(1 O)(z)’
0 1
V3_<1 0)(2)’

e A Ay, ..., A, denote elements in M,(C)(y), B, By, ..., B, denote ele-
ments in M>(C) (), X, Y, Z denote general elements in ./;

e An element X in / is called centered if T(X) = 0.
We end this section with the following lemma. The proof is an easy exercise.
LEMMA 2.2. V) Mz(C)(l)Vl isfree with Mz(C)(l).

3. Spectra of elements in the universal free product of M,(C) and
M>(C)

LetA = M,(C)xM,(C) denote the universal free product C*-algebra of M, (C)
with M;(C). Then there is a * homomorphism 7 from A onto the reduced free
product C*-algebra of M,(C) and M,(C), the C*-subalgebra generated by
M>(C)qy and M»(C)(2) in . Since o (w(a)) € o(a) fora € A, it is useful
to obtain some information of spectrum of AB, where A € M,(C) * 1 and
BelxM, (C)
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3.1. “Free product” of normal matrices
LEMMA 3.1. Let A € M>(C)* 1 and B € 1% M>(C) be normal matrices. Then
r(AB) = ||A| - || B|| relative to A.

ProOF. r(AB) < ||AB| < ||A]l - ||B||. We need only to prove r(AB) >
IlA]l- ]| B]l. Since A is a normal matrix, there is a unitary matrix U; € M,(C)*1

such that U AU = <O(()1 /;) ) and ||o; || = ||A]|. Similarly, there is a unitary
1
(0% 0

matrix U, € 1 % M»(C) such that U,BU; = ( 0 B and |lao|| = ||B]l.

Let 7, (X) = U, XU} and 71, (Y) = U,Y U} be -representations of M, (C) x 1
and 1 * M,(C) to M,(C), respectively. Then there is a *-representation 7 =
71 * 715 from A to M>(C) and w(AB) = [ “1%2 0

0  Bip
o(7(AB)) Co(AB).Sor(AB) > |aja| = [|A]l - | Bl

. Therefore, o1y €

COROLLARY 3.2. Let A € M»(C)(1y and B € M>(C)2) be normal matrices.
Thenr(AB) = ||A|| - ||B|| relative to M.

PrOOF. We may assume that A and B are diagonal matrices. Then we can
treat AB as an operator in the full free product C*(Z, * Z,). Same technique
used in the previous lemma gives the corollary.

3.2. “Free product” of non-normal matrices

It is well-known that two matrices X, Y in M,(C) are unitarily equivalent if
and only if Tr(X) = Tr(Y), Tr(X?) = Tr(Y?) and Tr(X*X) = Tr(Y*Y). The
proof of the following lemma now is an easy exercise.

LeEmMA 3.3. If A € M>(C) and Tr(A) = O, then A is unitarily equivalent

to a matrix of form (;g g ) , where o, 8 are complex numbers.

REMARK 3.4. We have the following useful observations:
. 0 1 0 o 0 1\ _(0 B

1 0 g 0 1 0/ \a O)

1 0 0 o] e 1 0 .
® 0 ei61-62/2 |,3|ei92 0 0 e iGi=6)/2 | —

ei(01+02)/2(0 |0l|).
1Bl 0

LEMMA 3.5. Let A € M»(CQ) * 1 and B € 1 x M,(C) be matrices such that
Tr(A) = Tr(B) = 0. Then r(AB) = || A|| - || B|| relative to A.
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PrOOF. We need only to prove r(AB) > ||A]l - ||B||. By Lemma 3.3 and
Remark 3.4, there are unitary matrices U, V in M,(C) such that UAU™* =
(/21 %‘) and VBV* = gz 062 and |ai| = Al |B2] = |B]l. Let
m(X) = UXU*and m,(Y) = VY V*be x-representations of M,(C)*1and 1x
M, (C) to M,(C), respectively. Let m = 7y %7, be the induced *-representation
of Ato M>(C). Theno (AB) 2 o (7(AB)) = o (71 (A)m2(B)) = {1 B2, 221}
Therefore, r (AB) > |1 82| = ||A]l - || Bl

