THE FIXED POINT FOR A TRANSFORMATION OF HAUSDORFF MOMENT SEQUENCES AND ITERATION OF A RATIONAL FUNCTION

CHRISTIAN BERG and ANTONIO J. DURÁN*

Abstract

We study the fixed point for a non-linear transformation in the set of Hausdorff moment sequences, defined by the formula: $T((a_n))_n = 1/(a_0 + \cdots + a_n)$. We determine the corresponding measure μ , which has an increasing and convex density on]0, 1[, and we study some analytic functions related to it. The Mellin transform F of μ extends to a meromorphic function in the whole complex plane. It can be characterized in analogy with the Gamma function as the unique log-convex function on]-1, ∞ [satisfying F(0) = 1 and the functional equation 1/F(s) = 1/F(s+1) - F(s+1), s > -1.

1. Introduction and main results

Hausdorff moment sequences are sequences of the form $\int_0^1 t^n dv(t)$, $n \ge 0$, where v is a positive measure on [0, 1]. Hausdorff moment sequences were characterized as completely monotonic sequences in a fundamental paper by Hausdorff, see [17]. For a recent study of Hausdorff moment sequences see [14], [15]. Hausdorff moment sequences can also be characterized as bounded Stieltjes moment sequences, where Stieltjes moment sequences are of the form $\int_0^\infty t^n dv(t)$, $n \ge 0$ for a positive measure v on $[0, \infty[$. For a treatment of these concepts and the more general Hamburger moment problem see the monograph by Akhiezer [1].

In [8] the authors introduced a non-linear multiplicative transformation from Hausdorff moment sequences to Stieltjes moment sequences. In [9] we introduced a non-linear transformation T of the set of Hausdorff moment sequences into itself by the formula:

(1.1)
$$T((a_n))_n = 1/(a_0 + a_1 + \dots + a_n), \quad n \ge 0.$$

^{*} This work was initiated during the visit of the second author to the University of Copenhagen partially supported by D.G.E.S, ref. BFM2003-6335-C03-01, FQM-262 (*Junta de Andalucía*), and by grant 21-03-0324 from the Danish Natural Science Research Council.

Received November 14, 2006.

The corresponding transformation of positive measures on [0, 1] is denoted \widehat{T} . We recall from [9] that if $\nu \neq 0$, then $\widehat{T}(\nu)(\{0\}) = 0$ and

(1.2)
$$\int_0^1 \frac{1-t^{z+1}}{1-t} d\nu(t) \int_0^1 t^z d\widehat{T}(\nu)(t) = 1 \quad \text{for} \quad \text{Re}\, z \ge 0.$$

Assuming Re z > 0 we can consider $t^z = \exp(z \log t)$ as a continuous function on [0, 1] with value 0 for t = 0. Likewise $(1 - t^z)/(1 - t)$ is a continuous function for $t \in [0, 1]$ with value z for t = 1. If Re z = 0, $z \neq 0$ the function t^z is only considered for t > 0, so it is important that $\hat{T}(v)$ has no mass at zero. Finally $t^0 \equiv 1$. It is clear that if v is a probability measure, then so is $\hat{T}(v)$, and in this way we get a transformation of the convex set of normalized Hausdorff moment sequences (i.e. $a_0 = 1$) as well as a transformation of the set of probability measures on [0, 1]. By Kakutani's theorem the transformation has a fixed point, and by (1.1) it is clear that a fixed point $(m_n)_n$ is uniquely determined by the recursive equation

(1.3)
$$m_0 = 1, \quad (1 + m_1 + \dots + m_n)m_n = 1, \quad n \ge 1.$$

Therefore

(1.4)
$$m_{n+1}^2 + \frac{m_{n+1}}{m_n} - 1 = 0$$

giving

$$m_1 = \frac{-1 + \sqrt{5}}{2}, \qquad m_2 = \frac{\sqrt{22 + 2\sqrt{5}} - \sqrt{5} - 1}{4}, \qquad \cdots$$

The purpose of this paper is to study the Hausdorff moment sequence $(m_n)_n$ and to determine its associated probability measure μ , called the *fixed point measure*.

We already know that $\mu(\{0\}) = 0$ because $\mu = \widehat{T}(\mu)$, but it is also convenient to notice that $\mu(\{1\}) = 0$. It is clear that $(m_n)_n$ decreases to $c = \mu(\{1\}) \ge 0$, hence $m_0 + m_1 + \cdots + m_n \ge (n+1)m_n$. By (1.3) we get $1 \ge (n+1)m_n^2 \ge (n+1)c^2$, showing that c = 0.

In Section 4 we prove much more, namely

(1.5)
$$m_n \sim 1/\sqrt{2n}$$
 for $n \to \infty$.

We will study μ by determining what we call the *Bernstein transform*

(1.6)
$$f(z) = \mathscr{B}(\mu)(z) = \int_0^1 \frac{1 - t^z}{1 - t} d\mu(t), \quad \text{Re}\, z > 0$$

as well as the Mellin transform

(1.7)
$$F(z) = \mathcal{M}(\mu)(z) = \int_0^1 t^z \, d\mu(t), \qquad \text{Re}\, z > 0.$$

These functions are clearly holomorphic in the half-plane Re z > 0 and continuous in $\text{Re } z \ge 0$, the latter because $\mu(\{0\}) = 0$.

As a first result we prove:

THEOREM 1.1. The functions f, F can be extended to meromorphic functions in C and they satisfy

(1.8)
$$f(z+1)F(z) = 1, \quad z \in C$$

(1.9)
$$f(z) = f(z+1) - \frac{1}{f(z+1)}, \quad z \in \mathbf{C}.$$

They are holomorphic in Re z > -1. Furthermore z = -1 is a pole of f and F.

The fixed point measure μ has the properties

(1.10)
$$\int_0^1 t^x \, d\mu(t) < \infty, \quad x > -1; \qquad \int_0^1 \frac{d\,\mu(t)}{t} = \infty.$$

PROOF. By (1.2) with ν replaced by the fixed point measure μ we get f(z+1)F(z) = 1 for Re $z \ge 0$, showing in particular that f(z+1) and F(z) are different from zero for Re $z \ge 0$. For Re $z \ge 0$ we get by (1.6)

$$f(z+1) - f(z) = \int_0^1 \frac{t^z - t^{z+1}}{1-t} \, d\mu(t) = \int_0^1 t^z \, d\mu(t) = F(z) = \frac{1}{f(z+1)},$$

which shows (1.9) for these values of z.

We remark that Re f(z) > 0 and in particular $f(z) \neq 0$ for Re z > 0. This follows by (1.6) because Re $(t^z) \leq |t^z| < 1$ for 0 < t < 1 and Re z > 0.

We next use equation (1.9) to define f(z) for $\operatorname{Re} z \ge -1$, yielding a holomorphic continuation of f to the open half-plane $\operatorname{Re} z > -1$ because $f(z+1) \ne 0$.

Using equation (1.9) once more we obtain a meromorphic extension of f to the half-plane Re z > -2. There will be poles at points z for which f(z + 1) = 0, in particular for z = -1 because f(0) = 0.

Repeated use of equation (1.9) makes it possible to obtain a meromorphic extension to C. At each step, z will be a pole if z + 1 is a zero or a pole.

At this stage we cannot give a complete picture of the poles of f, but we return to that in Theorem 1.4.

Having extended f to a meromorphic function in C such that (1.9) holds, we extend F to a meromorphic function in C such that equation (1.8) holds.

Let us notice that also F has no poles in Re z > -1 because $f(z+1) \neq 0$. Moreover z = -1 is a pole of F because f(0) = 0.

By a classical result (going back to Landau for Dirichlet series), see [23, p. 58], we then get equation (1.10).

The function f can be characterized in analogy with the Bohr-Mollerup theorem about the Gamma function, cf. [2]. More precisely we have:

THEOREM 1.2. The Bernstein transform (1.6) of the fixed point measure is a function $f : [0, \infty[\rightarrow]0, \infty[$ with the following properties

- (i) f(1) = 1,
- (ii) $\log(1/f)$ is convex,
- (iii) f(s) = f(s+1) 1/f(s+1), s > 0.

Conversely, if $\tilde{f} : [0, \infty[\rightarrow]0, \infty[$ satisfies (i)–(iii), then it is equal to f and for $0 < s \le 1$ we have

(1.11)
$$\tilde{f}(s) = \lim_{n \to \infty} \psi^{\circ n} \left(\frac{1}{m_{n-1}} \left(\frac{m_{n-1}}{m_n} \right)^s \right),$$

where ψ is the rational function $\psi(z) = z - 1/z$. In particular (1.11) holds for f.

Here and elsewhere we use the notation for composition of mappings $\psi^{\circ 1}(z) = \psi(z), \psi^{\circ n}(z) = \psi(\psi^{\circ (n-1)}(z)), n \ge 2$. Theorem 1.2 will be proved in Section 3. Using the relation f(s + 1)F(s) = 1 it is clear that Theorem 1.2 can be reformulated to a characterization of *F*:

THEOREM 1.3. There exists one and only one function $F :]-1, \infty[\rightarrow]0, \infty[$ with the following properties

- (i) F(0) = 1,
- (ii) F is log-convex,

(iii) 1/F(s) = 1/F(s+1) - F(s+1), s > -1,

namely F is the Mellin transform

$$F(s) = \int_0^1 t^s \, d\mu(t), \qquad s > -1$$

of the fixed point measure.

