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EQUIVALENCE BETWEEN THE BOUNDARY
HARNACK PRINCIPLE AND THE

CARLESON ESTIMATE

HIROAKI AIKAWA∗

(Dedicated to Professor Minoru Murata on the occasion of his 60th birthday)

Abstract

Both the boundary Harnack principle and the Carleson estimate describe the boundary behavior of
positive harmonic functions vanishing on a portion of the boundary. These notions are inextricably
related and have been obtained simultaneously for domains with specific geometrical conditions.
The main aim of this paper is to show that the boundary Harnack principle and the Carleson
estimate are equivalent for arbitrary domains.

1. Introduction

The purpose of this note is to investigate the relationship between the boundary
Harnack principle and the Carleson estimate. Roughly speaking, the boundary
Harnack principle is a principle asserting that two positive harmonic functions
vanishing on a portion of the boundary decay at the same speed toward a smal-
ler portion, while the Carleson estimate is an estimate asserting that a positive
harmonic function vanishing on a portion of the boundary is bounded up to a
smaller portion by the value at a fixed point in the domain with a multiplic-
ative constant independent of the function. These notions have many variants
inextricably related from the very beginning. In fact, when Kemper [15] formu-
lated the notions for the first time, he referred to the global Carleson estimate
(Definition 2 below) and the global boundary Harnack principle (Definition 1
below) as the boundary Harnack principle and Property III, respectively.

For a Lipschitz domain, Kemper observed that the global Carleson estimate
follows from the global boundary Harnack principle and attempted to verify
the global boundary Harnack principle, though his argument had a gap ([15,
p. 253]). After Kemper’s pioneering work, the global boundary Harnack prin-
ciple was correctly proved for a Lipschitz domain by Ancona [5], Dahlberg
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[12] and Wu [18] independently. Since then the terminology, “the boundary
Harnack principle”, has been mainly used for the global boundary Harnack
principle in this note. Caffarelli-Fabes-Mortola-Salsa [11], Jerison-Kenig [14]
and Bass-Burdzy-Bañuelos [9], [8] gave significant extensions. The boundary
Harnack principle and the Carleson estimate have been obtained for domains
with specific geometrical conditions. As far as we know, they were proved
simultaneously. This is not a coincidence. The main aim of this note is to show
that the global boundary Harnack principle and the global Carleson estimate
are equivalent for arbitrary domains.

To this end, the precise formulations of the boundary Harnack principle and
the Carleson estimate are crucial. Not only the dependencies of constants but
also the domains for harmonic functions are very important. We shall need to
distinguish the global notions and the local notions. Throughout the paper we
let D be a bounded domain in Rd with d ≥ 2 and let δD(x) = dist(x, ∂D).
We write B(x, r) and S(x, r) for the open ball and the sphere of center at x

and radius r , respectively. By the symbol A we denote an absolute positive
constant whose value is unimportant and may change from one occurrence and
the next. If necessary, we use A0, A1, . . ., to specify them.

Let us begin with the definitions of the global boundary Harnack principle
and the global Carleson estimate. We consider a pair (V , K) of a bounded open
set V ⊂ Rd and a compact set K ⊂ Rd such that

(1) K ⊂ V, K ∩ D �= ∅ and K ∩ ∂D �= ∅.

Definition 1. We say that a domain D enjoys the global boundary Har-
nack principle if for each pair (V , K) with (1), there exists a constant A1

depending only on D, V and K with the following property: If u and v are
positive superharmonic functions on D such that

(i) u and v are bounded, positive and harmonic in V ∩ D,

(ii) u and v vanish on V ∩ ∂D except for a polar set,

then

(2)
u(x)/u(y)

v(x)/v(y)
≤ A1 for x, y ∈ K ∩ D.