THEOREM 3.6. Let A € M>(Q) x 1 and B € 1 % M»(C) be matrices such
that Tr(A) = Tr(B) = 0. Then

o(AB) = [|A~YI"B~ Y, 1ANIBIN %, [0, 271,

where x, denotes the polar set product {re’® :r e (A7 I7YBY,
IAIIIBII, 6 € [0, 2]}

Proor. We will prove the theorem for two cases.

Case 1. Either A or B is not invertible. We may assume that A is not
invertible. By Tr(A) = 0, Lemma 3.3 and Remark 3.4, A is unitarily equivalent
to 8 061 . Without loss of generality, we assume that A = <8 é) €
M,(C) % 1. By Lemma 3.3 and Remark 3.4, we may also assume that B =

'2 g € 1%« My(C) and B > « > 0. We need to prove that o (AB)
is the closed disc of complex plane with center O and radius 8. Since A is
unitarily equivalent to ¢?A in M,(C) % 1, o (AB) is rotation invariant. For

_( cos@  sin6 . . .
0 €10,2x],letU = C6ind cosd Letm(X) = Xandm(Y) =UYU
be *-representations of M;(C) x 1 and 1 % M,(C) to M,(C), respectively. Let
7 = 7y * 7y be the induced *-representation of A to M»(C). Then

T(AB) = AUBU* = (—a sin?6 + fcos’0  —(a + ) sind cosa)

0 0

So 0 (m(AB)) = {—asin’6 + Bcos?h,0}. Since [0,8] C [—a, B] =
{—asin®0 + Bcos’d : 6 € [0,2x]}, [0, 8] € o(AB). Since o(AB) is
rotation invariant, o (A B) contains the closed disc with center O and radius 8.
By Lemma 3.5, 0 (AB) is the closed disc of complex plane with center 0 and
radius .

Case 2. Both A and B are invertible. By Lemma 3.3 and Remark 3.4, we may

0 1 0 1
assume that A = and B = such that B, > 1. Then
u (ﬂl O) (/32 O) u 181 ﬂ2 el
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—1 —1
Al = (? ’8(1) )and B! = (? ’8(2) ).Weneed to prove that 6 (AB) =

[1, Bi1B2] x, [0, 2]. By Lemma 3.5, r(AB) = p15, and r((AB)™h = 1.
This implies that 0 (AB) C [1, B182] %, [0, 27]. So we need only to prove
o(AB) 2 [1, B1B:2] X, [0, 27]. ‘
_( cosy  e?siny . .
For ¢,y € [0,2x], let U = “siny e cos 1![). Then U is a unitary

matrix. Let 71 (X) = UXU* and 1,(Y) = Y be *-representations of M,(C) 1
and 1 * M,(C) to M,(C), respectively. Let m = m; * m, be the induced *-
representation of A to M»(C). Then

—B1B2e™ sin® Y + Bre ' cos® yr * )

* Bie? cos® Y — e'¢ sin®

7r(AB)=<
Let A1 (¢, V), A2(¢, ¥) be the eigenvalues of 7(AB). Then

(3.1)  A(@, Y)ra(g, ) = det(w(AB)) = det(A) det(B) = B B2,
(3.2) 2P, ¥) + 22(0, V)
= (,Blei¢ + ,82e_i¢) cos’ - (,31,32€i¢ + ¢ sin? /3

Note that 0 (AB) 2 {A1(¢, V) : ¢, ¥ € [0, 27 ]}. We only need to prove that

M@, ¥) 2 ¢, ¥ € 10,271} 2 [1, Bi1B] %, [0, 27]. For this purpose, we
need to show for every r € [1, B18:], 0 € [0, 2x], there are ¢, ¢ € [0, 27]
such that

(3.3) re"M@e—” = (B1€'? + Bre™'?) cos® Y — (B1 Bre'? +e7?) sin® .