Let \mathscr{H} denote the set of normalized Hausdorff moment sequences considered as a subset of $[0, 1]^{N_0}$ with the product topology, $N_0 = \{0, 1, \ldots\}$. In Section 2 we prove that the fixed point $\mathbf{m} = (m_n)_n$ is attractive in the sense that for each $\mathbf{a} = (a_n)_n \in \mathscr{H}$ the sequence of iterates $T^{\circ n}(\mathbf{a})$ converges to \mathbf{m} in \mathscr{H} . Focusing on probability measures we see that every probability measure τ on [0, 1] belongs to the domain of attraction of the fixed point measure μ in the sense that $\lim_{n\to\infty} \widehat{T}^{\circ n}(\tau) = \mu$ weakly. For $q \in \mathbf{R}$ we denote by δ_q the probability measure with mass 1 concentrated at the point q. By specializing the iteration using $\tau = \delta_0$ we prove the following result:

THEOREM 1.4. Let f and F be the meromorphic functions in C extending (1.6) and (1.7) respectively. The zeros and poles of f are all simple and are contained in $]-\infty$, 0]. The zeros of f are denoted $\xi_0 = 0$ and $\xi_{p,k}$, p = $1, 2, ..., k = 1, ..., 2^{p-1}$ with $-p - 1 < \xi_{p,1} < \xi_{p,2} < \cdots < \xi_{p,2^{p-1}} < -p$. The poles of f are $-l, \xi_{p,k} - l, l = 1, 2, ...$ with p, k as above.

Defining

(1.12)
$$\rho_0 = \frac{1}{f'(0)}; \qquad \rho_{p,k} = \frac{1}{f'(\xi_{p,k})},$$

then $\rho_0, \rho_{p,k} > 0.$

The following representations hold

(1.13)
$$F(z) = \frac{\rho_0}{z+1} + \sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} \frac{\rho_{p,k}}{z+1-\xi_{p,k}}$$

and

(1.14)
$$f(z) = z \sum_{l=1}^{\infty} \left[\frac{\rho_0}{l(z+l)} + \sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} \frac{\rho_{p,k}}{(l-\xi_{p,k})(z+l-\xi_{p,k})} \right].$$

The fixed point measure μ has an increasing and convex density \mathcal{D} with respect to Lebesgue measure on]0, 1[and it is given by

(1.15)
$$\mathscr{D}(t) = \rho_0 + \sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} \rho_{p,k} t^{-\xi_{p,k}}.$$

While clearly $\mathcal{D}(0) = \rho_0$, we prove in Theorem 3.9 that

$$\mathscr{D}(t) \sim 1/\sqrt{2\pi(1-t)}, \qquad t \to 1.$$

It is possible to obtain expressions for $\xi_{p,k}$ and $\rho_{p,k}$ in terms of the moments (m_n) . This is quite technical and is given in Theorem 3.8.

We recall that a function φ is called a *Stieltjes transform* if it can be written in the form

(1.16)
$$\varphi(z) = a + \int_0^\infty \frac{d\sigma(x)}{x+z}, \qquad z \in \mathsf{C} \setminus]-\infty, 0],$$

where $a \ge 0$ and σ is a positive measure on $[0, \infty]$ such that (1.16) makes sense, i.e. $\int 1/(x+1) d\sigma(x) < \infty$.

It is clear that if $\sigma \neq 0$ then φ is strictly decreasing on $]0, \infty[$ with $a = \lim_{s\to\infty} \varphi(s)$. Furthermore, φ is holomorphic in $\mathbb{C} \setminus]-\infty, 0]$ with

$$\frac{\operatorname{Im} \varphi(z)}{\operatorname{Im} z} < 0 \qquad \text{for} \quad z \in \mathsf{C} \setminus \mathsf{R},$$

so in particular φ is never zero in $C \setminus]-\infty, 0]$. The Stieltjes transforms we are going to consider will be meromorphic in C. The function (1.16) is meromorphic precisely when the measure σ is discrete and the set of mass-points have no finite accumulation points, i.e. if and only if

$$\varphi(z) = a + \sum_{p=0}^{\infty} \frac{\sigma_p}{z + \eta_p}$$

with $\sigma_p > 0$, $0 \le \eta_0 < \eta_1 < \eta_2 < \cdots \rightarrow \infty$.

For results about Stieltjes transforms see [10]. Stieltjes transforms are closely related to Pick functions, cf. [1], [16]. We recall that a Pick function is a holomorphic function $\varphi : C \setminus R \to C$ satisfying

$$\frac{\operatorname{Im} \varphi(z)}{\operatorname{Im} z} \ge 0 \qquad \text{for} \quad z \in \mathsf{C} \setminus \mathsf{R},$$

so if $\varphi \neq 0$ is a Stieltjes transform, then $1/\varphi$ is a Pick function. Notice that z/(z+a) is a Pick function for any a > 0.

COROLLARY 1.5. In the notation of Theorem 1.4 f(z)/z and F(z) are Stieltjes transforms and f is a Pick function.

We have used the name Bernstein transform for (1.6). In general, if ν is a positive finite measure on]0, 1], we call

(1.17)
$$\mathscr{B}(v)(z) = \int_0^1 \frac{1 - t^z}{1 - t} \, dv(t)$$

the Bernstein transform of ν , because it is a Bernstein function in the terminology of [10]. In fact we can write

$$\mathscr{B}(\nu)(z) = \nu(\{1\})z + \int_0^\infty \left(1 - e^{-xz}\right) d\lambda(x), \qquad \operatorname{Re} z \ge 0,$$

where λ is defined as the image measure of $(1 - t)^{-1}(\nu|]0, 1[)$ under $\log(1/x)$ mapping]0, 1[onto]0, ∞ [. We recall that λ is called the Lévy measure of the Bernstein function. It follows that $\mathcal{B}(\nu)'$ is a completely monotonic function. Bernstein functions are very important in the theory of Lévy processes, see [11].

In Section 4 we prove that $(m_n)_n$ is infinitely divisible in the sense that $(m_n^{\alpha})_n$ is a Hausdorff moment sequence for all $\alpha > 0$.

2. An iteration leading to the fixed point measure

For n = 0, 1, ... we denote the moments of $\mu_n = \widehat{T}^{\circ n}(\delta_0)$ by $(m_{n,k})_k$, i.e.

$$\int_0^1 t^k \, d\widehat{T}^{\circ n}(\delta_0)(t) = m_{n,k},$$

hence for $n \ge 1$

(2.1)
$$m_{n,k} = \left(m_{n-1,0} + m_{n-1,1} + \dots + m_{n-1,k}\right)^{-1}.$$

Notice that $m_{n,0} = 1$ for all *n* and $m_{0,k} = \delta_{0k}$, $m_{1,k} = 1$, $m_{2,k} = 1/(k+1)$ for all *k*.

LEMMA 2.1. For fixed $k = 0, 1, \ldots$ we have

$$m_{0,k} \le m_{2,k} \le m_{4,k} \le \cdots$$
$$m_{1,k} \ge m_{3,k} \ge m_{5,k} \ge \cdots$$

and these sequences have the same limit

$$\lim_{n\to\infty}m_{2n,k}=\lim_{n\to\infty}m_{2n+1,k}=m_k,$$

where $(m_k)_k$ is the fixed point given by (1.3).

Furthermore, $\lim_{k\to\infty} m_{n,k} = 0$ for $n \ge 2$, implying that $\mu_n = \widehat{T}^{\circ n}(\delta_0)$ has no mass at t = 1 for $n \ge 2$.

PROOF. Since the result is trivial for k = 0, we assume that $k \ge 1$ and have

$$0 = m_{0,k} < m_{2,k} = \frac{1}{k+1}; \qquad 1 = m_{1,k} > m_{3,k} = \frac{1}{\mathscr{H}_{k+1}},$$

where $\mathscr{H}_p = 1 + \frac{1}{2} + \dots + \frac{1}{p}$ is the *p*'th harmonic number. We now get

$$\frac{1}{m_{4,k}} = \sum_{j=0}^{k} m_{3,j} < k+1$$

hence $m_{4,k} > m_{2,k}$. We next use this to conclude

$$\frac{1}{m_{5,k}} = \sum_{j=0}^{k} m_{4,j} > \sum_{j=0}^{k} m_{2,j} = \frac{1}{m_{3,k}},$$

hence $m_{5,k} < m_{3,k}$. It is clear that this procedure can be continued and reformulated to a proof by induction.

Defining

$$m'_k = \lim_{n \to \infty} m_{2n,k}, \qquad m''_k = \lim_{n \to \infty} m_{2n+1,k},$$

we get the following relations from (2.1)

(2.2)

$$m'_{k} = (1 + m''_{1} + \dots + m''_{k})^{-1}, \quad m''_{k} = (1 + m'_{1} + \dots + m'_{k})^{-1}, \quad k \ge 1,$$

because clearly $m'_0 = m''_0 = m_0 = 1$. It follows easily by induction using (2.2) that $m'_k = m''_k = m_k$ for all k.

Since $m_{2n,k} \leq m_k$ we get $\lim_{k\to\infty} m_{2n,k} = 0$. Furthermore, for $n \geq 1$

$$\frac{1}{m_{2n+1,k}} = \sum_{j=0}^{k} m_{2n,j} \ge \sum_{j=0}^{k} m_{2,j} = \mathscr{H}_{k+1}$$

and hence $\lim_{k\to\infty} m_{2n+1,k} = 0$.

We recall that \mathscr{H} denotes the set of normalized Hausdorff moment sequences $\mathbf{a} = (a_n)_n$. The mapping $\nu \to (\int x^n d\nu(x))_n$ from the set of probability measures ν on [0, 1] to \mathscr{H} is a homeomorphism between compact sets, when the set of probability measures carries the weak topology and \mathscr{H} carries the topology inherited from $[0, 1]^{N_0}$ equipped with the product topology.

Defining an order relation \leq on \mathcal{H} by writing $\mathbf{a} \leq \mathbf{b}$ if $a_k \leq b_k$ for $k = 0, 1, \dots$, we easily get the following Lemma:

LEMMA 2.2. The transformation $T : \mathcal{H} \to \mathcal{H}$ is decreasing, i.e.

$$\mathbf{a} \leq \mathbf{b} \Rightarrow T(\mathbf{a}) \geq T(\mathbf{b}).$$

THEOREM 2.3. For every $\mathbf{a} \in \mathcal{H}$ we have

$$\lim_{n\to\infty}T^{\circ n}(\mathbf{a})=\mathbf{m},$$

where $\mathbf{m} = (m_n)_n$ is the fixed point.