Definition 2. We say that a domain D enjoys the global Carleson estimate
if for each pair (V , K) with (1) and a point x0 ∈ K ∩D, there exists a constant
A2 depending only on D, V , K and x0 with the following property: If u is a
positive superharmonic function on D such that

(i) u is bounded, positive and harmonic in V ∩ D,

(ii) u vanishes on V ∩ ∂D except for a polar set,
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then

(3) u(x) ≤ A2u(x0) for x ∈ K ∩ D.

Remark 1. Since K ∩ D may be disconnected, the superharmonicity of
u and v over the whole D is needed. Jerison-Kenig [14] and Bass-Burdzy-
Bañuelos [9], [8] assume that u and v are positive and harmonic over the
whole D for their global boundary Harnack principle. Our boundary Harnack
principle is slightly stronger.

The main result of this note is the following theorem.

Theorem 1. The global boundary Harnack principle and the global Car-
leson estimate are equivalent.

Let us give an application of Theorem 1. Let D ⊂ Rd be a bounded domain.
We define the quasihyperbolic metric kD(x, y) by

kD(x, y) = inf
γ

∫
γ

ds(z)

δD(z)
,

where the infimum is taken over all rectifiable curves γ connecting x to y

in D and ds(z) stands for the line element on γ . We say that D satisfies a
quasihyperbolic boundary condition if

(4) kD(x, x0) ≤ A log
δD(x0)

δD(x)
+ A′ for all x ∈ D

with some positive constants A and A′. A domain satisfying the quasihyper-
bolic boundary condition is called a Hölder domain by Smith-Stegenga [16],
[17]. Bañuelos [7] said that such a domain is a Hölder domain of order 0. As
a corollary to Theorem 1 we prove that the global boundary Harnack prin-
ciple holds for a domain satisfying the quasihyperbolic boundary condition.
This provides a new class of domains satisfying the global boundary Harnack
principle. See Remark 6 in the next section for further details.

Corollary 1. The global Carleson estimate holds for a domain satisfying
the quasihyperbolic boundary condition. Consequently, the global boundary
Harnack principle holds.

In [1] we have established the local boundary Harnack principle or the
scale invariant boundary Harnack principle for a uniform domain. Actually,
the local boundary Harnack principle characterizes a uniform domain ([2]).
Let us study the relationship between the local boundary Harnack principle
and the local Carleson estimate.
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Definition 3. We say that a domain D enjoys the local boundary Harnack
principle if there exist constants A3, A4 > 1 and r0 > 0 depending only on D

with the following property: If ξ ∈ ∂D, 0 < r < r0 and

(i) u and v are bounded, positive and harmonic in B(ξ, A3r) ∩ D,

(ii) u and v vanish on B(ξ, A3r) ∩ ∂D except for a polar set,

then

(5)
u(x)/u(y)

v(x)/v(y)
≤ A4 for x, y ∈ B(ξ, r) ∩ D.

Definition 4. We say that a domain D enjoys the local Carleson estimate
if there is a constant A5 > 1 with the following property: If ξ ∈ ∂D, 0 < r < r0

and

(i) u is bounded, positive and harmonic in B(ξ, A5r) ∩ D,

(ii) u vanishes on B(ξ, A5r) ∩ ∂D except for a polar set,

then

(6) u(x) ≤ Aεu(y) for x ∈ B(ξ, r) ∩ D,

whenever y ∈ B(ξ, r) ∩ D and δD(y) ≥ εr with 0 < ε < 1. Here Aε depends
only on D and ε.

Remark 2. The local boundary Harnack principle implies the following
connectivity of D near the boundary: If ξ ∈ ∂D and 0 < r < r0, then
B(ξ, r)∩D is included in one connected component of B(ξ, A3r)∩D, though
B(ξ, r)∩D itself may be disconnected. Similarly, the local Carleson estimate
implies that if ξ ∈ ∂D and 0 < r < r0, then B(ξ, r) ∩ D is included in one
connected component of B(ξ, A5r) ∩ D.