Let o = cos? 1. Simple computations show that equation (3.3) is equivalent
to the following

(r+22) cos 6 +i(r — £22) sin6 = (a(1+ B1)(1 + B2) — (1 + B152)) cos ¢
+i(a(Br— DB+ 1)+ (1 —p1B2))sing.

Let
Q= {(r + B2) cosd +i(r — ££2)sin6 : r € [1, B1B2]. 6 € [0, 271},

Q = {(@( + B+ B2) — (1 + Bi1B2)) cos ¢
+i@Bi = DB+ 1D+ 1 = Bi))sing : a € [0, 1], ¢ € [0, 27]}.

Now we need only to prove 2; = ;. Note that 2, is the union of a family of
ellipses with center the origin point and semimajor axis and semiminor axis
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|r + @| and |r — @| 1 < r < BB, respectively. Similarly, €2, is the
union of a family of ellipses with center the origin point and semimajor axis and
semiminor axis [(1+81) (1 +2) — (1 + 1 82)] and & (B1 — (B2 + 1) + (1 —
Bi1B2)|, 0 < a < 1, respectively. Note that the “largest” ellipse in €2; is with
semimajor axis and semiminor axis |1+ 88| and |8, 8> — 1|, respectively; the
“smallest” ellipse in 2; is with semimajor axis and semiminor axis 2+/]81 8|
and 0O, respectively. The “largest” ellipse in €2, is with semimajor axis and
semiminor axis |1 + B 82| and |88, — 1], respectively; the “smallest” ellipse
in €, is with semimajor axis and semiminor axis 0 and % So both €
and €2, are the closure of the domain enclosed by the ellipse with center the
origin point and semimajor axis and semiminor axis |1+ 88| and |8, 8, — 1],
respectively. Thus 2, = 2.

4. R-diagonal operators in ./

In this section, we prove the following result. We will use the notation intro-
duced in section 2.4.

THEOREM 4.1. In M, let A € M»(C)(1y and B € M>(C)z). Then AB is an
R-diagonal operator if and only if t(A) = 7(B) = 0.

To prove Theorem 4.1, we need the following lemmas.
LEmmaA 4.2. {Wy, Vi, WsV3}Y' = L(Zy) % L(Zy) % L(2).

Proor. Let U = W3V3. Then U is a Haar unitary operator. We need
only to prove that U is * free with the von Neumann subalgebra generated
by Wy and V;. Let g;g>--- g, be an alternating product of {U" : n # 0}
and {Wy, Vi, W, V|, ViWw,, W ViW,, ViW,Vy,...}. By regrouping, it is an al-
ternating product of {W, W, W3, Wy W, WiW, W3, W3, W5} and {Vy, V3V,
Vivs, VaVi Vi, Vs, Vi) Thus the trace is 0.

B O B O

( l 1 ) ( / ) )

By Lemma 4.2 and basic properties of R-diagonal operators given in 2.2, we
prove the lemma.

LEmMMA 4.3. ( 0 0{1) ( 0 az) is an R-diagonal operator.
M @)



86 JUNSHENG FANG, DON HADWIN AND XIUJUAN MA

LEMMA 4.4, With the assumption of Theorem 4.1 and assume AB is an
R-diagonal operator and t(A?) # 0. Then t(B) = 0.

ProOF. Since AB is an R-diagonal operator, t(AB) = 0. Since A, B are
x-free, T(A)T(B) = 1(AB) = 0. If 7(B) = 0, then done. Otherwise, assume
7(A) = 0. Then 0 = T(ABAB) = t(A’B)1(B) = 1(A?)(1(B))>. By the
assumption, T(B) = 0.

LEMMA 4.5. Let B € M>(C)p and A be a complex number. Then
0(E;pB) =0 (En(r+ B)).