PROOF. For $0 \le q \le 1$ we write $\underline{q} = (q^n)_n$, hence $\underline{0} \le \mathbf{a} \le \underline{1}$ for every $\mathbf{a} \in \mathcal{H}$. By Lemma 2.2 we get

$$T^{\circ(2n)}(\underline{\mathbf{0}}) \leq T^{\circ(2n)}(\mathbf{a}) \leq T^{\circ(2n)}(\underline{\mathbf{1}}) = T^{\circ(2n+1)}(\underline{\mathbf{0}})$$
$$T^{\circ(2n+1)}(\underline{\mathbf{0}}) \geq T^{\circ(2n+1)}(\mathbf{a}) \geq T^{\circ(2n+1)}(\underline{\mathbf{1}}) = T^{\circ(2n+2)}(\underline{\mathbf{0}}),$$

and since $\lim_{n\to\infty} T^{\circ n}(\underline{0}) = \mathbf{m}$ by Lemma 2.1, we get

$$\lim_{n\to\infty}T^{\circ(2n)}(\mathbf{a})=\lim_{n\to\infty}T^{\circ(2n+1)}(\mathbf{a})=\mathbf{m}.$$

Theorem 2.3 can also be expressed that $\widehat{T}^{\circ n}(\tau) \to \mu$ weakly for any probability measure τ on [0, 1]. Specializing this to $\tau = \delta_0$ and using formula (1.2), we obtain:

COROLLARY 2.4. The iterated sequence $\mu_n = \widehat{T}^{\circ n}(\delta_0)$ of measures converges weakly to the fixed point measure μ and (2.3)

$$\int_0^1 \frac{1-t^{z+1}}{1-t} \, d\mu_n(t) \int_0^1 t^z \, d\mu_{n+1}(t) = 1, \qquad \text{Re} \, z \ge 0, \ n = 0, 1, \dots$$

We have $\mu_0 = \delta_0, \mu_1 = \delta_1, \mu_2 = \chi_{]0,1[}(t)dt$, where $\chi_{]0,1[}(t)$ denotes the indicator function for the interval]0, 1[. The Bernstein transform of the measure μ_2 is

(2.4)
$$\mathscr{B}(\mu_2)(z) = \int_0^1 \frac{1-t^z}{1-t} dt = \sum_{l=1}^\infty \left(\frac{1}{l} - \frac{1}{z+l}\right) = \Psi(z+1) + \gamma,$$

where γ is Euler's constant and $\Psi(x) = \Gamma'(x) / \Gamma(x)$ is the Digamma function.

The measure μ_3 has been calculated in [9] and the result is

$$\mu_3 = \left(\sum_{p=0}^{\infty} \alpha_p t^{-\xi_p}\right) \chi_{]0,1[}(t) dt,$$

where $0 = \xi_0 > \xi_1 > \xi_2 > \cdots$ satisfy $-p - 1 < \xi_p < -p$ for $p = 1, 2, \ldots$ and $\alpha_p > 0, p = 0, 1, \ldots$. More precisely, it was proved that ξ_p is the unique solution $x \in]-p-1, -p[$ of the equation $\Psi(1 + x) = -\gamma$. Writing $\xi_p = -p - 1 + \delta_p$, we have $0 < \delta_{p+1} < \delta_p < \frac{1}{2}, \delta_p \sim 1/\log p, p \rightarrow \infty$. Furthermore, $\alpha_p = 1/\Psi'(1 + \xi_p) \sim 1/\log^2 p$. Since $\sum \alpha_p/(1 - \xi_p) = 1$, we have the crude estimate $\alpha_p .$

We shall now prove that all the measures μ_n , $n \ge 4$ have a form similar to that of μ_3 .

LEMMA 2.5. For $n \ge 3$ the measure μ_n has the form

(2.5)
$$\mu_n = \left(\rho_0^{(n)} + \sum_{p=1}^{\infty} \sum_{k=1}^{N(n,p)} \rho_{p,k}^{(n)} t^{-\xi_{p,k}^{(n)}}\right) \chi_{]0,1[}(t) dt,$$

where for each p > 1

(i) $1 \le N(n, p) \le 2^{p-1}$, (ii) $-p-1 < \xi_{p,1}^{(n)} < \xi_{p,2}^{(n)} < \dots < \xi_{p,N(n,p)}^{(n)} < -p$, (iii) $0 < \rho_0^{(n)} < 1, 0 < \rho_{p,k}^{(n)} < p+2, k = 1, \dots, N(n, p).$

PROOF. The result for n = 3 follows from the description above from [9] with $\rho_0^{(3)} = \alpha_0$, N(3, p) = 1, $\rho_{p,1}^{(3)} = \alpha_p$, $\xi_{p,1}^{(3)} = \xi_p$. Assume now that the result holds for μ_n and let us prove it for μ_{n+1} . For

 $\operatorname{Re} z > 0$ we then have

$$\begin{split} f_n(z) &:= \mathcal{B}(\mu_n)(z) \\ &= \int_0^1 \frac{1-t^z}{1-t} \, d\mu_n(t) = \sum_{l=0}^\infty \int_0^1 \left(t^l - t^{z+l} \right) \, d\mu_n(t) \\ &= \sum_{l=0}^\infty \left[\rho_0^{(n)} \int_0^1 \left(t^l - t^{z+l} \right) \, dt + \sum_{p=1}^\infty \sum_{k=1}^{N(n,p)} \rho_{p,k}^{(n)} \int_0^1 \left(t^{l-\xi_{p,k}^{(n)}} - t^{z+l-\xi_{p,k}^{(n)}} \right) \, dt \right] \\ &= z \sum_{l=1}^\infty \left[\frac{\rho_0^{(n)}}{l(z+l)} + \sum_{p=1}^\infty \sum_{k=1}^{N(n,p)} \frac{\rho_{p,k}^{(n)}}{(l-\xi_{p,k}^{(n)})(z+l-\xi_{p,k}^{(n)})} \right]. \end{split}$$

This shows that $f_n(z)/z$ is a Stieltjes transform and a meromorphic function in C with poles at the points

$$-l, \xi_{p,k}^{(n)} - l, \qquad l = 1, 2, \dots, \quad p = 1, 2, \dots, \quad k = 1, \dots, N(n, p),$$

so in the interval [-p-1, -p] we have the poles

(2.6)
$$-p, \ \xi_{p-l,k}^{(n)} - l, \qquad k = 1, \dots, N(n, p-l), \ l = 1, \dots, p-1.$$

Since $f_n(x)/x$ is strictly decreasing between the poles, we conclude that there is precisely one simple zero between two consecutive poles. Let N(n + 1, p)denote the number of zeros of f_n in]-p-1, -p[and let $\xi_{p,k}^{(n+1)}$ denote the zeros numbered such that

$$-p-1 < \xi_{p,1}^{(n+1)} < \xi_{p,2}^{(n+1)} < \cdots < \xi_{p,N(n+1,p)}^{(n+1)} < -p.$$

In addition also z = 0 is a zero of f_n . There are no zeros or poles in $\mathbb{C} \setminus [-\infty, 0]$ because $f_n(z)/z$ is a Stieltjes transform.

We are now ready to prove equation (2.5) and (i)–(iii) with n replaced by n + 1.

(i). By (2.6) we get

$$N(n+1, p) \le 1 + \sum_{l=1}^{p-1} N(n, p-l) \le 1 + \sum_{l=1}^{p-1} 2^{p-l-1} = 2^{p-1}.$$

(ii) is clear by definition, when we have proved that the measure μ_{n+1} has the form (2.5) using the numbers $\xi_{p,k}^{(n+1)}$.

(iii). By a classical result, see [19], [18], [4], $1/f_n(z)$ is a Stieltjes transform because $f_n(z)/z$ is so, i.e.

$$\frac{1}{f_n(z)} = \frac{\rho_0^{(n+1)}}{z} + \sum_{p=1}^{\infty} \sum_{k=1}^{N(n+1,p)} \frac{\rho_{p,k}^{(n+1)}}{z - \xi_{p,k}^{(n+1)}},$$

with $\rho_0^{(n+1)}$, $\rho_{p,k}^{(n+1)} > 0$. There is no constant term in the Stieltjes representation because $f_n(x) \to \infty$ for $x \to \infty$. In fact, by Lemma 2.1 we get

$$\lim_{x \to \infty} f_n(x) = \int_0^1 \frac{d\mu_n(t)}{1-t} = \sum_{k=0}^\infty m_{n,k} = \lim_{k \to \infty} \frac{1}{m_{n+1,k}} = \infty.$$

Note that

(2.7)
$$\rho_0^{(n+1)} = \frac{1}{f_n'(0)}, \qquad \rho_{p,k}^{(n+1)} = \frac{1}{f_n'(\xi_{p,k}^{(n+1)})}.$$

By (2.3) we get

$$\int_0^1 t^z d\mu_{n+1}(t) = \frac{1}{f_n(z+1)} = \frac{\rho_0^{(n+1)}}{z+1} + \sum_{p=1}^\infty \sum_{k=1}^{N(n+1,p)} \frac{\rho_{p,k}^{(n+1)}}{z+1-\xi_{p,k}^{(n+1)}},$$

which shows that

$$\mu_{n+1} = \left(\rho_0^{(n+1)} + \sum_{p=1}^{\infty} \sum_{k=1}^{N(n+1,p)} \rho_{p,k}^{(n+1)} t^{-\xi_{p,k}^{(n+1)}}\right) \chi_{]0,1[}(t) dt,$$

which is (2.5) with *n* replaced by n + 1.

