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A NOTE ON THE RESTRICTION THEOREM AND
GEOMETRY OF HYPERSURFACES

FABIO NICOLA

Abstract

A necessary condition is established for the optimal (Lp, L2) restriction theorem to hold on a
hypersurface S, in terms of its Gaussian curvature. For some classes of flat hypersurface we give
sharp thresholds for the range of admissible exponents p, depending on the specific geometry.

1. Introduction and discussion of the results

Consider a smooth hypersurface S ⊂ Rn, and a compactly supported continu-
ous function 0 ≤ ψ ∈ Cc(S). Let dμ = ψdσ , where dσ is the measure in-
duced by the Lebesgue one. The celebrated restriction theorem by Stein-Tomas
for the Fourier transform (we use the standard notation f̂ (ξ)= ∫

e−ixξ f (x) dx)
states that, provided the Gaussian curvatureK of S does not vanish on the sup-
port of ψ , one has the estimate

(1.1) ‖f̂ |S‖L2(S,dμ) ≤ A‖f ‖Lp(Rn), ∀f ∈ S (Rn),

for every

1 ≤ p ≤ 2n+ 2

n+ 3
,

and for some constant A > 0 depending on S, ψ and p (see [14], [11] and
also [13] for a survey of the restriction problem). We observe that in the Stein-
Tomas restriction theorem a certain degree of smoothness is required. To our
knowledge, it is not known whether the conclusion still holds under the as-
sumption of a lower bound on the Gaussian curvature (defined geometrically)
alone. On this point, we refer to the recent paper by Iosevich and Sawyer [8],
where an example is constructed of a convex surface in Rn with curvature
bounded from below and, nevertheless, the decay of the Fourier transform is
sub-optimal.

Here we are interested in the following related question: what constraints
does the validity of (1.1) impose on the geometry of S and on the density ψ?
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The answer of course depends on the choice of the Lebesgue exponent p in
(1.1). A recent result by Iosevich and Lu [7] states that if (1.1) holds with the
optimal p = (2n + 2)/(n + 3) then S must have non-zero curvature where
ψ �= 0. The following theorem, being quantitative in nature, extends that
result.

Theorem 1.1. There exists a universal constant c > 0 such that, if (1.1)
holds with p = (2n+ 2)/(n+ 3) then

(1.2) ψ(x) ≤ cA2|K(x)| 1
(n+1) , x ∈ S.

It is worth mentioning the uniformity of this estimate with respect to the
objects involved.

Also, Theorem 1.1 has some consequences for estimates which contain a
power of the curvature as a mitigating factor, like
(1.3)

‖f̂ |S |K|sφ‖L2(S,dσ ) ≤ A‖f ‖Lp(Rn), ∀f ∈ S (Rn), p = 2n+ 2

n+ 3
,

with φ ∈ C∞
c (S) and s ≥ 0. Such an estimate with s = 1/(n+ 1) was proved

to be true by Sjölin [10] (see also [15]) for n = 2 and every S convex, and
recently by Carbery and Ziesler [1] in some cases with n ≥ 2 (see also Cowling
et al. [2] for related decay estimates for the Fourier transform). As explained in
[1], the choice of the exponent s = 1/(n+ 1) is mandated by affine invariance
considerations. On the other hand, as a consequence of Theorem 1.1 applied
with ψ(x) = |K(x)|s |φ(x)|, φ ∈ C∞

c (S), one deduces the following fact:

Suppose there is a point x ∈ S, with φ(x) �= 0, K(x) = 0, that is the limit
of points at which the curvature is non-zero. Then (1.3) cannot hold unless
s ≥ 1/(n+ 1).

Notice that the above mentioned result by Sjölin shows that Theorem 1.1
is sharp.

We now fix the attention on the case in which there are some vanishing
curvatures. It follows from [7] that if at some point x ∈ S with ψ(x) �= 0
there are k vanishing principal curvatures then (1.1) cannot hold unless p ≤
2(n − k/3 + 1)/(n − k/3 + 3). However, if the other n − 1 − k curvatures
are not zero at x one can only say, in general, that (1.1) holds with p =
2(n− k+ 1)/(n− k+ 3), as shown by Greenleaf [4]. It is observed in [4] that
this latter result is sharp when S contains an open subset which is the product
of a (n − 1 − k)-dimensional surface with nonzero Gaussian curvature cross
a piece of k-dimensional plane. In the following theorem we prove that such a
value of p indeed represents a threshold in more general situations.
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Let ν(x), x ∈ S, be the number of the principal curvatures which vanish at
x, namely the dimension of the kernel of the second fundamental form at x.

