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TOEPLITZ OPERATORS ON WEIGHTED SPACES
OF HOLOMORPHIC FUNCTIONS

ANAHIT HARUTYUNYAN∗ and WOLFGANG LUSKY

Abstract

We define a notion of Toeplitz operator on certain spaces of holomorphic functions on the unit disk
and on the complex plane which are endowed with a weighted sup-norm. We establish boundedness
and compactness conditions, give norm estimates and characterize the essential spectrum of these
operators for many symbols.

1. Introduction

We deal with holomorphic functions h : � → C, where � is the open unit
disk D = {z ∈ C : |z| < 1} or � = C, which are subject to certain growth
conditions. To this end we consider an arbitrary function v : [0, a[ → R+
which is continuous and non-increasing where a = 1 if � = D and a = ∞
if � = C. If a = 1 we assume that limr→1 v(r) = 0 while for a = ∞ we
assume that limr→∞ rnv(r) = 0 for any n ≥ 0. v is called a weight function.
For fixed r we put

M∞(h, r) = sup
|z|=r

|h(z)| and ‖h‖v = sup
0≤r<a

M∞(h, r)v(r)

and we define

Hv(�) = {h : � → C holomorphic : ‖h‖v < ∞}
Hv(�) is a Banach space with the norm ‖ · ‖v . We obtain h ∈ Hv(�) if and
only ifM∞(h, r) = O

(
1
v(r)

)
as r → a. The conditions on v ensure thatHv(�)

contains all polynomials.
The complete isomorphic classification of the spaces Hv(�) is known

([1]). Indeed, Hv(�) is either isomorphic to l∞ or to H∞ = {h : D →
C holomorphic : h bounded}. To decide whether Hv(�) is isomorphic to l∞
one needs to consider the functions γn(r) = rnv(r) for any n > 0. For each
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n > 0 pick a global maximum point rn of γn. We easily see that limn→∞ rn = a.
v is said to satisfy condition (B) if

∀b1 > 1 ∃b2 > 1 ∃c > 0 ∀m, n > 0 :(
rm

rn

)m
v(rm)

v(rn)
≤ b1 and m, n, |m− n| ≥ c ⇒

(
rn

rm

)n
v(rn)

v(rm)
≤ b2

We have (see [2, Theorem 1.1])

Hv(�) is isomorphic to l∞ if and only if v satisfies (B).

Examples of weights satisfying (B) include all normal weights on [0, 1[ (see
[3]), in particular v(r) = (1 − r)α for any α > 0. Moreover exp(−1/(1 −
r)), exp(− exp(1/(1 − r))), . . . satisfy (B).

If a = ∞ then exp(−rρ) for any ρ > 0, exp(− logτ r) for any τ ≥ 2,
exp(− exp(r)), exp(− exp(exp(r))), . . . satisfy (B) (see [1] for details).

If v satisfies (B) then Hv(�) is complemented in any superspace. In this
situation it is possible to give a meaningful definition of Toeplitz operator on
Hv(�). At first, we use induction to find indices 0 < m1 < m2 < · · · such
that rm1 > 0 and

(1.1) 3 ≤ min

((
rmn

rmn+1

)mn v(rmn)

v(rmn+1)
,

(
rmn+1

rmn

)mn+1 v(rmn+1)

v(rmn)

)
≤ 4

(This is possible since, by assumption, limM→∞ rnMv(rM) = 0 for any n > 0,
see [1, Lemma 5.1].)

Let g : � → C be a function such that g|r∂D is continuous for each r ∈
]0, a[. Then, for fixed r let

∑
j∈Z gj (r)r

|j |eijϕ be the Fourier series of g. For
0 ≤ m < n put

Vn,mg =
∑
|j |≤m

gj (r)r
|j |eijϕ +

∑
m<|j |≤n

[n] − |j |
[n] − [m]

gj (r)r
|j |eijϕ

where [c] is the largest integer ≤ c. In [2] the following theorem is shown
(based on the results of [1])

Theorem 1.1. If v satisfies (B) and (mn) are the preceding indices then
there exist d1 > 0 and d2 > 0 such that, for any h ∈ Hv(�), we have

d1 sup
k

M∞((Vmk+1,mk − Vmk,mk−1)h, rmk )v(rmk )

≤ ‖h‖v ≤ d2 sup
k

M∞((Vmk+1,mk − Vmk,mk−1)h, rmk )v(rmk )
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(Put m0 = 0 and Vm0,m−1 = 0.)