Since μ_{n+1} is a probability measure we get

$$\rho_0^{(n+1)} < 1, \qquad \rho_{p,k}^{(n+1)} \int_0^1 t^{-\xi_{p,k}^{(n+1)}} dt < 1,$$

hence

$$\rho_{p,k}^{(n+1)} < 1 - \xi_{p,k}^{(n+1)} < p + 2.$$

COROLLARY 2.6. For $n \ge 0$ let $\mu_n = \widehat{T}^{\circ n}(\delta_0)$. The functions $f_n = \mathscr{B}(\mu_n)$ are meromorphic Pick functions and the functions $F_n = \mathscr{M}(\mu_n)$ are meromorphic Stieltjes transforms satisfying

(2.8)
$$f_n(z+1)F_{n+1}(z) = 1, \quad z \in C.$$

All zeros and poles of f_n are contained in $]-\infty, 0]$.

PROOF. We have $f_0(z) = 1$, $f_1(z) = z$, $F_0(z) = 0$, $F_1(z) = 1$, $F_2(z) = 1/(z+1)$ and for $n \ge 2$ the result follows from Lemma 2.5 and its proof.

In order to obtain a limit result for $n \to \infty$ in Corollary 2.6 we need the following:

LEMMA 2.7. Let $(\varphi_n)_n$ be a sequence of Stieltjes transforms of the form

$$\varphi_n(z) = \int_0^\infty \frac{d\sigma_n(x)}{x+z}, \qquad n = 1, 2, \dots$$

and assume that $\varphi_n(z) \to \varphi(z)$ uniformly on compact subsets of $\operatorname{Re} z > 0$ for some holomorphic function φ on the right half-plane.

Then φ is a Stieltjes transform

PROOF. Since

$$\varphi(z) = a + \int_0^\infty \frac{d\sigma(x)}{x+z}$$

and $\lim_{n\to\infty} \sigma_n = \sigma$ vaguely. Furthermore, $\varphi_n(z) \to \varphi(z)$ uniformly on compact subsets of $\mathsf{C} \setminus]-\infty, 0]$.

$$\int_0^\infty \frac{d\sigma_n(x)}{x+1} = \varphi_n(1) \to \varphi(1),$$

there exists a constant K > 0 such that $\int 1/(x+1) d\sigma_n(x) \leq K$ for all *n*. Let σ be a vague accumulation point for $(\sigma_n)_n$. Replacing $(\sigma_n)_n$ by a subsequence we can assume without loss of generality that $\sigma_n \to \sigma$ vaguely. By standard results in measure theory, cf. [7, Prop. 4.4], we have

$$\int_0^\infty \frac{d\sigma(x)}{x+1} \le K, \qquad \lim_{n \to \infty} \int f \, d\sigma_n = \int f \, d\sigma$$

for any continuous function $f : [0, \infty[\to C \text{ which is } o(1/(x+1)) \text{ for } x \to \infty$. In particular

$$\varphi_n'(z) = -\int_0^\infty \frac{d\sigma_n(x)}{(x+z)^2} \to -\int_0^\infty \frac{d\sigma(x)}{(x+z)^2}, \qquad z \in \mathsf{C} \setminus [-\infty, 0],$$

showing that

$$\varphi'(z) = -\int_0^\infty \frac{d\sigma(x)}{(x+z)^2}, \qquad \operatorname{Re} z > 0,$$

hence

$$\varphi(z) = a + \int_0^\infty \frac{d\sigma(x)}{x+z}, \qquad \operatorname{Re} z > 0$$

for some constant *a*. Using $\varphi(x) = \lim_{n \to \infty} \varphi_n(x) \ge 0$ for x > 0, we get $a \ge 0$, showing that φ is a Stieltjes transform. By uniqueness of *a* and σ in the representation of φ as a Stieltjes transform, we conclude that the accumulation point σ is unique, hence $\lim_{n\to\infty} \sigma_n = \sigma$ vaguely.

It is now easy to see that $(\varphi_n(z))_n$ is uniformly bounded on compact subsets of $\mathbf{C} \setminus [-\infty, 0]$, and the last assertion of Lemma 2.7 is a consequence of the Stieltjes-Vitali theorem.

PROOF OF THEOREM 1.4. From Lemma 2.5 follows that the Mellin transform $\mathcal{M}(\mu_n)(z)$ coincides on Re $z \ge 0$ with the meromorphic function

$$\frac{\rho_0^{(n)}}{z+1} + \sum_{p=1}^{\infty} \sum_{k=1}^{N(n,p)} \frac{\rho_{p,k}^{(n)}}{z+1-\xi_{p,k}^{(n)}} = \int_0^\infty \frac{d\sigma_n(x)}{x+z},$$

where σ_n is the discrete measure

$$\sigma_n = \rho_0^{(n)} \delta_1 + \sum_{p=1}^{\infty} \sum_{k=1}^{N(n,p)} \rho_{p,k}^{(n)} \delta_{1-\xi_{p,k}^{(n)}}.$$

Since $\mathcal{M}(\mu_n)(z) \to \mathcal{M}(\mu)(z)$ uniformly on compact subsets of Re z > 0 by Corollary 2.4, it follows by Lemma 2.7 that $\mathcal{M}(\mu)$ is a Stieltjes transform

$$\mathcal{M}(\mu)(z) = a + \int_0^\infty \frac{d\sigma(x)}{x+z},$$

and $\sigma_n \to \sigma$ vaguely. Since $\mathcal{M}(\mu)(k) = m_k \to 0$ as $k \to \infty$, we get a = 0. Using that σ_n has at most 2^{p-1} mass points in [p + 1, p + 2], p = 1, 2, ...and that $\rho_{p,k}^{(n)} by Lemma 2.5, we can write$

$$\sigma = \rho_0 \delta_1 + \sum_{p=1}^{\infty} \sum_{k=1}^{N_p} \rho_{p,k} \delta_{1-\xi_{p,k}},$$

23

with $\rho_0 \ge 0$, $0 < \rho_{p,k} \le p+2$ and $-p-1 \le \xi_{p,1} < \xi_{p,2} < \cdots < \xi_{p,N_p} < -p$, where $N_p \le 2^{p-1}$. At this stage we cannot confirm that $\rho_0 > 0$, $-p-1 < \xi_{p,1}$, $N_p = 2^{p-1}$ and that $\xi_{p,k}$ are the zeros of f. The function

(2.9)
$$\frac{\rho_0}{z+1} + \sum_{p=1}^{\infty} \sum_{k=1}^{N_p} \frac{\rho_{p,k}}{z+1-\xi_{p,k}}$$

is a meromorphic extension of $\mathcal{M}(\mu)$ and therefore equal to the meromorphic function *F* of Theorem 1.1. This shows that μ has the density

(2.10)
$$\mathscr{D}(t) = \rho_0 + \sum_{p=1}^{\infty} \sum_{k=1}^{N_p} \rho_{p,k} t^{-\xi_{p,k}},$$

which is clearly increasing and convex since $-\xi_{p,k} \ge 1$. Finally, by (2.10) the Bernstein transform $\mathscr{B}(\mu)$ has the meromorphic extension

(2.11)
$$z \sum_{l=1}^{\infty} \left[\frac{\rho_0}{l(z+l)} + \sum_{p=1}^{\infty} \sum_{k=1}^{N_p} \frac{\rho_{p,k}}{(l-\xi_{p,k})(z+l-\xi_{p,k})} \right]$$

which is a Pick function. The function given by (2.11) equals the meromorphic function f of Theorem 1.1. By Lemma 2.7 applied to the Stieltjes transforms $f_n(z)/z$, we conclude that $f_n(z) \rightarrow f(z)$ uniformly on compact subsets of $C \setminus]-\infty, 0]$.

We already know from Theorem 1.1 that *F* has a pole at z = -1 and hence $\rho_0 > 0$. The remaining poles of *F* are $\xi_{p,k} - 1$, so by formula (1.8) the zeros of *f* are z = 0 and $z = \xi_{p,k}$. By the expression (2.11) for *f* the poles of *f* are $-l, \xi_{p,k} - l$ and therefore $-p - 1 < \xi_{p,1}, p = 1, 2, ...$

We have now proved that the zeros and poles of f are all simple and are contained in $]-\infty, 0]$. Since f(z+1)F(z) = 1 we get by (2.9) that

$$\frac{1}{f(z)} = \frac{\rho_0}{z} + \sum_{p=1}^{\infty} \sum_{k=1}^{N_p} \frac{\rho_{p,k}}{z - \xi_{p,k}},$$

which shows equation (1.12).

To finish the proof we shall establish that $N_p = 2^{p-1}$.

From the functional equation (1.9) and the fact that f is strictly increasing between the poles, we see the following about the generation of zeros and poles of f:

(1) If z + 1 is regular point, then $f(z + 1) = \pm 1$ if and only if f(z) = 0.

- (2) If z + 1 is regular point, then f(z + 1) = 0 if and only if z is a pole. In the affirmative case Res(f, z) = -1/f'(z + 1).
- (3) If z + 1 is a pole then z is a pole with the same residue as in z + 1.
- (4) For a pole β let α_{β} be the smallest zero in $]\beta, \infty[$. Then $f(]\beta, \alpha_{\beta}[) =]-\infty, 0[$ and there exists a unique point x_* in $]\beta, \alpha_{\beta}[$ such that $f(x_*) = -1$.
- (5) For a pole β let γ_{β} be the biggest zero in $]-\infty$, $\beta[$. Then $f(]\gamma_{\beta}, \beta[) =]0, \infty[$ and there exists a unique point x^* in $]\gamma_{\beta}, \beta[$ such that $f(x^*) = 1$.