Theorem 1.2. Let x ∈ S, with ψ(x) �= 0 and let ν := lim infx→x ν(x).
Then the estimate in (1.1) cannot hold unless

(1.4) p ≤ 2(n− ν + 1)

n− ν + 3
.

When ν = 0 the conclusion of Theorem 1.2 is a consequence of Knapp’s
optimality result (see Lemma 3 of Strichartz [12]). When ν > 0 the proof is a
combination of a scaling argument with a reduction of S to a kind of normal
form (see Proposition 2.2 below). This auxiliary result follows from some
facts of Riemannian geometry of hypersurfaces in Euclidean space and can
be of some interested in its own right, though similar Morse-type reductions
are quite common in the context of Fourier integral operators and in partial
differential equations, see e.g. Hörmander’s book [5].

We also deduce a consequence for decay estimates for the Fourier transform
of the measure dμ = ψdσ , i.e. estimates of the form

(1.5) |d̂μ(ξ)| ≤ C(1 + |ξ |)−r , r > 0.

It is well known that (1.5) holds with r = (n − 1 − k)/2 if S has n − 1 − k

non-vanishing curvatures on the support of ψ . In all cases, (1.5) implies the
restriction estimate (1.1) for p ≤ 2(r + 1)/(r + 2) (see [4]), whereas the
converse was proved by Iosevich [6] for smooth convex hypersurfaces of finite
type, in the sense that the order of contact with every tangent line is finite (see
also [7], [9], [11] for related results).

As a consequence of Theorem 1.2 we deduce the following fact:

Let x ∈ S, with ψ(x) �= 0 and let ν := lim infx→x ν(x). Then (1.5) cannot
hold unless r ≤ (n− 1 − ν)/2.

Acknowledgments. I wish to thank ProfessorsAntonio J. Di Scala, Fulvio
Ricci and Luigi Rodino for helpful discussions on the subject of this paper. I
am also very grateful to Professor Anthony Carbery for providing his paper
[1].

2. Proof of the results

Proof of Theorem 1.1. Assume (1.1) with p = (2n + 2)/(n + 3) and
then observe that, by an application of the Fatou lemma, the estimate in (1.1)
holds true for all f ∈ L1 ∩ Lp as well. Fix now two functions f1 and f2
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in L1(Rn−1) ∩ Lp(Rn−1) and L1(R) ∩ Lp(R) respectively, with f̂1 > 0 and
f̂2 > 0, and set f (x) = f1(x

′)f2(xn), x = (x ′, xn).
It suffices to prove (1.2) for those x ∈ S such that K(x) �= 0, since we

already know from Theorem 2 of [7] that ψ = 0 where K = 0. Moreover it
is easy to see that, if (1.1) holds, then it also holds, with the same constant
A, for the surface �(S) (with density ψ ◦ �−1) where � : Rn → Rn is any
translation or rotation. Hence, we can take any point at which K �= 0 and,
possibly after a translation and rotation, we can assume such a point as the
origin of the coordinates, with S locally defined by the equation xn = φ(x ′),
x ′ in an open neighborhood U ⊂ Rn−1 of 0, with φ(0) = 0, ∇φ(0) = 0, and
φ′′(0) in diagonal form. By (1.1) we hence obtain
(2.1)∥∥∥∥ψ̃(x ′)

∫
e−i(x

′ξ ′+φ(x ′)ξn)g(ξ) dξ

∥∥∥∥
L2(Rn−1

x′ )

≤ A‖g‖Lp(Rn), p = 2n+ 2

n+ 3
,

for every g ∈ L1(Rn) ∩ Lp(Rn), where ψ̃ = χψ1/2, for any cut-off function
χ ∈ C∞

c (U), 0 ≤ χ ≤ 1. We take χ satisfying χ(0) = 1, so that ψ̃(0) =
ψ(0)1/2.