This gives rise to the following definition. Let g be as in the definition of
Vn,m and let tk,j be such that

(Vmk+1,mk − Vmk,mk−1)g =
∑

mk−1<|j |≤mk+1

tk,j gj (r)r
|j |eijϕ.

Then define

Wkg =
∑

mk−1<j≤mk+1

tk,j gj (rmk )r
j eijϕ, k ∈ Z+, and Pg =

∑
k

Wkg

provided the last definition makes sense (i.e. the preceding Fourier series rep-
resents a holomorphic function on �). One can show that Pg ∈ Hv(�) if
sup0≤r<a M∞(g, r)v(r) < ∞ ([2]). It is easily seen thatPg = g ifg ∈ Hv(�).

Now we define Toeplitz operators.

Definition 1.2. Let f : � → C be such that, for all r ∈ ]0, a[, f |r∂D is
continuous. For h ∈ Hv(�) put

Tf (h) = P(f h)

(if this definition makes sense). ThenTf is called Toeplitz operator with symbol
f .

Later on (Corollary 2.6.) we show that for many symbols f the definition
of Tf is independent of the numbers mk up to compact perturbations.

In section 2 we give boundedness and compactness conditions for Tf and
discuss the case of functions f : D → C which are continuous on D \ ρD for
some 0 < ρ < 1. In particular we show that, for suitable harmonic g, Tf −Tg is
compact. In section 4 we determine the essential spectrum for Tf with respect
to such functions f . Moreover, we show that, for harmonic g : D → C, ‖Tg‖
and M∞(g, 1) are equivalent.

2. Continuity and compactness conditions for Toeplitz operators

Again in this section let f : � → C be such that

(2.1) f |r∂rD is continuous for all r ∈ ]0, a[.

Then, for each r ∈ ]0, a[, f (reiϕ) has a Fourier series
∑
j fj (r)r

|j |eijϕ .
For 0 < p let the Cesaro mean σp be defined by

σpf =
∑
|j |≤p

[p] − |j |
[p]

fj (r)r
|j |eijϕ.
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Note that

M∞(σpf, r) ≤ M∞(f, r) and lim
p→∞M∞(f − σpf, r) = 0

for each r .
If mk are the preceding indices then fix nk such that

0 < inf
k

(
mk+1 −mk

nk

)
≤ sup

k

(
mk+1 −mk

nk

)
< ∞.

We show

Theorem 2.1. Let f : � → C satisfy (2.1) and assume that

sup
k

M∞(σnk |f |, rmk ) < ∞.

ThenTf is a bounded operatorHv(�) → Hv(�). Moreover there is a constant
c > 0 (independent of f ) such that

‖Tf ‖ ≤ c sup
k

M∞(σnk |f |, rmk ).

We shall prove Theorem 2.1 in section 3. Using the preceding theorem we
easily find examples even of unbounded f : � → C where Tf : Hv(�) →
Hv(�) is bounded.

Example. Put

f (z) =
{

1
zn
, z �= 0

0, z = 0

for some integer n > 0. Then, according to Theorem 2.1, Tf is bounded and
‖Tf ‖ ≤ cr−n

m1
.

In section 3 we also show

Theorem 2.2. Let f : � → C satisfy (2.1). If limk→∞M∞(σnk |f |, rmk ) =
0 then Tf : Hv(�) → Hv(�) is compact.

In the rest of this section we discuss some consequences of Theorem 2.2
for � = D.

Proposition 2.3. Let f : D → C satisfy (2.1) and assume that, for some
0 < ρ < 1, f is continuous on D \ ρD. Then

lim
n→∞ sup

ρ≤r≤1
M∞(f − σnf, r) = 0.
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In particular, limn→∞ ‖Tf − Tσnf ‖ = 0.

Proof. Using the Weierstraß theorem we see that f can be uniformly ap-
proximated on D \ ρD by functions gm of the form

gm(re
iϕ) =

∑
|k|≤m

gm,k(r)r
|k|eikϕ.