From (1)–(5) we deduce that f has the following properties. Since f(0) = 0 we see that f has poles at z = -1, -2, ... in accordance with (2.11). There are no poles in]–2, -1[since f is regular in]–1, 0[and non-zero. Notice that f is strictly increasing on]–1, ∞ [mapping this interval onto the whole real line by (2.11). There is a unique point $x_* \in$]–1, 0[such that $f(x_*) = -1$, hence $x_* - 1$ is a zero and $x_* - 2, x_* - 3, ...$ are poles. In]–3, -2] there are two poles namely $x_* - 2$ and -2 and since f is strictly increasing between consecutive poles we have two zeros in]–3, -2[. By induction it is easy to see that there are exactly 2^{p-1} poles in each interval]–p - 1, -p] and 2^{p-1} zeros in the open interval]–p - 1, -p[, $p \ge 1$. This shows that $N_p = 2^{p-1}$. Note that $\xi_{1,1} = x_* - 1$.

FIGURE 1. The graph of f with vertical lines at the poles.

We give some further information about the poles of f.

We call the negative integers poles of the *first generation* of f and say that a pole of f is of the *l*-th generation, $l \ge 2$, if it is generated by a zero $\xi_{l-1,k}$,

i.e. the pole is of the form $\xi_{l-1,k} - m$, for some integer $m \ge 1$. Then it can easily be proved by induction on *p* that:

- In]−p−1, −p] there is one pole of the first generation (namely, −p), one pole of the second generation (namely ξ_{1,1}−p+1), and for l = 3, ..., p, 2^{l-2} poles of the *l*-th generation (so that the total number of poles is 1 + ∑_{l=2}^p 2^{l-2} = 2^{p-1}).
- (2) For each interval [-p-1, -p], the poles of one generation separate the set of poles of lower generations, and the zeros $\xi_{p,k}$, $k = 1, \ldots, 2^{p-1}$, separate the set of all poles. That means that the set of poles of generation less than or equal to *l* separate the zeros $\xi_{p,k}$, $k = 1, \ldots, 2^{p-1}$, in groups of 2^{p-l} consecutive elements.
- (3) For $l \ge 2$ the poles in]-p-1, -p[of the *l*-th generation are zeros of f(z+p-l+1) but they are still poles of f(z+j) if $0 \le j \le p-l$.

3. Iteration of the rational function ψ

In this section we will prove Theorem 1.2 and discuss the relationship with the classical study of iteration of rational functions of degree ≥ 2 , cf. e.g. [3].

We have already introduced the rational function ψ by

$$\psi(z) = z - \frac{1}{z}.$$

It is a mapping of $C \setminus \{0\}$ onto C with a simple pole at z = 0. Moreover, $\psi(0) = \psi(\infty) = \infty$. It is two-to-one with the exception that $\psi(z) = \pm 2i$ has only one solution $z = \pm i$. It is strictly increasing on the half-lines $]-\infty, 0[$ and $]0, \infty[$, mapping each of them onto R. The functional equation (1.9) can be written

(3.2)
$$f(z) = \psi(f(z+1)).$$

We notice that ψ and hence all iterates $\psi^{\circ n}$ are Pick functions. It is convenient to define $\psi^{\circ 0}(z) = z$. We claim that the Julia set is $J(\psi) = \mathbb{R}^*$, and the Fatou set is $F(\psi) = \mathbb{C} \setminus \mathbb{R}$. This is because ψ is conjugate to the rational function

$$R(z) = \frac{3z^2 + 1}{z^2 + 3}$$

i.e. $g \circ R = \psi \circ g$, where g is the Möbius transformation g(z) = i(1+z)/(1-z). Note that g is the Cayley transformation mapping the unit circle T onto R^{*}. In [3, p. 200] the Julia set of R is determined as J(R) = T, and the assertion follows. The sequence $(\lambda_n)_n$ is defined in terms of $(m_n)_n$ from (1.3) by

(3.3)
$$\lambda_0 = 0, \quad \lambda_{n+1} = 1/m_n, \qquad n \ge 0.$$

By (1.7) and (1.8) we clearly have

(3.4)
$$m_n = F(n), \quad \lambda_n = f(n), \qquad n \ge 0,$$

hence by (3.2)

(3.5)
$$\lambda_n = \psi(\lambda_{n+1}), \qquad n \ge 0,$$

which can be reformulated to

(3.6)
$$\lambda_{n+1} = \frac{1}{2} \left(\lambda_n + \sqrt{\lambda_n^2 + 4} \right), \qquad n \ge 0.$$

The following result is easy and the proof is left to the reader.

LEMMA 3.1. Defining

(3.7)
$$Y_n = (\psi^{\circ n})^{-1}(\{0\}) = \{z \in \mathsf{C} \mid \psi^{\circ n}(z) = 0\},$$

i.e.

$$Y_0 = \{0\}, \qquad Y_1 = \{-1, 1\}, \qquad Y_2 = \{(\pm 1 \pm \sqrt{5})/2\}, \dots$$

we have for $n \ge 1$

- (i) $\psi(Y_n) = Y_{n-1}, Y_n = \psi^{\circ -1}(Y_{n-1}),$
- (ii) The set of poles of $\psi^{\circ n}$ is $\bigcup_{j=0}^{n-1} Y_j$,
- (iii) Y_n consists of 2^n real numbers and is symmetric with respect to zero.
- (iv) The function $\psi^{\circ n}$ is strictly increasing from $-\infty$ to ∞ in each of the 2^n intervals in which $\bigcup_{j=0}^{n-1} Y_j$ divides **R**. There is exactly one zero of $\psi^{\circ n}$ in each of these intervals, and these zeros form the set Y_n .

We write $Y_n = \{\alpha_{n,k} : k = 1, ..., 2^n\}$ arranged in increasing order $(n \ge 1)$:

$$\alpha_{n,1} < \alpha_{n,2} < \cdots < \alpha_{n,2^{n-1}} < 0 < \alpha_{n,2^{n-1}+1} < \cdots < \alpha_{n,2^n}.$$

It is easy to see that $-\alpha_{n,1} = \alpha_{n,2^n} = \lambda_n$ for $n \ge 0$.

PROPOSITION 3.2. The set

$$\cup_{p=0}^{\infty} Y_p = \{ \alpha_{p,k} \mid p \ge 0, k = 1, \dots, 2^p \}$$

is dense in R.

27

PROOF. The set in question is the so-called backward orbit of 0 for ψ , and since $0 \in J(\psi)$ the result follows by [3, Theorem 4.2.7].

We next give some asymptotic properties of the sequence $(\lambda_n)_n$ and the function f:

LEMMA 3.3. (1) $\sqrt{n} \le \lambda_n \le \sqrt{2n}, n \ge 0.$ (2) $(\lambda_n)_n$ is an increasing divergent sequence and λ_{n+1}/λ_n is decreasing with $\lim_{n\to\infty} \frac{\lambda_{n+1}}{\lambda_n} = 1.$ (3) $\lim_{n\to\infty} (\lambda_{n+1}^2 - \lambda_n^2) = 2.$ (4) $\lim_{n\to\infty} \frac{\lambda_n^2}{n} = 2.$ (5) $\lim_{n\to\infty} \frac{\lambda_n^2 - 2n}{\log n} = -\frac{1}{2}.$ (6) $\lim_{s\to\infty} f(s)/\sqrt{2s} = 1.$

(7)
$$\lim_{s \to \infty} f'(s)\sqrt{2s} = 1.$$

Proof.

(1) These inequalities follow easily from (3.6) using induction on n.

(2) The sequence $(\lambda_n)_n$ increases to infinity since it is the reciprocal of the Hausdorff moment sequence $(m_n)_n$. By the Cauchy-Schwarz inequality $m_n^2 \le m_{n-1}m_{n+1}$, which proves that $(\lambda_{n+1}/\lambda_n)_n$ is decreasing. The limit follows now easily from (3.6).

(3) Using (3.5) we can write

$$\lambda_{n+1}^2 - \lambda_n^2 = \frac{\lambda_{n+1} + \lambda_n}{\lambda_{n+1}} = 1 + \frac{\lambda_n}{\lambda_{n+1}},$$

and it suffices to apply part 2.

(4) is a consequence of part 3 and the following version of the Stolz criterion going back to [21]:

LEMMA 3.4. Let $(a_n)_n$, $(b_n)_n$ be real sequences, where $(b_n)_n$ is strictly increasing tending to infinity. Then

$$\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=L\Rightarrow\lim_{n\to\infty}\frac{a_n}{b_n}=L.$$

(5) follows by using again the Stolz criterion and taking into account that

$$\frac{\lambda_{n+1}^2 - \lambda_n^2 - 2}{\log \frac{n+1}{n}} = \frac{\lambda_{n+1}^2 - \lambda_n^2 - 2\lambda_{n+1}^2 + 2\lambda_{n+1}\lambda_n}{\log \frac{n+1}{n}} = -\frac{(\lambda_{n+1} - \lambda_n)^2}{\log \frac{n+1}{n}}$$
$$= -\frac{1}{n\log \frac{n+1}{n}} \frac{n}{\lambda_{n+1}^2} \to -\frac{1}{2}.$$

(6) Since *f* is increasing and $f(n) = \lambda_n$, the assertion follows from part 4.

(7) We write $f(n + 1) - f(n) = f'(t_n)$, for a certain $t_n \in (n, n + 1)$. Since f' is decreasing (f'(s) is completely monotonic), part 7 follows if we prove that $f'(t_n)\sqrt{2t_n}$ tends to 1 as *n* tends to ∞ . However, using the recursion formula for $(\lambda_n)_n$, we get

$$f'(t_n)\sqrt{2t_n} = (\lambda_{n+1} - \lambda_n)\sqrt{2t_n} = \frac{\sqrt{2(n+1)}}{\lambda_{n+1}}\frac{\sqrt{2t_n}}{\sqrt{2(n+1)}},$$

and it suffices to apply part 4.

PROOF OF THEOREM 1.2. We have already proved the properties (i) and (iii). To see (ii) we notice that $f = \mathscr{B}(\mu)$ is a Bernstein function, and therefore 1/f is completely monotonic. Every completely monotonic function is logarithmically convex. For these statements see e.g. [10, § 14].

