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TOEPLITZ OPERATORS ON WEIGHTED SPACES
OF HOLOMORPHIC FUNCTIONS

ANAHIT HARUTYUNYAN* and WOLFGANG LUSKY

Abstract

‘We define a notion of Toeplitz operator on certain spaces of holomorphic functions on the unit disk
and on the complex plane which are endowed with a weighted sup-norm. We establish boundedness
and compactness conditions, give norm estimates and characterize the essential spectrum of these
operators for many symbols.

1. Introduction

We deal with holomorphic functions # : & — C, where 2 is the open unit
disk D = {z € C: |z] < 1} or & = C, which are subject to certain growth
conditions. To this end we consider an arbitrary function v : [0,a[ — R;
which is continuous and non-increasing where a = 1if Q = D anda = oo
if 2 = C. If a = 1 we assume that lim,_,; v(r) = 0 while for a = oo we
assume that lim, _, o, ¥"v(r) = 0 for any n > 0. v is called a weight function.
For fixed r we put

Meo(h,r) = sup |h(z)|  and  [[klly = sup Mo (h, r)v(r)

|z|=r 0<r<a

and we define
Hv(2) = {h : @ — C holomorphic : || i||, < oo}

Hv (L) is a Banach space with the norm || - ||,. We obtain 4 € Hv() if and
onlyif Moo(h,r) = O (v%)) asr — a. The conditions on v ensure that Hv ()
contains all polynomials.

The complete isomorphic classification of the spaces Hv(£2) is known
([1D). Indeed, Hv(L2) is either isomorphic to [, or to Hy, = {h : D —
C holomorphic : & bounded}. To decide whether Hv(£2) is isomorphic to [,

one needs to consider the functions y,,(r) = r"v(r) for any n > 0. For each
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n > 0 pick a global maximum point r,, of y,,. We easily see thatlim, . 7, = a.
v is said to satisfy condition (B) if

Vb > 13by, > 13¢c >0Vm,n >0
P )T and mongm—nlze = () 20 oy,
T'n v(ry) Fm) V(rm)

We have (see [2, Theorem 1.1])

Hv(2) is isomorphic to | if and only if v satisfies (B).

Examples of weights satisfying (B) include all normal weights on [0, 1[ (see
[3]), in particular v(r) = (1 — r)® for any o > 0. Moreover exp(—1/(1 —
r)), exp(—exp(1/(1 —r))), ... satisfy (B).

If @ = oo then exp(—r*) for any p > 0, exp(—log® r) for any 7 > 2,
exp(— exp(r)), exp(— exp(exp(r))), . .. satisfy (B) (see [1] for details).

If v satisfies (B) then Hv(€2) is complemented in any superspace. In this
situation it is possible to give a meaningful definition of Toeplitz operator on
Hv(Q2). At first, we use induction to find indices 0 < m; < m, < --- such
that r,,, > 0 and

my My
(1‘1) 3 S min (( rmn > v(rmn) , (rmn-H) v(rmn+l)> S 4
rm,H,] U(rm”+|) rmn v(rmn)
(This is possible since, by assumption, limy;_, o 7y, v(ry) = 0 for any n > 0,
see [1, Lemma 5.1].)
Let g : 2 — C be a function such that g|,5p is continuous for each r €

10, a[. Then, for fixed r let 3, ; g; (r)rlileli* be the Fourier series of g. For
0<m<nput

Vamg = Y gi(r)rllel® + Z IJ' j(r)r'j'eif“’

lil=m m<|J|<n

where [c] is the largest integer < c. In [2] the following theorem is shown
(based on the results of [1])

THEOREM 1.1. If v satisfies (B) and (m,) are the preceding indices then
there exist di > 0 and d, > 0 such that, for any h € Hv(R2), we have

d Sl;P Moo((vmk_,.l,mk - mG,mk_l)h’ rmk)v(rmk)

< ”h”v =< d2 Slip Moo((vmk+1,mk - mG,mk_l)h: rmk)v(rmk)



42 ANAHIT HARUTYUNYAN AND WOLFGANG LUSKY

(Put mo = 0and Vi m_ , =0.)