So fix ε > 0 and gm such that M∞(f − gm, r) < ε for all ρ ≤ r ≤ 1. Hence

sup
ρ≤r≤1

M∞(f − σnf, r) ≤ sup
ρ≤r≤1

M∞(f − gm, r)+ sup
ρ≤r≤1

M∞(σngm − σnf, r)

+ sup
ρ≤r≤1

M∞(gm − σngm, r)

< 3ε

for suitably large n. Then limn→∞ supρ≤r≤1M∞(f − σnf, r) = 0.
Let k0 be such that rmk > ρ for all k ≥ k0. Theorem 2.1. implies

‖Tf − Tσnf ‖ = ‖Tf−σnf ‖ ≤ c sup
k

M∞(f − σnf, rmk )

≤ cmax
(

sup
k≤k0

M∞(f − σnf, rmk ), sup
ρ≤r≤1

M∞(f − σnf, r)
)

In view of (2.1) this proves limn→∞ ‖Tf − Tσnf ‖ = 0.

Let f satisfy the assumptions of Proposition 2.3. Then f |∂D is continuous
and has a harmonic extension fh on D. So, if

γk = 1

2π

∫ 2π

0
f (eiϕ)e−ikϕ dϕ, k ∈ Z,

then fh(reiϕ) = ∑
k∈Z γkr

|k|eikϕ , r < 1.

Corollary 2.4. Let f : D → C satisfy (2.1) and assume that f is
continuous on D \ ρD for some 0 < ρ < 1. Then Tf − Tfh is compact.

Proof. In view of Proposition 2.3 it suffices to assume f (reiϕ) =
fj (r)r

|j |eijϕ for some j ∈ Z. Then |f − fh|(reiϕ) = |fj (r) − fj (1)|r |j |.
Using the numbers nk and mk of Theorems 2.1 and 2.2 we obtain

lim
k→∞M∞(σnk |f − fh|, rmk ) = lim

k→∞ |fj (rmk )− fj (1)| = 0.

Now Theorem 2.2 proves the corollary.
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Let f (reiϕ) = ∑
|k|≤n fk(r)r |k|eikϕ where all fk are continuous on [ρ, 1]

for some 0 < ρ < 1. Put

hf (z) =
∑
|k|≤n

fk(1)z
k.

Then hf is continuous on D \ {0} and (hf )h = fh. Corollary 2.4 implies

Lemma 2.5. Let f : D → C satisfy (2.1) and assume that f is continuous
on D \ ρD for some 0 < ρ < 1. Then Tσnf − Thσnf is compact for all n > 0.

The Toeplitz operator Tf is defined via numbers mk satisfying (1.1). Let
us go over to numbers m̃k which also satisfy (1.1) and consider the resulting
Toeplitz operator T̃f . Quite often we obtain that Tf − T̃f is compact.

Corollary 2.6. Let f : D → C satisfy (2.1) and assume that f is
continuous on D \ ρD for some 0 < ρ < 1. Then Tf is independent of the
numbers mk up to compact perturbations.

Proof. In view of Proposition 2.3 and Lemma 2.5 it suffices to asume
f (z) = αzn for some α ∈ C and n ∈ Z. If h ∈ Hv(D) is such that h(z) =∑

k>|n| βkzk then f h is holomorphic. Hence if Tf and T̃f are the Toeplitz

operators with respect to the numbers mk and m̃k then (Tf − T̃f )h = 0. It
follows that Tf − T̃f has finite rank and, therefore, is compact.

3. Proofs of Theorems 2.1 and 2.2

The proof follows from some lemmas. At first, let f : � → C be such
that f |r∂D ∈ L1(r∂D) for all r and the Fourier series of f for fixed r is∑
j∈Z fj (r)r

|j |eijϕ . Let R be the Riesz projection, i.e. Rf has the Fourier
series

∑
j≥0 fj (r)r

|j |eijϕ . Finally, for k ∈ Z, define the translation operator Uk
by Ukf = eikϕf .

In [1, Lemma 3.3], it was shown that

M∞(R(Vp,n − Vn,m)f, r) ≤ δM∞(f, r)

for all r and m, n, p ∈ Z+ with 0 ≤ m ≤ n ≤ p where δ is a constant which
depends only on

p −m

min(p − n, n−m,m)

but not on f or r .
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Lemma 3.1. Let m, n, p ∈ Z+ such that 0 ≤ m ≤ n ≤ p and fix q ∈ Z+.
There is a universal constant d > 0 depending only on

p −m

min(p − n, n−m,m, q)

(but not on f ) such that

M∞(R(Vp,n − Vn,m)f, r) ≤ d sup
k∈Z+

M∞(UkσqU−kf, r) for all r.