Suppose next that \tilde{f} is a function satisfying (i)-(iii). Since $\tilde{f}(1) = 1 = \lambda_1$, we see by (iii) and (3.5) that $\tilde{f}(n) = \lambda_n$ for $n \ge 1$. Equation (1.11) is equivalent with

(3.8)
$$\tilde{f}(s) = \lim_{n \to \infty} \psi^{\circ n} \left(\lambda_n \left(\frac{\lambda_{n+1}}{\lambda_n} \right)^s \right),$$

and if we prove this equation for $0 < s \le 1$, then \tilde{f} is uniquely determined on [0, 1] and hence by (iii) for all s > 0.

We prove that the limit in (3.8) exists and coincides with $\tilde{f}(s)$ for $0 < s \le 1$. This is clear for s = 1 since $\psi^{\circ n}(\lambda_{n+1}) = 1$ for $n \ge 0$.

For any convex function ϕ on $]0, \infty[$ we have for $0 < s \le 1$ and $n \ge 2$

$$\phi(n) - \phi(n-1) \le \frac{\phi(n+s) - \phi(n)}{s} \le \phi(n+1) - \phi(n).$$

By taking $\phi = \log(1/\tilde{f})$, which is convex by assumption, we get

$$\log \frac{\lambda_{n-1}}{\lambda_n} \le \frac{1}{s} \log \frac{\tilde{f}(n)}{\tilde{f}(n+s)} \le \log \frac{\lambda_n}{\lambda_{n+1}};$$

that is

$$\left(\frac{\lambda_{n-1}}{\lambda_n}\right)^s \leq \frac{\lambda_n}{\tilde{f}(n+s)} \leq \left(\frac{\lambda_n}{\lambda_{n+1}}\right)^s,$$

which finally gives:

$$\lambda_n \left(\frac{\lambda_{n+1}}{\lambda_n}\right)^s \leq \tilde{f}(n+s) \leq \lambda_n \left(\frac{\lambda_n}{\lambda_{n-1}}\right)^s, \qquad 0 < s < 1.$$

Using that ψ is increasing on]0, ∞ [, we get by applying $\psi^{\circ n}$ to the previous inequality

$$\psi^{\circ n}(b_n(s)) \le \tilde{f}(s) = \psi^{\circ n}(\tilde{f}(n+s)) \le \psi^{\circ n}(a_n(s)),$$

where we have introduced

$$a_n(s) = \lambda_n \left(\frac{\lambda_n}{\lambda_{n-1}}\right)^s, \qquad b_n(s) = \lambda_n \left(\frac{\lambda_{n+1}}{\lambda_n}\right)^s.$$

It is now enough to prove that

$$\lim_{n\to\infty}(\psi^{\circ n}(a_n(s))-\psi^{\circ n}(b_n(s))=0.$$

By applying the mean value theorem, we get for a certain $w \in]b_n(s), a_n(s)[$ that

$$\psi^{\circ n}(a_n(s)) - \psi^{\circ n}(b_n(s))$$

= $(a_n(s) - b_n(s))(\psi^{\circ n})'(w)$
= $(a_n(s) - b_n(s))\psi'(\psi^{\circ n-1}(w))\psi'(\psi^{\circ n-2}(w))\cdots\psi'(w).$

Since $\lambda_n < b_n(s) < w < a_n(s)$, we get $\lambda_{n-k} < \psi^{\circ k}(b_n(s)) < \psi^{\circ k}(w)$, $k = 0, 1, \ldots, n$, hence

$$\begin{aligned} \left|\psi^{\circ n}(a_{n}(s))-\psi^{\circ n}(b_{n}(s))\right| &\leq \left|a_{n}(s)-b_{n}(s)\right|\prod_{k=0}^{n-1}\left|\psi'(\psi^{\circ k}(w))\right| \\ &\leq \left|a_{n}(s)-b_{n}(s)\right|\prod_{k=0}^{n-1}\left(1+\frac{1}{\lambda_{n-k}^{2}}\right) \\ &=\lambda_{n}\left(\left(\frac{\lambda_{n}}{\lambda_{n-1}}\right)^{s}-\left(\frac{\lambda_{n+1}}{\lambda_{n}}\right)^{s}\right)\prod_{k=1}^{n}\left(1+\frac{1}{\lambda_{k}^{2}}\right) \end{aligned}$$

30

$$\leq \lambda_n \left(\left(\frac{\lambda_n}{\lambda_{n-1}} \right)^s - \left(\frac{\lambda_{n+1}}{\lambda_n} \right)^s \right) \prod_{k=1}^n \left(1 + \frac{1}{k} \right)$$
$$= (n+1)\lambda_n \left(\left(\frac{\lambda_n}{\lambda_{n-1}} \right)^s - \left(\frac{\lambda_{n+1}}{\lambda_n} \right)^s \right),$$

where we have used $\sqrt{k} \leq \lambda_k$ from Lemma 3.3 part 1.

Using that $(x^s - y^s) \leq s(x - y)$ for 1 < y < x and $0 < s \leq 1$, we get

$$\left|\psi^{\circ n}(a_n(s))-\psi^{\circ n}(b_n(s))\right|\leq s(n+1)\lambda_n\left(\frac{\lambda_n}{\lambda_{n-1}}-\frac{\lambda_{n+1}}{\lambda_n}\right),$$

and by (3.6) we finally get

$$\begin{split} \left| \psi^{\circ n}(a_{n}(s)) - \psi^{\circ n}(b_{n}(s)) \right| \\ &\leq \frac{1}{2} s(n+1)\lambda_{n} \left(\left(1 + \sqrt{1 + \frac{4}{\lambda_{n-1}^{2}}} \right) - \left(1 + \sqrt{1 + \frac{4}{\lambda_{n}^{2}}} \right) \right) \\ &= \frac{1}{2} s(n+1)\lambda_{n} \left(\sqrt{1 + \frac{4}{\lambda_{n-1}^{2}}} - \sqrt{1 + \frac{4}{\lambda_{n}^{2}}} \right) \\ &= \frac{2s(n+1)\lambda_{n} \left(\frac{1}{\lambda_{n-1}^{2}} - \frac{1}{\lambda_{n}^{2}} \right)}{\sqrt{1 + \frac{4}{\lambda_{n-1}^{2}}}} \leq \frac{s(n+1)}{\lambda_{n}\lambda_{n-1}^{2}} (\lambda_{n}^{2} - \lambda_{n-1}^{2}), \end{split}$$

which tends to zero by part 2, 3 and 4 of Lemma 3.3.

For each real number *s*, we define the sequence $(\lambda_n(s))_n$ by $\lambda_0(s) = s$ and

(3.9)
$$\lambda_{n+1}(s) = \frac{\lambda_n(s) + \sqrt{\lambda_n(s)^2 + 4}}{2}, \qquad n \ge 0.$$

Notice that $\lambda_{n+1}(s)$ is the positive root of $z^2 - \lambda_n(s)z - 1 = 0$ and that

(3.10)
$$\psi(\lambda_{n+1}(s)) = \lambda_n(s).$$

Therefore, if $s \in Y_l$ then $\lambda_n(s) \in Y_{l+n}$, and for s = 0 we have $\lambda_n(0) = \lambda_n$, $n \ge 0$. Furthermore, $\lambda_n(\lambda_l(s)) = \lambda_{n+l}(s)$.

DEFINITION 3.5. For integers $k, l \ge 0$ we denote by r(k, l) the unique solution $x \in \{1, 2, ..., 2^l\}$ of the congruence equation $x \equiv k \mod 2^l$.

LEMMA 3.6. For $p \ge 1, k = 1, 2, ..., 2^p$ we have (i) $\psi(\alpha_{p,k}) = \alpha_{p-1,r(k,p-1)}$. (ii) $\psi^{\circ l}(\alpha_{p,k}) = \alpha_{p-l,r(k,p-l)}$ for l = 0, 1, ..., p.

PROOF. Since $\psi(Y_p) = Y_{p-1}$ and ψ is strictly increasing mapping $]-\infty, 0[$ onto **R**, we see that

$$\psi(\alpha_{p,k}) = \alpha_{p-1,k}, \qquad k = 1, 2, \dots, 2^{p-1},$$

and since similarly ψ maps]0, ∞ [onto **R** we get

$$\psi(\alpha_{p,k}) = \alpha_{p-1,j}, \qquad k = 2^{p-1} + j, \quad j = 1, 2, \dots, 2^{p-1}.$$

In the first case k = r(k, p-1) and in the second case j = r(k, p-1) so the assertion (i) follows.

The assertion (ii) is clear for l = 0 and l = p and follows for l = 1 by (i). Assuming (ii) for some l such that $1 \le l \le p - 2$ we get by (i)

$$\psi^{\circ(l+1)}(\alpha_{p,k}) = \psi(\alpha_{p-l,r(k,p-l)}) = \alpha_{p-l-1,j},$$

where j := r(r(k, p - l), p - l - 1). By definition

$$k \equiv r(k, p - l) \mod 2^{p-l}, \qquad 1 \le r(k, p - l) \le 2^{p-l}$$
$$j \equiv r(k, p - l) \mod 2^{p-l-1}, \qquad 1 \le j \le 2^{p-l-1}.$$

The first congruence also holds mod 2^{p-l-1} , hence $j \equiv k \mod 2^{p-l-1}$ and finally j = r(k, p-l-1).

COROLLARY 3.7. For a zero $\xi_{p,k}$ of f we have

- (i) $f(\xi_{p,k}+l) = \alpha_{l,r(k,l)}, l = 0, 1, \dots, p,$
- (ii) $f(\xi_{p,k}+l) = \lambda_{l-p}(\alpha_{p,k}), l = p+1, p+2, ..., where \lambda_n(s)$ is defined *in* (3.9).