Let κ1, . . . , κn−1 be the eigenvalues of φ′′(0) (recall, κ1κ2 · · · κn−1 =
K(0) �= 0). We apply the estimate (2.1) with

g(x) = fδ(x) := f (δB−1/2x ′, δ2xn),

where δ > 0 andB = diag[|κ1|, . . . , |κn−1|] (thereforeB−1/2 = diag[|κ1|−1/2,

. . . , |κn−1|−1/2]). Then we obtain∥∥∥∥ψ̃(x ′)
∫
e−i(δ

−1B1/2x ′ξ ′+δ−2φ(x ′)ξn)f (ξ) dξ

∥∥∥∥
L2(Rn−1

x′ )

≤ Aδ
n+1
p′ |K(0)|− 1

2p′ ‖f ‖Lp(Rn),
and therefore, after the change of variables x ′ → δB−1/2x ′ (recall, f =
f1 ⊗ f2),

(2.2) δ
n−1

2 |K(0)|− 1
4
∥∥ψ̃(δB−1/2x ′)f̂1(x

′)f̂2(δ
−2φ(δB−1/2x ′))

∥∥
L2(Rn−1

x′ )

≤ Aδ
n+1
p′ |K(0)|− 1

2p′ ‖f ‖Lp(Rn).
Since p′ = 2(n+ 1)/(n− 1), the exponents of δ in the two sides of (2.2) are
equal. Now we observe that, as δ → 0+, ψ̃(δB−1/2x ′) → ψ(0)1/2 and

δ−2φ(δB−1/2x ′) →
n−1∑
j=1

εjx
2
j /2, εj = sign κj .
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Hence, by the Fatou lemma (f̂2 is continuous) we have

ψ(0)1/2|K(0)|− 1
4 + 1

2p′ ≤ cnA,

with

cn := sup
εj=±1

‖f ‖Lp(Rn)
∥∥∥∥f̂1(x

′)f̂2

(n−1∑
j=1

εjx
2
j /2

)∥∥∥∥−1

L2(Rn−1
x′ )

.

In order to conclude the proof, it suffices to show that, for a convenient choice of
f1, f2, the above sequence cn is bounded. To this end, choosef1(x

′) = e−|x ′|2/2,
f2(xn) = (1+x2

n)
−1. Then f̂1(x

′) = (2π)(n−1)/2e−|x ′|2/2 and f̂2(xn) = πe−|xn|.
Since

∣∣f̂2
(∑n−1

j=1 εjx
2
j /2

)∣∣ ≥ f̂2(|x ′|2/2) it follows that

cn = ‖f ‖Lp(Rn)(2π)− n−1
2 π−1

(∫
e−2|x ′|2 dx ′

)− 1
2

.

Now, we have ‖f1‖Lp(Rn−1) = (2π/p)(n−1)/(2p) and ‖f2‖Lp(R) ≤ π1/p, hence

cn ≤ π
1
p
−1

{(
2π

p

) 1
2p

(2π)−
1
2

(
π

2

)− 1
4
}n−1

.

Finally, we observe that p → 2 as n → +∞, so that cn → 0 and this
concludes the proof.

We now prove some results needed for the proof of Theorem 1.2.
For x ∈ S, let αx : TxS × TxS → R be the second fundamental form of S

at x, so that ν(x) = dim (Ker αx).

Proposition 2.1. Let x ∈ S and ν = lim infx→x ν(x). There is an affine
planeL of dimension ν passing through x, such that S∩L contains a relatively
open ball B of L with center in x and

(2.3) αx(v,w) = 0, ∀x ∈ B, v ∈ TxL, w ∈ TxS.

Proof. First of all we observe that there is an open neighborhood V ⊂ S

of x such that ν = minx∈V ν(x).
Consider then the case in which ν(x) = ν. Therefore ν(x) is constant

for x in an open neighborhood U ⊂ S of x. It is a classical result (see e.g.
Theorem 5.3 of [3]) that the distribution U � x �→ Ker αx is (smooth and)
integrable, and its leaves are totally geodesics in S and in Rn. Hence, the result
follows by taking L = {x ∈ Rn : x − x ∈ Ker αx}.