Proof. For k ≥ q we have

UkσqU−kf =
k∑

j=k−q
fj (r)

j + q − k

q
rj eijϕ +

k+q∑
j=k+1

fj (r)
q + k − j

q
eijϕ.

Hence we find k1, . . . , kN with

R(Vp,n − Vn,m)

N∑
l=1

UklσqU−kl f = R(Vp,n − Vn,m)f

whereN depends only on (p−m)/q. This implies, with the previous constant
δ,

M∞(R(Vp,n − Vn,m)f, r) ≤ Nδ sup
k∈Z+

M∞(Ukσp−nU−kf, r)

for any r which proves the lemma.

Now we return to the definition of Wk (preceding 1.2).

Lemma 3.2. There is a constant c > 0 such that, for any f : � → C,
h ∈ Hv(�) and any l ∈ Z+, we have∥∥∥∥∑

k≥l
Wk(f h)

∥∥∥∥
v

≤ c sup
k≥l

M∞(Wk(f h), rmk )v(rmk ).

Proof. By definition we have

(Vmj+1,mj − Vmj ,mj−1)Wk = 0 if |k − j | > 1.

Since v satisfies (B) then either

0 < inf
k

mk+1 −mk

mk −mk−1
≤ sup

k

mk+1 −mk

mk −mk−1
< ∞
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or supk(mk+1 − mk−1) < ∞ ([1, Proposition 4.1]). According to [1, Lemma
3.3], we obtain that

M∞((Vmj+1,mj − Vmj ,mj−1)g, r) ≤ dM∞(g, r)

for any g and any j where d is a universal constant. Theorem 1.1 yields∥∥∥∥∑
k≥l

Wk(f h)

∥∥∥∥
v

≤ d2 sup
j

M∞((Vmj+1,mj − Vmj ,mj−1)

(∑
k≥l

Wk

)
(f h), rmj )v(rmj )

= d2 sup
j

M∞((Vmj+1,mj − Vmj ,mj−1)(Wj−1 +Wj +Wj+1)(f h), rmj )v(rmj )

≤ 3d2d sup
j≥l

max(M∞(Wj (f h), rmj−1)v(rmj−1),

M∞(Wj (f h), rmj )v(rmj ),M∞(Wj (f h), rmj+1)v(rmj+1))

Wj (f h) is a polynomial of the form
∑mj+1

k=mj−1
αkz

k . According to [1, Lemma
3.1], we infer

M∞(Wj (f h), rmj−1)v(rmj−1)

≤ 2

(
rmj−1

rmj

)mj−1 v(rmj−1)

v(rmj )
M∞(Wj (f h), rmj )v(rmj )

and

M∞(Wj (f h), rmj+1)v(rmj+1)

≤ 2

(
rmj+1

rmj

)mj+1 v(rmj+1)

v(rmj )
M∞(Wj (f h), rmj )v(rmj )

This yields the lemma.

To finish the proof of Theorem 2.1 consider, for l > 0, the Fejer kernel

Fl(ϕ) =
∑
|j |≤l

[l] − |j |
[l]

eijϕ.

It is well-known that Fl(ϕ) ≥ 0 for all ϕ. We have

(σlf )(re
iϕ) = 1

2π

∫ 2π

0
Fl(ϕ − ψ)f (reiψ) dψ.
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Hence, if h ∈ Hv(�) we obtain

M∞(UkσlU−k(f h), r) ≤ M∞(σl|f |, r)M∞(h, r)

for any k ∈ Z and any r > 0.

Conclusion of the proof of Theorem 2.1

We take into account that, for arbitrary 0 < n < p, we have Vp,n = V[p],[n].
Assume supk M∞(σnk |f |, rmk ) < ∞. With Lemma 3.1 we obtain constants dk
such that, for any h ∈ Hv(�),

M∞(Wk(f h), rmk ) ≤ dk sup
l∈Z+

M∞(UlσnkU−l(f h), rmk )

≤ dkM∞(σnk |f |, rmk )M∞(h, rmk ).