ProoF. By Jacobson’s theorem,

o(Ex(A+ B))U{0} =0 (EnEnn(A + B)) U {0}
=o(Enp(A+ B)E;) U {0}
=0 (EnBE)) U{0} =0 (BE») U{0).

PrOOF OF THEOREM 4.1. If 1(A) = t(B) = 0, then by Lemma 3.3 and
Lemma 4.3, AB is an R-diagonal operator. Conversely, assume that AB is an
R-diagonal operator. Then 0 = 1 (AB) = t(A) - T(B). So either 1(A) = 0 or
7(B) = 0. Without loss of generality, we assume that T(A) = 0. If T (A?) # 0,
then 7(B) = 0 by Lemma 4.4. If T(A?) = 0, then A is unitary equivalent to
aE1;. We may assume that A = Ej,. By Theorem 2.1, if E;B is an R-
diagonal operator, then (r(E2B))> = t(B*E» E;»B) = t1(Ey E;2BB*) =
I1E12 ||§ -|B ||§. Note that £, (B —7(B)) is an R-diagonal operator, (7 (E2(B —
7(B))* = |En|3 - 1B — t(B)|3. By Lemma 45, |B|3 = |B — t(B)|3.
This implies that 7(B) = 0. This ends the proof.

Combining Theorem 4.1, Theorem 2.1 and the S-transform of Voiculescu
(see [16], [17]), we have the following theorem (It is interesting to compare
the following theorem and Theorem 3.6).

THEOREM 4.6. Let A € Mz(C)(]), B e MQ(C)(Q) and t(A) = t(B) = 0.
Then

(1) map is rotation invariant;
(2) 0(AB) = suppuag = [IAT 1B 5", Al Bll2] %, [0, 27];
(3) 1ap({0}) = max{paa({0}), wpp({0})} and

1aBBO, (SupeySupes ¢ = )2 =1, for 1 €luapO}), 11.
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5. Algebraic techniques
For X € #, define

EnXE EnXE
@(X):( 1AL 11 21).

EpnXEn EpXEy

Then @ is a x-isomorphism from .# onto Ey ME|; @ M>(C)(1y. We will
identify 4 with E1 # E1; ® M»(C) (1) by the canonical isomorphism ®. In [4],
K. Dykema proved that E; | #/ E;; = L(F3). For B € M»(C)(2), we may write

b b2
B= (b21 bzz)

with respect to matrix units in ;. Then b;; € L(F3). In this section, we will
develop the algebraic techniques used in [4]. Combining the matrix techniques,
we may explicitly express b;; in terms of free generators of L(F3).

Let A{W|, V,} be the set of words generated by W;, V;. Note that le =
V12 = 1 and ©(W;) = t(V}) = 0. The following observation is crucial in [4].
The proof is an easy exercise.

LEMMA 5.1. t(g182- - &n) = O for an alternating product of A{W,, Vi}\
{1, Wi} and {E\2, Ex}.

Recall that P = E|; and Q = Fj;. Let W be the “polar” partof (1 — P)Q P
and U = E |, W. The following corollary is a special case of Theorem 3.5 of

[4].

COROLLARY 5.2. U is a Haar unitary operator in #Mp = PMP and U,
P QP are x-free in Mp.

With the canonical identification of ./ with /#p & M,(C)(y),
PQP VPQP — (POP)*U
~\v+/PoP—(POP? U(1-POPU |

By [16], the distribution of P Q P (relative to ./ p) is non-atomic and the density
function is

1 1
(5.1 plt) = ———, O0<tr<l.
g

2
- (-

By Corollary 5.2, the von Neumann subalgebra ./, generated by M,(C)j)
and Q is *-isomorphic to L(F,) ® M>(C) . Since ., is also *-isomorphic to
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M, (C) % L(Z,), M2 (C) % L(Z,) = L(F;) ® M,(C), which is proved by Dykema
in [4].
Since Vi =20 — 1,
2PQP —1 2,/PQP — (PQP)?U
a 2U*\/PQP—(PQP)2 U*(1-2PQP)U .