The existence of a point y ∈ B(ξ, r) ∩ D with δD(y) ≥ εr is crucial, as
the statement of the local Carleson estimate would be vacuous if there were
no such points. The existence is guaranteed by the corkscrew condition: There
exists ε > 0 such that
(7)

B(ξ, r) ∩ D includes a ball of radius εr , whenever ξ ∈ ∂D and 0 < r < r0.

See [14, p. 93]. John domains satisfy the corkscrew condition; the converse is
not necessarily true. We shall prove the equivalence between the local boundary
Harnack principle and the local Carleson estimate, provided the domain D

satisfies the corkscrew condition.

Theorem 2. Assume thatD satisfies the corkscrew condition. Then the local
boundary Harnack principle and the local Carleson estimate are equivalent.
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This theorem immediately gives another characterization of a uniform do-
main. See [2].

Definition 5. By Cap we denote the logarithmic capacity if d = 2, and
the Newtonian capacity if d ≥ 3. We say that the capacity density condition
holds if there exist constants A > 1 and r0 > 0 such that

Cap(B(ξ, r) \ D) ≥
{

A−1r if d = 2,

A−1rd−2 if d ≥ 3,

whenever ξ ∈ ∂D and 0 < r < r0. See Armitage-Gardiner [6, p. 150] for the
logarithmic capacity, which illustrates the inhomogeneity between the cases
d = 2 and d ≥ 3.

Corollary 2. Let D be a John domain satisfying the capacity density
condition. Then the following are equivalent:

(i) D is a uniform domain.

(ii) D enjoys the local boundary Harnack principle.

(iii) D enjoys the local Carleson estimate.

Remark 3. Assume (i). Then the Carleson estimate can be proved rather
easily by the Domar argument (see Proof of Corollary 1 below). The Domar
argument extends to even p-harmonic functions in a metric measure space
and the Carleson estimate holds in this general settings ([4]). Our equival-
ence between the boundary Harnack principle and the Carleson estimate relies
on the relationship between the Green function and the harmonic measure
(see Lemma 1 below). So, if the counterpart for p-harmonic functions is es-
tablished, we might be able to obtain the boundary Harnack principle for
p-harmonic functions. The relationship between the p-Green function and the
p-harmonic measure is an open problem.

2. Proof of Theorem 1 and Corollary 1

Let � be an open set. We write ω(E, �) for the harmonic measure over the open
set � of E ⊂ ∂�, i.e., ω(E, �) is the Dirichlet solution in � of the boundary
function χE . The value of ω(E, �) at x ∈ � is denoted by ωx(E; �). Let
G� be the Green function for �, i.e., for each fixed y ∈ �, the minus of the
distributional Laplacian −
G�(·, y) is the point measure at y and G�(·, y)

vanishes on ∂� except for a polar set. The harmonic measure ω(E, �) and the
Green function G� are related as follows.

Lemma 1. Let x ∈ �. If ϕ ∈ C∞
0 (Rd), then∫

∂�

ϕ(y)ωx(dy; �) = ϕ(x) +
∫

�

G�(x, y)
ϕ(y) dy.
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Proof. We give a proof for the reader’s convenience, though the proof is
not so difficult (see e.g. Armitage-Gardiner [6, p. 264] and Jerison-Kenig [14,
(4.6)]). For simplicity we treat only the case d ≥ 3. Let ad = σd(d − 2) with
σd being the surface area of a unit ball in Rd . Then

G�(x, z)

=

⎧⎪⎨
⎪⎩

1

ad

{
|x − z|2−d −

∫
∂�

|y − z|2−dωx(dy; �)

}
for z ∈ �,

0 for q.e. z ∈ Rd \ �,

where “q.e.” stands for “quasieverywhere” and means that “outside a polar
set”. Since 
z(|x − z|2−d) = −adδx in the distribution sense, it follows from
Fubini’s theorem that∫

�

G�(x, z)
ϕ(z) dz

=
∫

Rd

1

ad

{
|x − z|2−d −

∫
∂�

|y − z|2−dωx(dy; �)

}

ϕ(z) dz

= −ϕ(x) −
∫

∂�

ωx(dy; �)

∫
Rd

1

ad

|y − z|2−d
ϕ(z) dz

= −ϕ(x) +
∫

∂�

ϕ(y)ωx(dy; �).