This gives rise to the following definition. Let g be as in the definition of
Vu.m and let ; ; be such that

(mGﬂ,mk - mG,mk,,)g = Z tk,jgj(l")rljleij(p_
mi1 <l <mi
Then define
Wig = Z .8 rm)r'e’?, keZ,, and Pg= Z Wig
M1 <J <My -

provided the last definition makes sense (i.e. the preceding Fourier series rep-

resents a holomorphic function on €2). One can show that Pg € Hv(R2) if

SUPy<; <y Moo(g, r)v(r) < 0o ([2]). Itiseasily seenthat Pg = gif g € Hv(R).
Now we define Toeplitz operators.

DErFINITION 1.2. Let f : 2 — Cbe such that, for all » € 10, a[, f|4p is
continuous. For & € Hv(R2) put

T;(h) = P(fh)

(if this definition makes sense). Then 77 is called Toeplitz operator with symbol
f.
Later on (Corollary 2.6.) we show that for many symbols f the definition

of Ty is independent of the numbers m; up to compact perturbations.
In section 2 we give boundedness and compactness conditions for 77 and

discuss the case of functions f : D — C which are continuous on D \ pD for
some0 < p < 1. Inparticular we show that, for suitable harmonic g, Ty — Ty is
compact. In section 4 we determine the essential spectrum for 7 with respect
to such functions f. Moreover, we show that, for harmonic g : D — C, || T, ||
and M (g, 1) are equivalent.

2. Continuity and compactness conditions for Toeplitz operators
Again in this section let f : 2 — Cbe such that

2.1) flrarp 1s continuous for all € 0, al.

Then, for each r € 10, a[, f (re') has a Fourier series > fi(ryrlileiie,

For 0 < p let the Cesaro mean o, be defined by

o, f = Z [p][;]|]|f~j(r)r|j|eij(p.

ljl<p
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Note that

My (o, fi1) < Moo (f, 1) and lim Moo(f —0,f,r) =0
p—>00

for each r.
If my, are the preceding indices then fix nj such that

. M4 — My My — My
O<inf| —— ) <sup| ——— | <@
k Ny k ng
We show

THEOREM 2.1. Let f : Q — Csatisfy (2.1) and assume that

sup Moo (0, | 1, ) < 00.
k

Then Ty is a bounded operator Hv(2) — Hv(2). Moreover there is a constant
¢ > 0 (independent of f) such that

T¢Il < ¢ sup Moo (0, | f 1, Tim,)-
k

We shall prove Theorem 2.1 in section 3. Using the preceding theorem we
easily find examples even of unbounded f : & — C where Ty : Hv(Q2) —
Hv(£2) is bounded.

ExXAMPLE. Put 1
o 2 #0

0, z=0

f@) =

for some integer n > 0. Then, according to Theorem 2.1, 7 is bounded and
I T¢Il < crp,t

In section 3 we also show

THEOREM 2.2. Let [ : Q — Csatisfy (2.1). If limy_, 00 Moo (0, | f1, Tim,) =
0 then Ty : Hv(2) — Hv(R2) is compact.

In the rest of this section we discuss some consequences of Theorem 2.2
for Q = D.

PrOPOSITION 2.3. Let f : B_—) C satisfy (2.1) and assume that, for some
0 < p < 1, f is continuous on D \ pD. Then

lim sup Mo (f —onf,r)=0.

"0 psrsl
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In particular, lim,,_, o | Ty — Ty, ¢I| = 0.

ProoF. Using the Weierstral theorem we see that f can be uniformly ap-
proximated on D \ pD by functions g,, of the form

gn(re'?) =Y gu(r)rle™.
[k|<m

So fix € > 0 and g,, such that M(f — g,n,7) < € forall p <r < 1. Hence

sup Moo(f —0uf.r) = sup Moo(f — gm»7) + SUp Meo(0ngm — On f.7)

p<r<l p=<r=<l1 p=<r=l

+ sup Moo(8m — 0n8m,7)

p=<r<l

< 3¢

for suitably large n. Then lim,—, oo SUP,, -, ; Moo (f — 04 f, 1) = 0.
Let ko be such that r,,,, > p for all k > k¢. Theorem 2.1. implies

1Ty = To, f Il = 1 Tp—o, Il < ¢sup Moo (f = 0uf,rm)

5cmax<sup Mo (f —onfirm), sSup Mo (f —o0,f, ”)>

k<ko p<r<l
In view of (2.1) this proves lim, .o [Ty — 75, ¢Il = 0.

Let f satisfy the assumptions of Proposition 2.3. Then f|;p is continuous
and has a harmonic extension f; on D. So, if

1 2

n=or | fe*de, kel

then fj,(re'¥) = D vz verMlel* e r < 1.