PROOF. We first prove (i) for l = p, i.e. that $f(\xi_{p,k} + p) = \alpha_{p,k}$ since r(k, p) = k. Note that by (3.2) we have

$$\psi^{\circ p}(f(\xi_{p,k}+p)) = f(\xi_{p,k}) = 0,$$

hence $f(\xi_{p,k} + p) \in Y_p$. On the other hand $\xi_{p,k} + p \in [-1, 0[$, and since f is strictly increasing satisfying $f([-1, 0[) =]-\infty, 0[$, we see that $f(\xi_{p,k} + p)$, $k = 1, 2, ..., 2^{p-1}$ describe 2^{p-1} negative numbers in Y_p in increasing order. Therefore, $f(\xi_{p,k} + p) = \alpha_{p,k}, k = 1, 2, ..., 2^{p-1}$.

By Lemma 3.6 and (3.2) we then get for $0 \le l \le p$

$$f(\xi_{p,k} + l) = \psi^{\circ(p-l)}(f(\xi_{p,k} + p)) = \psi^{\circ(p-l)}(\alpha_{p,k}) = \alpha_{l,r(k,l)}$$

Clearly $0 < f(\xi_{p,k} + p + 1) \in Y_{p+1}$ and $\alpha_{p,k} = \psi(f(\xi_{p,k} + p + 1))$, hence $f(\xi_{p,k} + p + 1) = \lambda_1(\alpha_{p,k})$ by definition of $\lambda_1(s)$. The assertion (ii) follows easily by induction.

THEOREM 3.8. The numbers $\xi_{p,k}$, $\rho_{p,k}$, $p \ge 1$, $k = 1, ..., 2^{p-1}$ and ρ_0 from Theorem 1.4 are given by the following formulas:

(3.11)
$$\xi_{p,k} = \lim_{N \to \infty} \sqrt{2N} \left(\sum_{l=1}^{p} \frac{1}{\alpha_{l,r(k,l)}} + \sum_{l=1}^{N-p} \frac{1}{\lambda_{l}(\alpha_{p,k})} - \lambda_{N} \right),$$

(3.12)
$$\rho_{p,k} = \prod_{l=1}^{p} \left(1 + \frac{1}{\alpha_{l,r(k,l)}^2} \right)^{-1} \lim_{N \to \infty} \sqrt{2N} \prod_{l=1}^{N} \left(1 + \frac{1}{\lambda_l^2(\alpha_{p,k})} \right)^{-1},$$

(3.13)
$$\rho_0 = \lim_{N \to \infty} \sqrt{2N} \prod_{l=1}^{N} \left(1 + \frac{1}{\lambda_l^2} \right)^{-1}$$

PROOF. By applying N times the functional equation (1.9) for the function f and using Corollary 3.7, we have for p < N:

$$0 = f(\xi_{p,k}) = f(\xi_{p,k} + N) - \sum_{l=1}^{N} \frac{1}{f(\xi_{p,k} + l)}$$
$$= f(\xi_{p,k} + N) - \left(\sum_{l=1}^{p} \frac{1}{\alpha_{l,r(k,l)}} + \sum_{l=1}^{N-p} \frac{1}{\lambda_{l}(\alpha_{p,k})}\right).$$

Writing

$$y_{N,p,k} = \sum_{l=1}^{p} \frac{1}{\alpha_{l,r(k,l)}} + \sum_{l=1}^{N-p} \frac{1}{\lambda_{l}(\alpha_{p,k})},$$

we get $f(\xi_{p,k} + N) = y_{N,p,k}$. For $N \to \infty$ it follows by part 6 of Lemma 3.3 that $y_{N,p,k} \sim \sqrt{2N}$. Since f is a strictly increasing bijection of $(-1, +\infty)$ onto **R**, we can consider its inverse f^{-1} . Then we have $N = f^{-1}(\lambda_N)$, hence $\xi_{p,k} = f^{-1}(y_{N,p,k}) - f^{-1}(\lambda_N)$. Since $\xi_{p,k}$ is negative and f is increasing, we deduce that $y_{N,p,k} < \lambda_N$. This gives for a certain number $\sigma_{N,p,k} \in]y_{N,p,k}, \lambda_N[$ that

$$\xi_{p,k} = f^{-1}(y_{N,p,k}) - f^{-1}(\lambda_N) = (f^{-1})'(\sigma_{N,p,k})(y_{N,p,k} - \lambda_N)$$
$$= \frac{y_{N,p,k} - \lambda_N}{f'(\eta_{N,p,k})},$$

where we have written $\eta_{N,p,k} = f^{-1}(\sigma_{N,p,k})$. Clearly $\eta_{N,p,k} \in]\xi_{p,k} + N, N[$. Taking into account that $\lim_{s\to\infty} f'(s)\sqrt{2s} = 1$ (part 7 of Lemma 3.3), we

Taking into account that $\lim_{s\to\infty} f(s)\sqrt{2s} = 1$ (part / of Lemma 3.3), we have

$$\xi_{p,k} = \lim_{N} \sqrt{2N} \left(y_{N,p,k} - \lambda_N \right),$$

that is, (3.11) holds.

The number $f'(\xi_{p,k})$ can be computed as follows: Deriving the functional equation (1.9) for f, we get

$$f'(z) = f'(z+1)\left(1 + \frac{1}{f^2(z+1)}\right)$$

hence by iteration

(3.14)
$$f'(z) = f'(z+N) \prod_{l=1}^{N} \left(1 + \frac{1}{f^2(z+l)}\right).$$

Using Corollary 3.7 and $\lim_{s\to\infty} f'(s)\sqrt{2s} = 1$, (Lemma 3.3, part 7) we get for $z = \xi_{p,k}$

$$f'(\xi_{p,k}) = \prod_{l=1}^{p} \left(1 + \frac{1}{\alpha_{l,r(k,l)}^{2}} \right) \lim_{N \to \infty} \frac{1}{\sqrt{2N}} \prod_{l=1}^{N} \left(1 + \frac{1}{\lambda_{l}^{2}(\alpha_{p,k})} \right)$$

and since $\rho_{p,k} = 1/f'(\xi_{p,k})$ by (1.12), we see that (3.12) holds.

Applying (3.14) for z = 0, we get

$$f'(0) = f'(N) \prod_{l=1}^{N} \left(1 + \frac{1}{\lambda_l^2}\right),$$

and (3.13) follows by (1.12) and $\lim_{N\to\infty} f'(N)\sqrt{2N} = 1$.

We give some values of the numbers of Theorem 3.8:

$ \rho_0 = 0.68\dots $	$\xi_0 = 0$
$ \rho_{1,1} = 0.14\dots $	$\xi_{1,1} = -1.46\dots$
$ \rho_{2,1} = 0.06\dots $	$\xi_{2,1} = -2.61\ldots$
$ \rho_{2,2} = 0.05\dots $	$\xi_{2,2} = -2.33\ldots$

THEOREM 3.9. The density \mathcal{D} given by (1.15) satisfies

$$\mathscr{D}(t) \sim \frac{1}{\sqrt{2\pi(1-t)}} \quad for \quad t \to 1.$$

PROOF. By formula (1.8) and Lemma 3.3 part 6 we get

$$F(s) = \int_0^1 t^s \mathcal{D}(t) dt \sim \frac{1}{\sqrt{2s}}, \qquad s \to \infty,$$
$$\int_0^\infty e^{-us} \mathcal{D}(e^{-u}) e^{-u} du \sim \frac{1}{\sqrt{2s}}, \qquad s \to \infty.$$

or

By the Karamata Tauberian theorem, cf. [12, Theorem 1.7.1'], we get

$$\int_0^t \mathscr{D}(e^{-u})e^{-u}\,du \sim \sqrt{\frac{2t}{\pi}}, \qquad t \to 0,$$

and since \mathcal{D} is increasing we can use the Monotone Density theorem, cf. [12, Theorem 1.7.2b], to conclude that

$$\mathscr{D}(e^{-u})e^{-u} \sim \frac{1}{\sqrt{2\pi u}}, \qquad u \to 0,$$

which is equivalent to the assertion.

4. Miscellaneous about the fixed point

The fixed point sequence $(m_n)_n$ given by (1.3) satisfies $m_{n+1} = \Phi(m_n)$ with

$$\Phi(x) = \frac{\sqrt{4x^2 + 1} - 1}{2x}, \qquad x > 0.$$

This makes it possible to express $(m_n)_n$ as iterates of Φ , viz.

$$m_n = \Phi^{\circ n}(1).$$

From Lemma 3.3 part 4 we get the asymptotic behaviour of m_n as

$$m_n \sim \frac{1}{\sqrt{2n}}, \qquad n \to \infty.$$

This behaviour can also be deduced from a general result about iteration, cf. [13, p. 175]. The authors want to thank Bruce Reznick for this reference as well as the following description of $(m_n)_n$.

PROPOSITION 4.1. Define $h_n \in [0, \pi/4]$ by $\tan h_n = m_n$ and let

$$G(x) = \frac{1}{2}\arctan(2\tan x), \qquad |x| < \frac{\pi}{2}.$$

Then

$$h_n = G^{\circ n}\left(\frac{\pi}{4}\right).$$

PROOF. We have

$$\tan h_n = m_n = \frac{m_{n+1}}{1 - m_{n+1}^2} = \frac{\tan h_{n+1}}{1 - \tan^2 h_{n+1}} = \frac{1}{2} \tan(2h_{n+1}),$$

hence $h_{n+1} = G(h_n)$ and the assertion follows.

A Hausdorff moment sequence $(a_n)_n$ is called *infinitely divisible* if $(a_n^{\alpha})_n$ is a Hausdorff moment sequence for all $\alpha > 0$. If $a_n = \int_0^1 t^n dv(t)$, $n \ge 0$ then $(a_n)_n$ is infinitely divisible if and only if ν is infinitely divisible for the product convolution $\tau \diamond \nu$ of measures $[0, \infty)$ defined by

$$\int g \, d\tau \diamond \nu = \iint g(st) \, d\tau(s) \, d\nu(t).$$

For a general study of these concepts see [22], [5], [6]. In case the measure ν does not charge 0, the notion is the classical infinite divisibility on the locally compact group]0, ∞ [under multiplication.