Remark 4. The identity of the lemma may be written as

ωx(dy; �) = δx + 
yG�(x, y)

in the distribution sense. Such an identity for a general elliptic operator was
used by Ancona [5] to show the boundary Harnack principle in a Lipschitz
domain. His idea goes back to Brelot’s remark [10]. Ancona applied his identity
to the top of a cylinder. Since we have no geometric assumptions, we shall use
the identity in a different fashion. See Remark 5 after the proof of Theorem 1.
The author thanks Alano Ancona for informing him of the background of the
identity.

Proof of Theorem 1. First suppose that D satisfies the global boundary
Harnack principle. Take a pair (V , K) with (1) and a point x0 ∈ K ∩ D. Let u

be a positive superharmonic function in D satisfying (i) and (ii) of Definition 2.
Observe that the lower regularization of

v =
{

ω(∂V ∩ D, V ∩ D) on V ∩ D,

1 on D \ V
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is a positive bounded superharmonic function on D satisfying (i) and (ii) of
Definition 2. The regularization and v differ only on a polar set of D ∩ ∂V .
The global boundary Harnack principle (2) for u and v gives

u(x)/u(x0)

v(x)/v(x0)
≤ A1 for x ∈ K ∩ D

with A1 depending only on V and K . Since 0 ≤ v(x) ≤ 1, it follows that

u(x) ≤ A1

v(x0)
u(x0) for x ∈ K ∩ D.

Thus (3) holds with A2 = A1/v(x0), which depends only on D, V , K and x0.
Conversely, suppose that D satisfies the global Carleson estimate. Take a

pair (V , K) with (1). Find open sets U0, U1 and U2 such that

K ⊂ U0 ⊂ U 0 ⊂ U1 ⊂ U 1 ⊂ U2 ⊂ U 2 ⊂ V

and such that the pairs (U2 \ U 0, ∂U1) and (V , U 2) satisfy (1). For simplicity
let Ej = ∂Uj ∩ D for j = 1, 2. See Figure 1.

E1

E2

U0

r0

x K

y0 U1
U2

Figure 1. Global boundary Harnack principle and Carleson estimate.

Let us apply Lemma 1 to � = U2 ∩ D. Take ϕ ∈ C∞
0 (Rd) such that ϕ = 1 on

E2 and supp ϕ ∩ U 1 = ∅. Then Lemma 1 gives

(8)

ωx(E2; �) ≤
∫

�∩supp ϕ

G�(x, y)|
ϕ(y)| dy

≤
∫

�∩supp ϕ

GD(x, y)|
ϕ(y)| dy for x ∈ K ∩ D.

For a moment fix x ∈ K ∩ D. By the global Carleson estimate for the pair
(U2 \U 0, ∂U1) and the positive superharmonic function GD(x, ·) in D, which
is bounded and harmonic on U2 \ U 0, we have

GD(x, y) ≤ A2GD(x, y0) for y ∈ E1,
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where y0 ∈ E1 is fixed and A2 depends only on D, U0, U1, U2 and y0. The
maximum principle gives GD(x, y) ≤ A2GD(x, y0) for y ∈ D \ U1, so that
(8) yields

(9) ωx(E2; �) ≤ A6GD(x, y0) for x ∈ K ∩ D

with A6 = A2
∫
�∩supp ϕ

|
ϕ(y)| dy.
Let u and v be positive superharmonic functions in D satisfying (i) and (ii)

of Definition 1. Then the Carleson estimate for the pair (V , U 2) gives

u(x) ≤ A′
2u(y0) for x ∈ U 2 ∩ D ⊃ E2,

where A′
2 depends only on D, U2, V and y0. Hence the maximum principle

and (9) imply

u(x) ≤ A′
2u(y0)ω

x(E2; �) ≤ A′
2u(y0)A6GD(x, y0) for x ∈ K ∩ D.