Assume now ν(x) > ν. Then there is a sequence of points S � xj → x,
j ≥ 1, with ν(xj ) = ν. By the first part of the present proof applied to xj
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there are affine planes Lj and balls Bj ⊂ Lj with center in xj satisfying the
properties in the statement at xj . Moreover a subsequence of Lj tends to a
planeL of dimension ν and containing x. To conclude the proof, it is therefore
sufficient to proof that the Bj have radii bounded from below by a positive
constant, for (2.3) then follows by continuity.

To this end we observe that every Bj is the union of geodesics that are rays
from xj . On the other hand, it is a consequence of the Cauchy theorem for
ordinary differential systems that geodesics starting from points sufficiently
near x, regardless of their starting directions, have lengths bounded form below
by a positive constant.

Proposition 2.2. Let x ∈ S and ν := lim infx→x ν(x). There is an or-
thonormal system of coordinates x = (x ′, x ′′, xn), x ′ = (x1, . . . , xn−1−ν),
x ′′ = (xn−ν, . . . , xn−1) with the origin at x such that, in a neighborhood of x,
S is the graph of a function xn = φ(x ′, x ′′) of the type

(2.4) φ(x ′, x ′′) = 〈M(x ′, x ′′)x ′, x ′〉,
where M is a square matrix of size n− 1 − ν with smooth entries.

Notice that, in general, ν(x) ≥ ν, but the most interesting case in Proposi-
tion 2.2 is of course when ν(x) > ν. Also, observe that the transformation of
Rn which brings S in the desired form is an orthogonal one, and not merely
smooth.

Proof of Proposition 2.2. It is a direct consequence of Proposition 2.1.
Indeed, after a translation and a rotationS coincides with the graph of a function
xn = φ(x1, . . . , xn−1), with φ(0) = 0, ∇φ(0) = 0. Now, after a further
rotation, one can take the plane L in the statement of Proposition 2.1 as the
coordinate plane of equation x1 = · · · = xn−1−ν = xn = 0. Then (2.3) gives

(2.5)
∂2φ

∂xj∂xk
(0, x ′′) = 0, if n− ν ≤ j < n or n− ν ≤ k < n,

namely ∇φ(0, x ′′) = 0 for x ′′ small. Hence also φ(0, x ′′) = 0 for x ′′ small,
and an application of the Taylor formula at x ′ = 0 yields (2.4).

Proof of Theorem 1.2. We consider the coordinate system centered at x
given by Proposition 2.2, so that S coincides, in neighborhood of the origin,
with the graph of a function xn = φ(x ′, x ′′) of the type (2.4) for (x ′, x ′′) in an
open neighborhood U of the origin.

Suppose therefore that the estimate (1.1) holds for some p ≥ 1. Then

(2.6)

∥∥∥∥ψ̃(x ′, x ′′)
∫
e−i(x

′ξ ′+x ′′ξ ′′+φ(x ′,x ′′)ξn)f (ξ) dξ

∥∥∥∥
L2(Rn−1

x′ ,x′′ )
≤ A‖f ‖Lp(Rn),
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where ψ̃ = χψ1/2, for any cut-off function χ ∈ C∞
c (U), 0 ≤ χ ≤ 1,

χ(0) �= 0.
We now choose two Schwartz functionsf1 andf2 in Rn−1 and R respectively,

with f̂1 > 0, f̂2 > 0. Upon setting f (x) = f1(x
′, x ′′)f2(xn), we test (2.6) on

the function fδ(x) = f (δx ′, δεx ′′, δ2xn), ε > 0. By arguing as in the proof of
Theorem 1.1 we obtain

(2.7) δ
n−1−ν+εν

2
∥∥ψ̃(δx ′, δεx ′′)f̂1(x

′, x ′′)f̂2(δ
−2φ(δx ′, δεx ′′))

∥∥
L2(Rn−1

x′ ,x′′ )

≤ Aδ
n+1−ν+εν

p′ ‖f ‖Lp(Rn).
Now, as δ → 0 we see that ψ̃(δx ′, δεx ′′) → χ(0)ψ1/2(0) �= 0, whereas

δ−2φ(δx ′, δεx ′′)) → 〈M(0, 0)x ′, x ′〉.
By dominated convergence it follows that the L2 norm in the left hand side of
(2.7) tends to a number c �= 0. Hence, we see that necessarily

p ≤ 2(n− ν + εν + 1)

n− ν + εν + 3
.

Since ε is arbitrary, we obtain (1.4).
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