Simple computation shows that the density function of 2PQP — 1 is

1 1
o(t) = — ,
(1) s

—1<t<l.

Let H=2PQP — 1, then

. H V1= HU
"“\vvi=HZ —urHU )’

Let H = V|H| be the polar decomposition of H. Since H is a symmetric
selfadjoint operator, V2 = 1 and V is independent with the von Neumann
algebra generated by | H| in the classical probability sense. Let h = |H|, u =
VU,v = UV. Then u, v are Haar unitary operators and the distribution of &
relative to ./ p is non-atomic.

LEMMA 5.3. h, u, v are * free.

PrROOF. Let g1g>---g, be an alternating product of elements of © =
{{HY  © CI, {(VU)" : n # 0}, {(UV)" : n # 0}. By regrouping, it is an
alternating product of elements of {&, V, VS, &V, V&V}and {U" : n # 0}.
Since H and U are x-free, {©, V, V&, GV, V&V }and {U" : n # 0} are free.
Since V and © are independent, t(VS) = t(SV) = O0for S € &. This implies
that 7(g1g2---gn) = 0.

By simple computations, we have the following:
h? 1 —h%hu )

(52) ViE,V =(
YT\ VTS R v =

HU*+/1 — H? —HU*HU )

(5.3) ViEpVi = (
U*J1 — H2U*1— H?2 —-U*J/1— H2U*HU

(5.4) =

( hv /1 — 2 —hv*hu )
wNT = 21— k2 —u*T — h2v'hu)
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By Lemma 2.2, M= MQ(C)(D * (V]Mz(C)(l)Vl) = /ﬁlp ® M2(C)(1). With
this isomorphism, .#p is the von Neumann algebra generated by &, u and v
by (5.2) and (5.4). So #p = L(F3). By simple computations, we have

Vi (05 ﬁ) Vi (bll b12>’
Y Y o) b21 b22
where

bii =0 + (a — 0)h* + y/'1 — h2vh + Bhv*V1 — h2,
by = (@ — 0)hv/1 — h2u + y/1 — R2vy/1 — h2u — Bhv*hu,
by = (@ — o)u*hy/1 — h? — yu*hvh + ﬂu*\/l — n2v*/1 — K2,

by =a + (6 — )u*h*u — yu*hvy'1 — h2u — Bu*v/1 — h2v*hu.

THEOREM 5.4. M=L(F3) ® My(C)1y; furthermore, let B = (;o/z f)
(€]

in M>(C) ), then with respect to the matrix units {E;;};i j=12 C M2(CQ)q),

by b ;
B— ( 11 12) , where b;; are given as above.
1)

by by
ExAMPLE 5.5. In Theorem 5.4, let § = y = 0. Then we have
o 0 o+ (@—o)h*  (¢—0o)h/T—hu
(5 2),=( ).

0 0/ \@—o)whvl—h2 a+ (o —a)u*hu

ExaMPLE 5.6. In Theorem 5.4, let « = o and y = 0. Then we have

(a ﬁ) < a + Bhv*a/1 — h? —Bhv*hu )
0 a/, B Bu*N1 —h2v'/1 —h? o — Bu*1 —h2v*hu (1)‘

REMARK 5.7. By equation (5.2), the distribution of /4 is the distribution of
E VIE| V,E; relative to Mp. So the distribution of 42 is same as the distri-
bution of P QP (relative to .#p). By [16], the distribution of P Q P (relative
to ./ p) is non-atomic and the density function is

1 1
)= 0<t<I.
T
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6. Miscellaneous examples

ExAMPLE 6.1. We compute the Brown spectrum of « E1» + B Fi;. Let Fp =

<0 1) :(Zl b2> . Then
00 @ 3 bs (D

(@E12 + BF12)? = af(EnFi2 + FinE1n) = aB(En + Fi2)*

. b3 b1+b4
_oc,B(O by )(1).