Let 0 < r0 ≤ δD(y0)/2 be such that B(y0, r0) ∩ K = ∅. Then GD(x, y0) ≤
Ar2−d

0 ≤ Av(x)/v(y0) for x ∈ S(y0, r0) with A independent of v. By the max-
imum principle we have GD(x, y0) ≤ Av(x)/v(y0) for x ∈ D \ B(y0, r0) ⊃
K ∩ D. Hence we obtain

u(x) ≤ A7u(y0)v(x)/v(y0) for x ∈ K ∩ D

with A7 independent of u and v. This gives (2) with A1 = A2
7.

Remark 5. The intersection of the boundary ∂D and a ball with center on
the boundary is called a surface ball. The estimate of the harmonic measure
of a surface ball plays a very important role if D is a Lipschitz domain. In
fact, Dahlberg [12] recognized the following relationship between the Green
function and the harmonic measure:

(10) ωx(B(ξ, r) ∩ ∂D; D) ≈ rd−2GD(Ar(ξ), x)

for ξ ∈ ∂D, x ∈ D \ B(ξ, Ar) and 0 < r < r0,

where A > 1 depends on the Lipschitz nature of D and Ar(ξ) is a “nontan-
gential point”, i.e., |Ar(ξ) − ξ | ≈ δD(Ar(ξ)) ≈ r . Caffarelli-Fabes-Mortola-
Salsa [11, Lemma 2.2] extended this comparison to the Green function and the
harmonic measure for general elliptic operators in divergence form. They em-
ployed the counterpart of Lemma 1. The same technique was used by Jerison-
Kenig [14, (4.6)] to prove (10) for NTA domains.

The comparison (10) holds only for domains with the capacity density
condition, whereas the boundary Harnack principle holds even for irregular
domains for which a surface ball may be a polar set ([9], [8] and [1]). The
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point of the above proof is the usage of Lemma 1. We estimate the harmonic
measure ω(∂U2 ∩ D, U2 ∩ D) instead of the harmonic measure of the surface
ball B(ξ, r) ∩ ∂D, which may vanish for a general domain D.

We shall prove Corollary 1 with the aid of Domar’s argument and the expo-
nential integrability of the quasihyperbolic metric of a domain satisfying the
quasihyperbolic boundary condition. For u ≥ 0 we write

log+ u =
{

log u if u ≥ 1,

0 otherwise.

Lemma A (Domar [13] and [3]). Let u be a nonnegative subharmonic
function on a bounded domain � in Rd . Suppose there is ε > 0 such that

I =
∫

�

(log+ u)d−1+ε dx < ∞.

Then

(11) u(x) ≤ exp(2 + AI 1/εδ�(x)−d/ε),

where A is a positive constant depending only on ε and the dimension d.

Lemma B (Smith-Stegenga [17]). Let D satisfy the quasihyperbolic bound-
ary condition and let x0 ∈ D. Then there exists a positive number τ such that

∫
D

exp(τkD(x, x0)) dx < ∞.

Proof of Corollary 1. In view of Theorem 1, it is sufficient to establish
the global Carleson estimate. Let (V , K) be a pair satisfying (1) and let x0 ∈
K ∩ D. Let u be a positive superharmonic function in D satisfying (i) and (ii)
of Definition 2.

First suppose u is harmonic on D. We extend u to V \ D by 0 and take the
upper regularization to obtain a nonnegative subharmonic function on V ∪ D

coinciding with u in D. With a slight abuse of the notation, we denote by u this
extended subharmonic function as well. By the Harnack inequality we obtain

u(x)

u(x0)
≤ A exp(AkD(x, x0)) for x ∈ D.
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Let ε > 0. Lemma B yields

I :=
∫

V ∪D

[
log+ u(x)

u(x0)

]d−1+ε

dx ≤ A

∫
D

[kD(x, x0)]
d−1+ε dx

≤ A

∫
D

exp(τkD(x, x0)) dx < ∞,

where A depends only on d, ε and τ . By Lemma A

u(x)

u(x0)
≤ exp(2 + AI 1/εδV ∪D(x)−d/ε) for x ∈ V ∪ D,

where A is independent of u. Since δV ∪D(x) ≥ dist(K, V c) for x ∈ K , we
obtain (3).