COROLLARY 2.4. Let f : D> C satisfy (2.1) and assume that f is
continuous on D'\ pD for some 0 < p < 1. Then Ty — Ty, is compact.

PrROOF. In view of Proposition 2.3 it suffices to assume f(re'¥) =
fi(r)rlileli® for some j € Z. Then |f — ful(re'?) = |fi(r) — f;(D)|rl].
Using the numbers n; and m; of Theorems 2.1 and 2.2 we obtain

klingoMOO(O—nAf - f/’l|a rmk) = klingo |fj(rmk) - f}(l)| = O

Now Theorem 2.2 proves the corollary.
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Let f(re') = Y j<p fe(r)rHle’™? where all f; are continuous on [p, 1]
for some 0 < p < 1. Put

hi() =) fiulh.

|k|<n

Then Ay is continuous on 5\ {0} and (hy);, = f5. Corollary 2.4 implies

LEMMA 2.5. Let f : D — Csatisfy (2.1) and assume that f is continuous
on D\ pD for some 0 < p < 1. Then Ty, ¢ — Ty, , is compact for alln > 0.

The Toeplitz operator Ty is defined via numbers m; satisfying (1.1). Let
us go over to numbers 71, which also satisfy (1.1) and consider the resulting
Toeplitz operator Tf Quite often we obtain that 7y — Tf is compact.

COROLLARY 2.6. Let [ : D — C satisfy (2.1) and assume that f is
continuous on D \ pD for some 0 < p < 1. Then Ty is independent of the
numbers my, up to compact perturbations.

Proor. In view of Proposition 2.3 and Lemma 2.5 it suffices to asume
f(z) = az" forsome ¢ € Candn € Z. If h € Hv(D) is such that h(z) =
> ko] Biz* then fh is holomorphic. Hence if Ty and T are the Toeplitz
operators with respect to the numbers my and my then (Ty — f”f)h =0.It
follows that 7 — ff has finite rank and, therefore, is compact.

3. Proofs of Theorems 2.1 and 2.2

The proof follows from some lemmas. At first, let f : @ — C be such
that f|,sp € L1(roaD) for all r and the Fourier series of f for fixed r is
> jez fi(r)rV'e'¢. Let R be the Riesz projection, i.e. Rf has the Fourier
series ) fj(r)r/le!%. Finally, for k € Z, define the translation operator Uy
by Ui f = e f.

In [1, Lemma 3.3], it was shown that

Moo(R(Vp,n - Vn,m)f’ V) f (SMoo(ﬁ }")

forall r and m,n, p € Z, with0 < m < n < p where § is a constant which
depends only on
p—m
min(p —n,n —m, m)

but not on f orr.
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LEMMA 3.1. Letm,n, p € Z, suchthat0 <m <n < pandfixq € Z,.
There is a universal constant d > 0 depending only on

p—m
min(p —n,n —m,m, q)

(but not on f) such that

My (R(Vpp — Vam) f, 1) < d sup Moo (Uro,U_i f, 1) forall r.
keZ,

Proor. For k > g we have

k+q
—k
Uro Ui f = §j O Lk LI DI /(o ] —J giie,
Jj=k—q Jj=k+1

Hence we find ky, ..., ky with

N
R(Vp,n - Vn,m) Z UkIO'quk[f = R(vp,n - Vn,m)f
=1

where N depends only on (p —m)/q. This implies, with the previous constant
87
MOO(R(Vp,n - Vn,m)f’ I") =< Né§ sup Moo(UkO'pfnUfkf’ }")

keZy
for any  which proves the lemma.

Now we return to the definition of W (preceding 1.2).

LEMMA 3.2. There is a constant ¢ > 0 such that, for any f : Q — C
h € Hv(Q2) and any |l € Z., we have

< csup Moo (Wi (fh), rm )V (Fm,)-

>l k>1

PrOOF. By definition we have
(ij+1,mj - ij,mj_l)Wk = 0 if |k - j| > 1'
Since v satisfies (B) then either

.o Myl — Mg M1 — My
O<inf ——— <sup—— < ©
k- myg —my_ Kk Mg —mj_
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or sup; (my4+1 — myg—1) < oo ([1, Proposition 4.1]). According to [1, Lemma
3.3], we obtain that