Since v satisfies (B) then either

0 < inf
k

mk+1 −mk

mk −mk−1
≤ sup

k

mk+1 −mk

mk −mk−1
< ∞

or supk(mk+1 −mk−1) < ∞ ([1, Proposition 4.1]).
Hence, in view of Lemma 3.1, the dk are uniformly bounded. According to

Lemma 3.2 with l = 1 we obtain

‖Tf h‖v ≤ (sup
k

dk)(sup
k

M∞(σnk |f |, rmk ))‖h‖v.

Since Tf h is a holomorphic function on � we conclude Tf h ∈ Hv(�).

Conclusion of the proof of Theorem 2.2

Assume that limk→∞M∞(σnk |f |, rmk ) = 0. By the same argument as in the
preceding proof, in view of Lemma 3.2, we see that, for any ε > 0, there is
l such that ‖ ∑

k>l Wk(f h)‖v ≤ ε‖h‖v for any h ∈ Hv(�). Hence ‖Tf (h) −∑l
k=1Wk(f h)‖v ≤ ε‖h‖v for all h ∈ Hv(�). This means that Tf is the limit

of a sequence of finite rank operators. Hence Tf is compact.

4. Some consequences

Here we give more applications of the results of section 2 for the case� = D.
At first we show

Lemma 4.1. Let hn(z) = zn, n ∈ Z+. Then hn/‖hn‖ tends to 0 weakly (in
Hv(�)).
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Proof. Consider

(Hv)0(�) = {
h : � → C : h holomorphic, lim

r→a

sup
|z|=r

|h(z)|v(r) = 0
}

and take the indices mk of Theorem 1.1 Put

Hk = span{zj : mk−1 ≤ j ≤ mk+1} ⊂ (Hv)0(�).

Then Theorem 1.1 yields that (Hv)0(�) ⊂ (∑∞
k=1 ⊕Hk

)
0 (endowed with

the norm ‖(gk)‖ = supk ‖gk‖v). Since (Hv)0(�) ⊂ Hv(�) this implies
Lemma 4.1. (Notice, both inclusions are inclusions as closed subspaces.)

Now we show the central

Theorem 4.2. Let f : D → C be harmonic. Then f is bounded if and
only if Tf is bounded. In this case there are universal constants d1, d2 > 0
(independent of f ) such that

d1M∞(f, 1) ≤ inf{‖Tf +K‖ : K : Hv(D) → Hv(D) linear, compact}
≤ ‖Tf ‖ ≤ d2M∞(f, 1)

Proof. At first let f be bounded. Then f has L∞(∂D)-boundary values.
According to Theorem 2.1 we obtain

‖Tf ‖ ≤ c sup
k

M∞(σnk |f |, rmk ) = cM∞(|f |, 1) = cM∞(f, 1).

Conversely, let Tf be bounded. Put f (reiϕ) = ∑
k∈Z αkr

|k|eikϕ . Fix n ∈ Z+.
Then we have with z = reiϕ ,

znf (z) =
−n−1∑
k=−∞

αkr
2nr |k|−ne−i(|k|−n)ϕ

+
−1∑
k=−n

αkr
2|k|rn+kei(n+k)ϕ +

∞∑
k=0

αkr
k+nei(k+n)ϕ

Definition 1.2 implies, with hn(z) = zn,

Tf (hn) =
−1∑
k=−n

αkγk(n)r
n+kei(n+k)ϕ +

∞∑
k=0

αkr
k+nei(k+n)ϕ,

where, for [mj ] ≤ n+ k < [mj+1] and k < 0,

γk(n) = [mj+1] − (n+ k)

[mj+1] − [mj ]
r2|k|
mj

+ n+ k − [mj ]

[mj+1] − [mj ]
r2|k|
mj+1

.
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Since limj→∞ rmj = 1 we obtain limn→∞ γk(n) = 1 for each k. This implies

(V2n,n − Vn,0)Tf (hn)

=
−1∑
k=−n

αk
n+ k

n
γk(n)r

n+kei(n+k)ϕ +
n∑
k=0

αk
n− k

n
rk+nei(k+n)ϕ

= zn
( n∑
j=1

α−j
n− j

n
γ−j (n)r−j e−ijϕ +

n∑
k=0

αk
n− k

n
rkeikϕ

)
.