Next consider the general case. By the Riesz decomposition we can write

u(x) =
∫

D\V
GD(x, y) dμ(y) + h(x) for x ∈ D

where μ is a measure on D \ V and h is a positive harmonic function on D.
Let U be an open set such that K ⊂ U ⊂ U ⊂ V . By the Harnack inequality
we obtain

GD(x, y)

GD(x0, y)
≤ A exp(AkD\{y}(x, x0)) for x ∈ D.

Let y ∈ D \ V . Then [3, Lemma 7.2] gives

kD\{y}(x, x0) ≤ AkD(x, x0) + A for x ∈ U ∩ D,

where A is independent of y. In the same way as above, we obtain from
Lemma B∫

U∪D

[
log+ GD(x, y)

GD(x0, y)

]d−1+ε

dx ≤ A

∫
D

[kD(x, x0)]
d−1+ε dx

≤ A

∫
D

exp(τkD(x, x0)) dx < ∞,

so that
GD(x, y) ≤ AGD(x0, y) for x ∈ U ∩ D,

where A is independent of y ∈ D \V . Integrating both sides of the inequality,
we obtain∫

D\V
GD(x, y) dμ(y) ≤ A

∫
D\V

GD(x0, y) dμ(y) for x ∈ U ∩ D.
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By the first part h(x) ≤ Ah(x0) for x ∈ K ∩ D. We obtain (3) by adding the
above two inequalities. Thus the global Carleson estimate holds, and hence
the global boundary Harnack principle follows from Theorem 1.

Remark 6. We say that D is a Hölder domain of order α (0 < α ≤ 1)

if the boundary is locally represented as the graph of a α-Hölder continuous
function. Bass-Burdzy-Bañuelos [9], [8] established the global boundary Har-
nack principle for a Hölder domain of order α (0 < α ≤ 1). As a further
generalization, Bass-Burdzy [9] gave the global boundary Harnack principle
for a twisted Hölder domain of order α (1/2 < α ≤ 1), one of which condi-
tions is the capacity density condition. Their crucial estimate is obtained by
the so-called box argument. Our proof of Corollary 1 is completely different.
It is based on Theorem 1 and the Domar argument ([3], [4]), which requires
neither the graph representation nor the capacity density condition. See also
[1], [2].

3. Proof of Theorem 2

In this section we shall prove the equivalence between the local boundary
Harnack principle and the local Carleson estimate. To this end we observe that
the local boundary Harnack principle has the following extended form ([2,
Lemma 4.3]). For the convenience sake of the reader we provide a proof.

Lemma 2. Let the local boundary Harnack principle hold. Then for each
0 < ε < 1/2 there is a positive constant Aε depending only on ε, A3, A4 and
d with the following property: Let ξ ∈ ∂D and 0 < r < r0. Suppose that there
is x∗ ∈ B(ξ, r)∩D with δD(x∗) ≥ 2εr and let U be the connected component
of B(ξ, r) ∩ D containing x∗. If u and v are positive harmonic functions on
B(ξ, 2r) ∩ D \ B(x∗, εr/2) vanishing on ∂D ∩ B(ξ, 2r) and bounded away
from x∗, then

(12)
u(x)/u(y)

v(x)/v(y)
≤ Aε

whenever x, y ∈ U \ B(x∗, εr). See Figure 2.