SO U(wEp+BFn)? = Maph,- By €quation (5.3), the distribution of b3 is same as the
distribution of (U*+/1 — H?)2. Since U*+/1 — H? is an R-diagonal operator,
(U*+/1 — H?)?is also an R-diagonal operator. Since the distribution of a E 1>+
B Fiy is rotation invariant, Uyg,+8F, = K /TaBlbs where b = U*v/1 — H2.
Simple computations show that (or by Proposition 5.10 and Corollary 5.11
of [5])

1
a_—rz)zdrdg, Ofrf

-

1
dup(z) = —

Hence

1 |ap)? laB|
dpaEy,+pF,(2) = d1 yapp(2) = ;(Ia,BI——r)zdrde’ 0<r= N

o(aEp+ BFp) = B(O,,/ @)

COROLLARY 6.2. r(aEiy 4+ BF12) = 4/ %

COROLLARY 6.3. Let A € M»(C)(1y and B € M»(C)(p). Then A + B is an
R-diagonal operator if and only if A+ B = 0.

and

ProOF. Indeed, if A+ B is an R-diagonal operator, then 7(A 4+ B) = 0. So
we may assume that 7(A) = t(B) = 0. Let A, —A and 1, —n be the spectra of
A and B, respectively. Then 0 = 7((A + B)?) = t(A?) + 1(B?) = > + n°.
By simple computation we have 0 = 7((A + B)*) = t(A*) + ©(B*) +
4T(AD)T(BY) = A+t + 40202 = (A2 + D)2 + 20252 = 22292 Thus
A = n = 0. This implies that A and B are unitary equivalent to « £}, and § F5,
respectively. By Corollary 6.2,r(A+B) = \/@ . On the other hand, since we

assume that A + B is an R-diagonal operator, by Theorem 2.1, (r (A + B))? =
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T((A* + B*)(A + B)) = t(@En + fFa)(@Ep + BFi) = “HEE S0
la|? 4+ |B|> = |aB|. This implies that « = 0 and 8 = 0. Hence A + B =0.

ExaMPLE 6.4. We compute the spectrum and Brown spectrum of

1 0 a B
~(0), (5 2),
00/, ,\0 o,

By Example 5.6, we have the following

“(60), (5 <)
X =
(0 0(1) 0 @/ o

<1 0) < a + Bhv*a/1 — h? —Bhv*hu )
- \0 0 M \Bu*N1 —h2v/1 —h? a — Bu*/1 —h2v*hu M

(a + Bhv*/1 — h? —ﬂhv*hu)
M

0 0

So o(X) = {0} Uo (o + phv*v1 —h?) and ux = 380 + %Moﬁﬁhv*M'

Note that 1. =7 = i, 75, and v*/1 — h%h is an R-diagonal operator.
We have the following computations:

V1= 122 = ©o (1 = k)h?) = ©p((1 — PQP)PQP)

/ t(l—t)dt _1
_8’

/11 dt
= — 2=OO.
g

o -0yt - (5-1)

By Theorem 2.1,
o (X) = supp pux = {0} UB(a, |81/2v2).

EXAMPLE 6.5. We compute the spectrum and Brown spectrum of

/0 1) (oz 0)
Y =
(0 0 Y] 0 A (2)
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By Example 5.5, we have the following

0 1\ (a 0
=5 0), (5 )
0 0(1) 0 ﬂ(z)

_(0 1) ( B+ (o — B)h? (a—ﬁ)h\/l—h%t)
N0 0\ — purh/T=R2  a+ (B —wuh?u /),

((a — Bu*hv/1 —h? a4+ (B — a)u*h2u>
B 0 0 .

Since u*h+/1 — h? is an R-diagonal operator, similar computations as Ex-
ample 6.4, we have

o(Y) = supp uy = B(0, la — B1/2v/2).