Moo((VmH],m, - Vm,-,mj,l)g, r) S dMoo(ga }")

for any g and any j where d is a universal constant. Theorem 1.1 yields

> Wi(fh)
k>1 v
< da sup Moo((Vin, ;. my — vmj,m_,.l)(z Wk) (fR), P V()
J k>1

= d2 Sup MOO((Vmi+1,m‘f - Vm_,',mj,l)(ijl + W] + v‘/]+l)(fh)’ rm/)v(rm/)
J

=< 3d2d sup maX(MOO(VVj(fh)’ rmj,l)v(rmj,l),

izl
MOO(‘/‘IJ (fh)v rmj)v(rmj), MOO(Wj(fh)’ er+|)v(rn1j+|))
W;(fh) is a polynomial of the form kag,;j_l axz¥. According to [1, Lemma
3.1], we infer

MOO(‘/‘/j(fh)v rmj_l)v(rm,-_l)
T "™ V()
52( ’ ) s MOO(W/j(fh)vrmj')v(rmj')

rmj U(rm/)

and
MOO(W](fh)7 er+1)v(rm,'+])
P N V()
§2<_]) —,Moo(vvj(fh)’rm_,-)v(rm_,-)

rmj U(rmj)

This yields the lemma.

To finish the proof of Theorem 2.1 consider, for [ > 0, the Fejer kernel

=17l ..
Fi(p) = Z %euw‘
ljl=!

It is well-known that F;(¢) > O for all ¢. We have

. 1 2 .
@) =5 /0 Fio — )£ (re™) dy.
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Hence, if h € Hv(Q2) we obtain
Moo (UrotU_i(fh), 1) < Moo (o1l f1, )Mo (h, 1)

for any k € Z and any r > 0.

Conclusion of the proof of Theorem 2.1

We take into account that, for arbitrary 0 < n < p, we have V), , = Vi) 1.
Assume sup; Moo (0, | f|, m,) < co. With Lemma 3.1 we obtain constants dy
such that, for any & € Hv(S2),

Moo(Wi(fh), rmy) < di sup Moo (U0 Ui (f 1), Imy)
leZ,

< dkMoo(Gnk|f|’ rmk)Moo(h» rmk)-
Since v satisfies (B) then either

My — M Mgy — M
0<infM§supM<oo
k my —my_q k Mg — mj—y
or sup (my4+1 — mg_1) < oo ([1, Proposition 4.1]).
Hence, in view of Lemma 3.1, the d; are uniformly bounded. According to
Lemma 3.2 with / = 1 we obtain

I Tyhll, < (SI;p dk)(sgp Moo, | f 1 rm DA
Since T¢h is a holomorphic function on 2 we conclude Trh € Hv(2).

Conclusion of the proof of Theorem 2.2

Assume that limy_, oo Moo(0p, | f1, ¥m,) = 0. By the same argument as in the
preceding proof, in view of Lemma 3.2, we see that, for any € > 0, there is
I'such that || Y ,_, Wi (fh)|l, < €llh|l, for any h € Hv(S2). Hence || Ty (h) —
Zizl Wi(fh)llv < €llhll, for all h € Hv(£2). This means that 7} is the limit
of a sequence of finite rank operators. Hence T is compact.

4. Some consequences

Here we give more applications of the results of section 2 for the case 2 = D.
At first we show

LEMMA 4.1. Let h,(z) = 7", n € Z.. Then h,,/||h, || tends to O weakly (in
Hv(R2)).
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Proor. Consider

(Hv)o(R2) = {h : Q — C: h holomorphic, lim sup |k (z)|v(r) = 0}

r—a|zl=r
and take the indices my of Theorem 1.1 Put
Hy = span{z’ : my_1 < j < mypy1} C (Hv)o(RQ).

Then Theorem 1.1 yields that (Hv)o(S2) C (Z,fozl @Hk)o (endowed with
the norm |[(gx)|| = supg lIgkllv)- Since (Hv)o(2) C Hv(2) this implies
Lemma 4.1. (Notice, both inclusions are inclusions as closed subspaces.)