Proof. We claim that if ζ ∈ U \ B(x∗, εr), then (12) holds for x, y ∈
B(ζ, (6A3)

−1εr) ∩ D. If B(ζ, (3A3)
−1εr) ⊂ D, then this follows from the

usual Harnack inequality. Otherwise, we find ζ ′ ∈ ∂D such that |ζ ′ − ζ | <

(3A3)
−1εr . Observe that

B

(
ζ ′,

ε

2
r

)
⊂ B

(
ξ,

(
1 + ε

3A3
+ ε

2

)
r

)
⊂ B(ξ, 2r)
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2rr

U

y

x

ξ

x*

Figure 2. Extended boundary Harnack principle.

and |ζ ′ − x∗| ≥ εr − ε

3A3
r >

ε

2
r.

Hence, u and v are positive harmonic functions on B(ζ ′, εr/2) ∩ D vanishing
on ∂D ∩ B(ζ ′, εr/2), so that the local boundary Harnack principle implies
(12) for x, y ∈ B(ζ ′, (2A3)

−1εr) ∩ D, which includes B(ζ, (6A3)
−1εr) ∩ D.

Thus the claim follows. Now we find points ζ1, . . . , ζN ∈ U \ B(x∗, εr) such
that ∪N

j=1B(ζj , (7A3)
−1εr) is connected and covers U \ B(x∗, εr), where N

depends only on ε, A3 and d. Applying the claim to ζj repeatedly, we obtain
(12) for x, y ∈ U \ B(x∗, εr). The lemma is proved.

Proof of Theorem 2. Assume that D satisfies the corkscrew condition.
First suppose that D satisfies the local boundary Harnack principle. Let ξ ∈ ∂D

and 0 < r < r0/A3. In view of Remark 2 and the scaling that B(ξ, r) ∩ D

is contained in a connected component U of B(ξ, A3r) ∩ D. Suppose u is a
bounded positive harmonic function in B(ξ, 2A3r) ∩ D vanishing on ∂D ∩
B(ξ, 2A3r). Let y ∈ B(ξ, r) ∩ D with δD(y) ≥ εr . Apply Lemma 2 to u

and v = GB(ξ,2A3r)∩D(·, y) with x∗ = y, A3r in place of r , and ε/(2A3) in
place of ε. Since v(y ′) ≈ r2−d for y ′ ∈ S(y, εr/2) and v(x) ≤ Ar2−d for
x ∈ B(ξ, 2A3r) ∩ D \ B(y, εr/2), it follows from (12) that

u(x)

u(y ′)
≤ Aε

v(x)

v(y ′)
≤ Aε

for x ∈ U ∩ \B(y, εr/2) ⊃ B(ξ, r) ∩ D \ B(y, εr/2).

Hence the Harnack inequality implies that

u(x) ≤ Aεu(y) for x ∈ B(ξ, r) ∩ D.

Thus the local Carleson estimate holds with A5 = 2A3.
Conversely, suppose that D satisfies the local Carleson estimate. Without

loss of generality, we may assume that A5 ≥ 2. Let ξ ∈ ∂D and 0 < r < r0.
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Let � = B(ξ, A2
5r) ∩ D, �∗ = B(ξ, A4

5r) ∩ D and E = ∂� ∩ D. We find
ϕ ∈ C∞

0 (Rd) such that ϕ = 1 on S(ξ, A2
5r), supp ϕ ⊂ B(ξ, (A2

5 + 1)r) \
B(ξ, (A2

5 − 1)r) and |
ϕ| ≤ Ar−2, where A depends only on the dimension
d. Lemma 1 yields

(13)

ωx(E; �) ≤
∫

�∩supp ϕ

G�(x, y)|
ϕ(y)| dy

≤ Ar−2
∫

�∩supp ϕ

G�∗(x, y) dy for x ∈ B(ξ, r) ∩ D.