EXAMPLE 6.6. We compute the spectrum and Brown spectrum of

Z:(1+aE12)(1+/3F12)=<(1) ?) ((1) lf) '
1) 2

For A € C, we have

Z—-M=U+aEp)0+BF) —A(l+aEp)(1 —akE)
=1 +aEp)AaEpn+ BFio — (A —1)).

This implies that A € o(Z) if and only if A — 1 € oc(AxE |y + BF12). By
Example 6.1, A — 1 € 6 (A« E|» + BF}») if and only if

1 < 9B
2

So

a(Z)={Aec:|x—1|25M}.

2

In the following, we will show that supp uz 2 do(Z) = {k eC:[A—1P2=
%} For this purpose, we need only to prove thatsupp uz—; 2 do(Z—1) =
(A eC:ap = lslitiy
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Note that A(1 + «E») = 1. For A € C, we have

log A((Z — 1) — A)
=log A((1 +aEpR)(1+ BFn) — (1 + M) +aEp)(l —akEp))
=log A(l +aEp) +log A(1 + BFip — A+ (1 +M)aEp)
=log A((1 + MaEp + BFi2 —A).

By Example 6.1, i+ 1ak,+pF. = Hymsaapy- Hence,

log A((Z —1) — 1)

— log AG/TT ¥ AllaBlb — 1)
A IA|
=logA |- — | —log ———
o8 ( «/Il+k—llaﬂ|) 8 /T AllaBl

Since b is an R-diagonal operator, this implies that

1Al )
6.1 loeA | b — —————
(6.1 log ( ST AlaBl
zlog—pLI
ST F Al

Suppose Ay € do(Z — 1) and Ay ¢ supp wz—1. Then there is § > 0 such that
B(1g, 8) € C\ supp uz—_1. Now log A((Z — 1) — A) is a harmonic function on
B(Xg, §). Since t((Z — 1)") =0foralln = 1,2,.... By Lemma 4.3 of [8],
for A € Csuch that |A| > r(Z — 1), log A((Z — 1) — 1) = log|A|. By the
uniqueness of harmonic functions, we have log A((Z — 1) — A) = log|A| for
A € B()p, §). By equation (6.1), this implies that

+ log |A][.

—log x| +1log A((Z — 1) — ).

|| |A|
(6.2) log A (b —— ) = log ——.
11+ Aflap] VIT+Allap]
— 2]
Letr = NIEATTL Then equation (6.2) implies that

logA (b —r)=logr

forr € (s,t) € [ , f] Since b is an R-diagonal operator, this implies that
log A(b—2) is harmonic on the annulus with inner radius s and outer radius ?,
O<s<t< T By Theorem 2.1, supp up = B( ) It is a contradiction.
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7. Hyperinvariant subspaces for operators in ./

LEMMA 7.1. For X € M, ifsupp ux = {A}, thent(X") = M forn = 1,2, .. ..

PrROOF. 7(X") = / dux(z) = A"
supp ix
The converse of Lemma 7.1 is not true. Since for an R-diagonal operator
X,wehave t(X") =0forn=1,2,....

PROPOSITION 7.2. Let X = A+ B, where A € M>(C)(1yand B € M>(C)2).
If A, B are not scalar matrices, then supp (Lx contains more than two points.

PrOOF. Suppose A, B are not scalar matrices. Since A + B = t(A)1 +
T(B)1+(A—1t(A)1)+ (B —1t(B)1), to show supp ux contains more than two
points, we need only to show that (4 (4—r(4)1)+(B—z()1) contains more than two
points. So we may assume that T(A) = t(B) = 0and A, B # 0. Assume that
the spectra of A and B are |, —A; and A,, —Ap. If 7(A?) = 7(B?) = 0, then
A and B are unitarily equivalent to « E 1, and B F, in M»(C)(;y and M>(C)(2),
respectively. Thus wx = pto£,+pF,.- By Example 6.1, supp px contains more
than two points. Now suppose 7(A%) # 0 or 7(B?) # 0. Without loss of
generality, we assume that A2 = 7(A2) # 0. Note that (A + B) = 0 and
T((A+ B)?) = 1(A*) + ©(B?) = A} + A3. If A7 + A3 # 0, by Lemma 7.1,
supp [t contains more than two points. Suppose A7 + A3 = 0. Then t(B?) =
A3 # 0. Simple computations show that

T((A+ B)Y) = 1(AY) + 1(BY) + 41 (AM)T(B?)
=Af+ A3+ 40d = (2 + a2+ 2% = 24303 # 0.