Now we show the central

THEOREM 4.2. Let f : D — C be harmonic. Then f is bounded if and
only if Ty is bounded. In this case there are universal constants di,d, > 0
(independent of f) such that

diM(f, 1) <inf{||Tf + K|l : K : Hv(D) — Hv(D) linear, compact}
< 1Tyl = daMoo(f, 1)

PrOOF. At first let f be bounded. Then f has L, (dD)-boundary values.
According to Theorem 2.1 we obtain

IT¢1l < ¢ sup Moo (On | f1 1m) = cMoo ([ f1, 1) = cMoo(f, 1).
k

Conversely, let Ty be bounded. Put f(re'?) = Y, ;ourle’® Fix n € Z,.
Then we have with 7 = re'?,

—n—1

Z”f(Z) — Z Olkr2nr|k\—ne—i(|k\—n)(p
k=—o00

—1 o0
+ § aer\klrn+kel(n+k)<p 4 E :akrk+net(k+n)<p
k=—n k=0

Definition 1.2 implies, with £, (z) = z",

Ty (h,) = Z akyk(n)rn+kei(n+k)<ﬂ + Zakrk+’1€i(k+n)(p,
k==n k=0

where, for [m;] <n+k < [mj;]and k <O,

[mj_H] - (Vl + k) r2|k‘ n-+ k — [m,] 20k|

(mj]—[m;] ™ [mj1]— [m;] "™+

Vi(n) =
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Since lim;_, o r7ny; = 1 we obtain lim,,_, o yx(n) = 1 for each k. This implies
(V2n,n - Vn,O)Tf(hn)

-1 n
n+k ,
— § o yk(n)rn+kel(n+k)(p+§ o
k=—n k=0

=z <Za_j—y—1(n)r e~ ”‘“rZak ’k‘”>

We have || h, ||, = rjv(r,). Let K : Hv(D) — Hv(D) be linear and compact.
Then we obtain a universal constant ¢ > 0 (independent of K, f and n) such

that
|« ()
— | K
Nhanllo /I,

h,
T, + K| > HT ( )
! ANTHE

Vonin — Vo) Tr (hy, hy,
ZCII( 2n, 0Ty ( )IIU_HK( )
7nllo 1anllo /1l

Moo((VZH,n - Vn,O)Tf(hn)a rn) _ HK ( hn )

r;’:v(rn) ”hn”v

n—k .
rk+nel(k+n)§0

—k —zk<p

= esup Ky e

+ Zak kel

If we fix m € Z, and take n > m then we also have

> o

- HK (||::||v> '

Ty + K|| = csup
¢

= —km—k "
Y e — ),

k=1
hy
+Z“k B HK (nh || )

Letting n — oo Lemma 4.1 implies lim,— o [| K (A, /||A4]l)]ly = O since K
is compact. We arrive at

m
E a2

k=1

n—km— k k ik

ITf + K|l = csup
4

—zk<p + Zak zk(p

= cMx(on f, 1)
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and hence
cMx(f, 1) =csup Moo (0on [, 1) < [Ty + K|

This proves
cMo(f, 1) <inf{||T; + K| : K : Hy(D) — Hv(D) linear and compact}.

Theorem 2.1 yields || 77| < cMq(f, 1) in view of the maximum principle.

CoROLLARY 4.3. Let f : D — C be harmonic such that Ty is compact.
Then f(z) = 0forall z € D.

Recall that, according to Corollary 2.4, for many f, we can replace Ty by
T, up to compact perturbations where g is harmonic. (In the terminology of
Corollary 2.4, g = f3.)

LEMMA 4.4. Let f, g : D—>C satisfy (2.1) and assume that f and g are
continuous on D \ pD for some 0 < p < 1. Then Ty T, — Ty, is compact.

PRrROOF. In view of Proposition 2.3 and Lemma 2.5 it suffices to assume that
f(z) = az" and g(z) = Bz™ for some o, 8 € Cand m,n € Z. If h € Hv(D)
is such that h(z) = Zkz\m\+|n\ oz~ for some o then TyToh — Troh = 0. This
means that Ty T, — Ty, has finite rank and hence is compact.

THEOREM4.5. Let f : D — Csatisfy (2.1) and assume that f is continuous
on D\ pD for some 0 < p < 1. Then the essential spectrum of Ty is equal to
f(0D). Moreover there are constants c,d > 0 (independent of f) such that

cMoo(f, 1) <inf{||T; + K| : K : Hv(D) — Hv(D) linear, compact}
<dM(f,1)

ProoF. Let
B ={T : Hv(D) — Hv(D) : T linear and bounded}

and /' = {K € % : K compact}. Then, by Lemma 4.4, the algebra 2/, gener-
ated by Ty + J in 93/ is commutative. By Theorem 4.2 and Corollary 2.4
its norm is equivalent to M (-, 1). Hence ./ is a function algebra and the
spectrum of Ty + J¢ in 2/ is equal to f(9D).
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