For a moment fix x ∈ B(ξ, r) ∩ D and apply the local Carleson estimate
to the harmonic function h = G�∗(x, ·) on �∗ \ B(ξ, r). It is easy to find
zj ∈ B(ξ, (A2

5 + 1)r) \ B(ξ, (A2
5 − 1)r) such that

(14) supp ϕ ∩ D ⊂
N⋃

j=1

B(zj , min{ε/2, 1 − ε}r),

where N depends only on A5, ε and the dimension. We choose yj as in the
following two cases:

Case 1. δD(zj ) ≥ εr . Then let yj = zj . The Harnack inequality implies that
h ≤ Ah(yj ) on B(yj , εr/2) = B(zj , εr/2)

Case 2. δD(zj ) < εr . Then there is a point ξj ∈ B(zj , εr) ∩ ∂D. By the
cork screw condition (7) we find yj ∈ D such that B(yj , εr) ⊂ B(ξj , r) ∩ D.
Since A2

5 − 1 − A5 ≥ 1 for A5 ≥ 2, it follows that B(ξj , A5r) ∩ B(ξ, r) = ∅,
so that h is a positive harmonic function in B(ξj , A5r) ∩ D, vanishing q.e. on
B(ξj , A5r)∩ ∂D. Hence the local Carleson estimate implies that h ≤ Aεh(yj )

on B(ξj , r) ∩ D ⊃ B(zj , (1 − ε)r) ∩ D.
In view of (14) and the above two cases, we obtain h ≤ A maxj=1,...,N h(yj )

on supp ∩D, i.e.,

G�∗(x, y) ≤ A max
j=1,...,N

G�∗(x, yj ) for y ∈ supp ϕ ∩ D,

where N depends only on A5, ε and the dimension d. See Figure 3.
This, together with (13), gives

(15) ωx(E; �) ≤ Ard−2 max
j=1,...,N

G�∗(x, yj ) for x ∈ B(ξ, r) ∩ D.

Now suppose that u and v are bounded harmonic functions in B(ξ, A4
5r) ∩ D

vanishing on B(ξ, A4
5r) ∩ ∂D except for a polar set. Apply the local Carleson

estimate to u to obtain

u(x) ≤ Aε min
j=1,...,N

u(yj ) for x ∈ B(ξ, A3
5r) ∩ D.
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2r A5
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Figure 3. G�∗ (x, y) ≤ A max
j=1,...,N

G�∗ (x, yj ) for y ∈ supp ϕ ∩ D.

The maximum principle gives

u(x) ≤ Aε min
j=1,...,N

u(yj )ω
x(E; �) for x ∈ B(ξ, A2

5r) ∩ D.

Hence (15) implies
(16)

u(x) ≤ Aεr
d−2 min

j=1,...,N
u(yj ) · max

j=1,...,N
G�∗(x, yj ) for x ∈ B(ξ, r) ∩ D.

On the other hand

G�∗(·, yj ) ≈ δD(yj )
2−d ≈ r2−d on S(yj , δD(yj )/2),

where the constant of comparison depends only on the dimension d and ε.
Sine v/v(yj ) ≈ 1 on S(yj , δD(yj )/2) by the Harnack inequality, it follows
that G�∗(·, yj ) ≈ r2−dv(yj )

−1v on S(yj , δD(yj )/2), and hence

G�∗(·, yj ) ≤ Ar2−d v

v(yj )
on �∗ \ B(yj , δD(yj )/2)

by the maximum principle. Since B(ξ, r) ∩ D ⊂ �∗ \ B(yj , δD(yj )/2), this,
together with (16), gives

u(x) ≤ A min
j=1,...,N

u(yj ) · max
j=1,...,N

v(x)

v(yj )
for x ∈ B(ξ, r) ∩ D.

In other words,

u(x)

v(x)
≤ A

min
j=1,...,N

u(yj )

min
j=1,...,N

v(yj )
.
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Replacing the roles of u and v and changing x and y, we obtain

u(x)

v(x)
· v(y)

u(y)
≤ A2

min
j=1,...,N

u(yj )

min
j=1,...,N

v(yj )
·

min
j=1,...,N

v(yj )

min
j=1,...,N

u(yj )
= A2 for x ∈ B(ξ, r) ∩ D.

Thus the local boundary Harnack principle holds.
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