PROPOSITION 4.2. Hausdorff moment sequences of the form (1.1) are infinitely divisible.

PROOF. Let $\nu \neq 0$ be a positive measure on [0, 1] and let $a_n = \int t^n d\nu(t)$, $n \ge 0$ be the corresponding Hausdorff moment sequence. Let $\alpha > 0$ be fixed. We shall prove that $((a_0 + a_1 + \dots + a_n)^{-\alpha})_n$ is a Hausdorff moment sequence.

For 0 < c < 1 we denote by $v_c = v | [0, c[+ v(\{1\})\delta_c]$, where the first term denotes the restriction of v to [0, c[. Then $\lim_{c \to 1} v_c = v$ weakly and in particular for each $n \ge 0$

$$a_n(c) := \int_0^1 t^n d\nu_c(t) \to a_n \quad \text{for} \quad c \to 1.$$

It therefore suffices to prove that

(4.1)
$$((a_0(c) + a_1(c) + \dots + a_n(c))^{-\alpha})_n$$

is a Hausdorff moment sequence. By a simple calculation we find

$$\left(\sum_{k=0}^{n} a_k(c)\right)^{-\alpha} = \left(\int_0^1 \frac{1-t^{n+1}}{1-t} \, d\nu_c(t)\right)^{-\alpha}$$
$$= \left(\int_0^1 \frac{d\nu_c(t)}{1-t} - \int_0^1 t^n \frac{t \, d\nu_c(t)}{1-t}\right)^{-\alpha} = H(\tau_n),$$

36

where

$$\tau_n = \int_0^1 t^n \frac{t \, d\nu_c(t)}{1-t}, \qquad H(z) = \left(\int_0^1 \frac{d\nu_c(t)}{1-t} - z\right)^{-\alpha}.$$

The function H is clearly holomorphic in

$$|z| < \int_0^1 \frac{dv_c(t)}{1-t}$$

with non-negative coefficients in the power series. Applying Lemma 2.1 in [9], shows that (4.1) is a Hausdorff moment sequence.

COROLLARY 4.3. The fixed point sequence $(m_n)_n$ is infinitely divisible.

REMARK 4.4. By Corollary 4.3 the fixed point measure μ is infinitely divisible for the product convolution. The image measure η of μ under log(1/t) is an infinitely divisible probability measure in the ordinary sense, because log(1/t) maps products to sums. The measure η has the density

(4.2)
$$\mathscr{D}(e^{-u})e^{-u} = \rho_0 e^{-u} + \sum_{p=1}^{\infty} \sum_{k=1}^{2^{p-1}} \rho_{p,k} e^{-u(1-\xi_{p,k})}, \qquad u > 0$$

with respect to Lebesgue measure on the half-line. Since (4.2) is clearly a completely monotonic density, the infinite divisibility of η is also a consequence of the Goldie-Steutel theorem, see [20, Theorem 10.7]. These remarks also show that Corollary 4.3 can be inferred from the complete monotonicity of (4.2) via the Goldie-Steutel theorem. The formula

$$\int_0^\infty e^{-us} \, d\eta(u) = \int_0^1 t^s \, d\mu(t) = F(s) = e^{-\log f(s+1)}, \qquad s \ge 0$$

shows that log f(s + 1) is the Bernstein function associated with the convolution semigroup $(\eta_t)_{t>0}$ of probability measures on the half-line such that $\eta_1 = \eta$, see [10, p. 68].

REMARK 4.5. Let \mathcal{H}_I denote the set of normalized infinitely divisible Hausdorff moment sequences. By Proposition 4.2 we have $T(\mathcal{H}) \subseteq \mathcal{H}_I$. We claim that this inclusion is proper. In fact, it is easy to see that $T : \mathcal{H} \to T(\mathcal{H})$ is one-to-one, and that

$$T^{-1}(\mathbf{b})_n = \frac{1}{b_n} - \frac{1}{b_{n-1}}, \qquad n \ge 1,$$

for $\mathbf{b} = (b_n)_n \in T(\mathcal{H})$. It follows that

$$T(\mathcal{H}) = \left\{ \mathbf{b} \in \mathcal{H} \mid \left(\frac{1}{b_n} - \frac{1}{b_{n-1}} \right)_n \in \mathcal{H} \right\}.$$

(Here $1/b_n - 1/b_{n-1} = 1$ for n = 0.) Then $\mathbf{b} \in \mathcal{H}_I \setminus T(\mathcal{H})$ if we define $b_n = 1/(n+1)^2$.

The functions f, F being holomorphic in Re z > -1 with a pole at z = -1, they have power series expansions

(4.3)
$$F(z) = 1 + \sum_{n=1}^{\infty} a_n z^n, \quad f(z) = \sum_{n=1}^{\infty} b_n z^n, \quad |z| < 1,$$

and the radius of convergence is 1 for both series.

PROPOSITION 4.6. The coefficients in (4.3) are given for $n \ge 1$ by

$$a_n = \frac{1}{n!} \int_0^1 (\log t)^n d\mu(t) = (-1)^n \left(\rho_0 + \sum_{p=1}^\infty \sum_{k=1}^{2^{p-1}} \frac{\rho_{p,k}}{(1 - \xi_{p,k})^{n+1}} \right),$$

$$b_n = -\frac{1}{n!} \int_0^1 \frac{(\log t)^n}{1 - t} d\mu(t)$$

$$= (-1)^{n-1} \left(\rho_0 \zeta(n+1, 0) + \sum_{p=1}^\infty \sum_{k=1}^{2^{p-1}} \rho_{p,k} \zeta(n+1, -\xi_{p,k}) \right),$$

where

$$\zeta(s,a) = \sum_{n=1}^{\infty} \frac{1}{(n+a)^s}, \qquad s > 1, \ a > -1$$

is the Hurwitz zeta function.

PROOF. The formula for a_n follows from (1.7) and (1.13), and the formula for b_n follows from (1.6) and (1.14).

ACKNOWLEDGEMENT. The authors wish to thank Henrik L. Pedersen for help with producing the graph of f.

REFERENCES

- 1. Akhiezer, N. I., The Classical Moment Problem, Oliver and Boyd, Edinburgh, 1965.
- 2. Artin, E., The Gamma Function, Holt, Rinehart and Winston, New York, 1964.
- 3. Beardon, A. F., Iteration of Rational Functions, Grad. Texts in Math. 132 (1991).

- Berg, C., Quelques remarques sur le cône de Stieltjes, in: Séminaire de Théorie du potentiel, Paris n.5, Lecture Notes in Math. 814 (1980).
- 5. Berg, C., On powers of Stieltjes moment sequences, I, J. Theoret. Probab. 18 No. 4 (2005), 871–889.
- 6. Berg, C., On powers of Stieltjes moment sequences, II, J. Comput. Appl. Math. 199 (2007), 23–38.
- Berg, C., Christensen, J. P. R., and Ressel, P., Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Grad. Texts in Math. 100 (1984).
- Berg, C., Durán, A. J., A transformation from Hausdorff to Stieltjes moment sequences, Ark. Mat. 42 (2004), 239–257.
- Berg, C., Durán, A. J., Some transformations of Hausdorff moment sequences and harmonic numbers, Canad. J. Math. 57 (2005), 941–960.
- Berg, C., Forst, G., Potential Theory on Locally Compact Abelian Groups, Ergeb. Math. Grenzgeb. 87 (1975).
- 11. Bertoin, J., Lévy Processes, Cambridge University Press, Cambridge, 1996.
- 12. Bingham, N. H., Goldie, C. M., and Teugels, J. L., *Regular Variation*, Cambridge University Press, Cambridge, 1987.
- 13. De Bruijn, N. G., *Asymptotic Methods in Analysis*, North-Holland Publishing Company, Amsterdam, 1958.
- 14. Diaconis, P., Freedman, D., *The Markov moment problem and de Finetti's theorem. I*, Math. Z. 247 (2004), 183–199.
- 15. Diaconis, P., Freedman, D., *The Markov moment problem and de Finetti's theorem. II*, Math. Z. 247 (2004), 201–212.
- Donoghue Jr., W. F., Monotone Matrix Functions and Analytic Continuation, Springer-Verlag, Berlin-Heidelberg-New York, 1974.
- 17. Hausdorff, F., Momentenprobleme für ein endliches Intervall, Math. Z. 16 (1923), 220-248.
- Itô, M., Sur les cônes convexes de Riesz et les noyaux complètement sous-harmoniques, Nagoya Math. J. 55 (1974), 111–144.
- Reuter, G. E. H., Über eine Volterrasche Integralgleichung mit totalmonotonem Kern, Arch. Math. 7 (1956), 59–66.
- Steutel, F. W., Van Harn, K., Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker, Inc., New York, Basel 2004.
- 21. Stolz, O., Ueber die Grenzwerthe der Quotienten, Math. Annalen 14 (1878), 231-240.
- 22. Tyan, S., *The structure of Bivariate distribution functions and their relation to Markov processes*, Ph. D. Thesis, Princeton University 1975.
- 23. Widder, D. V., The Laplace Transform, Princeton University Press, Princeton, 1941.

INSTITUT FOR MATEMATISKE FAG KØBENHAVNS UNIVERSITET UNIVERSITETSPARKEN 5 DK-2100 KØBENHAVN Ø DENMARK *E-mail:* berg@math.ku.dk DEPARTAMENTO DE ANÁLISIS MATEMÁTICO UNIVERSIDAD DE SEVILLA APDO (P.O. BOX) 1160 41080 SEVILLA SPAIN *E-mail:* duran@us.es