We have ‖hn‖v = rnnv(rn). Let K : Hv(D) → Hv(D) be linear and compact.
Then we obtain a universal constant c > 0 (independent of K , f and n) such
that

‖Tf +K‖ ≥
∥∥∥∥Tf

(
hn

‖hn‖v
)∥∥∥∥

v

−
∥∥∥∥K

(
hn

‖hn‖v
)∥∥∥∥

v

≥ c
‖(V2n,n − Vn,0)Tf (hn)‖v

‖hn‖v −
∥∥∥∥K

(
hn

‖hn‖v
)∥∥∥∥

v

≥ c
M∞((V2n,n − Vn,0)Tf (hn), rn)

rnnv(rn)
−

∥∥∥∥K
(

hn

‖hn‖v
)∥∥∥∥

v

= c sup
ϕ

∣∣∣∣
n∑
k=1

α−k
n− k

n
γ−k(n)r−k

n e−ikϕ

+
n∑
k=0

αk
n− k

n
rkne

ikϕ

∣∣∣∣ −
∥∥∥∥K

(
hn

‖hn‖v
)∥∥∥∥

v

If we fix m ∈ Z+ and take n ≥ m then we also have

‖Tf +K‖ ≥ c sup
ϕ

∣∣∣∣
m∑
k=1

α−k
n− k

n

m− k

m
γ−k(n)r−k

n e−ikϕ

+
m∑
k=0

αk
n− k

n

m− k

m
rkeikϕ

∣∣∣∣ −
∥∥∥∥K

(
hn

‖hn‖v
)∥∥∥∥

v

Letting n → ∞ Lemma 4.1 implies limn→∞ ‖K(hn/‖hn‖v)‖v = 0 since K
is compact. We arrive at

‖Tf +K‖ ≥ c sup
ϕ

∣∣∣∣
m∑
k=1

α−k
m− k

m
e−ikϕ +

m∑
k=0

αk
m− k

m
eikϕ

∣∣∣∣ = cM∞(σmf, 1)
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and hence
cM∞(f, 1) = c sup

m

M∞(σmf, 1) ≤ ‖Tf +K‖

This proves

cM∞(f, 1) ≤ inf{‖Tf +K‖ : K : Hv(D) → Hv(D) linear and compact}.
Theorem 2.1 yields ‖Tf ‖ ≤ cM∞(f, 1) in view of the maximum principle.

Corollary 4.3. Let f : D → C be harmonic such that Tf is compact.
Then f (z) = 0 for all z ∈ D.

Recall that, according to Corollary 2.4, for many f , we can replace Tf by
Tg up to compact perturbations where g is harmonic. (In the terminology of
Corollary 2.4, g = fh.)

Lemma 4.4. Let f, g : D → C satisfy (2.1) and assume that f and g are
continuous on D \ ρD for some 0 < ρ < 1. Then Tf Tg − Tfg is compact.

Proof. In view of Proposition 2.3 and Lemma 2.5 it suffices to assume that
f (z) = αzn and g(z) = βzm for some α, β ∈ C and m, n ∈ Z. If h ∈ Hv(D)
is such that h(z) = ∑

k≥|m|+|n| αkzk for some αk then Tf Tgh− Tfgh = 0. This
means that Tf Tg − Tfg has finite rank and hence is compact.

Theorem 4.5. Let f : D → C satisfy (2.1) and assume that f is continuous
on D \ ρD for some 0 < ρ < 1. Then the essential spectrum of Tf is equal to
f (∂D). Moreover there are constants c, d > 0 (independent of f ) such that

cM∞(f, 1) ≤ inf{‖Tf +K‖ : K : Hv(D) → Hv(D) linear, compact}
≤ dM∞(f, 1)

Proof. Let

B = {T : Hv(D) → Hv(D) : T linear and bounded}
and K = {K ∈ B : K compact}. Then, by Lemma 4.4, the algebra Af gener-
ated by Tf + K in B/K is commutative. By Theorem 4.2 and Corollary 2.4
its norm is equivalent to M∞(·, 1). Hence Af is a function algebra and the
spectrum of Tf + K in Af is equal to f (∂D).
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