Note that 7(A 4+ B) = 0. By Lemma 7.1, supp ;x contains more than two
points.

PROPOSITION 7.3. Let X = AB, where A € My(C)(1y and B € M>(C)2).
If A, B are not scalar matrices, then supp (Lx contains more than two points.

ProOOF. Suppose A, B are not scalar matrices. We consider the following
cases:

Case 1.7(A) = t(B) =0and A, B # 0. By Theorem 4.1, AB(5 0) is an
R-diagonal operator. So supp wx contains more than two points.

Case 2. 7(A) = 0,7(B) # O or t(A) # 0,7(B) = 0. Without loss of
generality, we assume that T(A) = 0 and 7(B) # 0. Then 1(AB) = 0 and
T(ABAB) = 1(A?)1(B).If 1(A%) # 0,then 1(ABAB) # 0. By Lemma 7.1,
supp ux contains more than two points. If T(A%) = 0, then A is unitarily
equivalent to a Ejp in M»(C)(;y. By Lemma 4.5, ux = foEg,B—1(B))- Since
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aEp(B — 1(B)(5# 0) is an R-diagonal operator, supp (tx contains more than
two points.

Case 3. 1(A) # 0 and 7(B) # 0. We may assume that 7(A) = t(B) = 1.
LetA=14+Aand B=14 B;.Thent(A,) = t(B;) =0.

Subcase 3.1. T(A?) # 0 or T(B}) # 0. We may assume that t(A?) # 0.
Simple computation shows that 1 (AB) = 1,7(ABAB) = 1+ ‘C(Af) + 7:(812)
and 1 ((AB)*) = 14+3(t (AN +1(B}))+9t(ADT(B}). If T(A})+1(A3) # 0,
then t(ABAB) # 1. By Lemma 7.1, supp i x contains more than two points.
If T(A?) + ©(A3) = 0, then t(A3) = —1(A?}) # 0. So t((AB)*) # 1. By
Lemma 7.1 again, supp i x contains more than two points.

Subcase 3.2. r(A%) = r(A%) = 0. Then A, and A, are unitarily equi-
valent to «E, and BFj, in M>(C)(1y and M»(C)(), respectively. So ux =

1l « 1
H(l+aEp)(1+BF,)- Wemay assume that A = (O 1 ) and B = (0 ’?) .
1) 2)
By Example 6.6, supp wx contains more than two points.
COROLLARY 7.4. Let X = AB or X = A+ B, where A € M»(C)(1y and
B € My(C)p). If X # A1, then X has a nontrivial hyperinvariant subspace
relative to M.

ProoF. If X = A+ Band A = Al or B = Al,then X = Al + B or
X = A1 4+ A.If X is not a scalar matrix and 7 is an eigenvalue of X, then
ker(X — n1) is a nontrivial hyperinvariant subspace of X. If X = A + B and
A, B # M1, then supp px contains more than two points by Proposition 7.3.
By [9], X has a nontrivial hyperinvariant subspace relative to /4. If X = AB
and A = Al or B =Al,then X = AB or X = AA. If X is not a scalar matrix
and 7 is an eigenvalue of X, then ker(X — nl) is a nontrivial hyperinvariant
subspace of X. If X = AB and A, B # A1, then supp wy contains more than
two points. By [9], X has a nontrivial hyperinvariant subspace relative to /.
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