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THE FIXED POINT FOR A TRANSFORMATION OF
HAUSDORFF MOMENT SEQUENCES AND
ITERATION OF A RATIONAL FUNCTION

CHRISTIAN BERG and ANTONIO J. DURÁN∗

Abstract

We study the fixed point for a non-linear transformation in the set of Hausdorff moment sequences,
defined by the formula: T ((an))n = 1/(a0+· · ·+an). We determine the corresponding measureμ,
which has an increasing and convex density on ]0, 1[, and we study some analytic functions related
to it. The Mellin transform F ofμ extends to a meromorphic function in the whole complex plane.
It can be characterized in analogy with the Gamma function as the unique log-convex function
on ]−1,∞[ satisfying F(0) = 1 and the functional equation 1/F (s) = 1/F (s + 1)− F(s + 1),
s > −1.

1. Introduction and main results

Hausdorff moment sequences are sequences of the form
∫ 1

0 t
n dν(t), n ≥ 0,

where ν is a positive measure on [0, 1]. Hausdorff moment sequences were
characterized as completely monotonic sequences in a fundamental paper by
Hausdorff, see [17]. For a recent study of Hausdorff moment sequences see
[14], [15]. Hausdorff moment sequences can also be characterized as bounded
Stieltjes moment sequences, where Stieltjes moment sequences are of the form∫ ∞

0 tn dν(t), n ≥ 0 for a positive measure ν on [0,∞[. For a treatment of these
concepts and the more general Hamburger moment problem see the monograph
by Akhiezer [1].

In [8] the authors introduced a non-linear multiplicative transformation
from Hausdorff moment sequences to Stieltjes moment sequences. In [9] we
introduced a non-linear transformation T of the set of Hausdorff moment
sequences into itself by the formula:

(1.1) T ((an))n = 1/(a0 + a1 + · · · + an), n ≥ 0.
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The corresponding transformation of positive measures on [0, 1] is denoted T̂ .
We recall from [9] that if ν �= 0, then T̂ (ν)({0}) = 0 and

(1.2)
∫ 1

0

1 − t z+1

1 − t
dν(t)

∫ 1

0
t z dT̂ (ν)(t) = 1 for Re z ≥ 0.

Assuming Re z > 0 we can consider t z = exp(z log t) as a continuous function
on [0, 1] with value 0 for t = 0. Likewise (1 − t z)/(1 − t) is a continuous
function for t ∈ [0, 1] with value z for t = 1. If Re z = 0, z �= 0 the function
t z is only considered for t > 0, so it is important that T̂ (ν) has no mass at
zero. Finally t0 ≡ 1. It is clear that if ν is a probability measure, then so is
T̂ (ν), and in this way we get a transformation of the convex set of normalized
Hausdorff moment sequences (i.e. a0 = 1) as well as a transformation of the set
of probability measures on [0, 1]. By Kakutani’s theorem the transformation
has a fixed point, and by (1.1) it is clear that a fixed point (mn)n is uniquely
determined by the recursive equation

(1.3) m0 = 1, (1 +m1 + · · · +mn)mn = 1, n ≥ 1.

Therefore

(1.4) m2
n+1 + mn+1

mn
− 1 = 0,

giving

m1 = −1 + √
5

2
, m2 =

√
22 + 2

√
5 − √

5 − 1

4
, · · · .

The purpose of this paper is to study the Hausdorff moment sequence (mn)n
and to determine its associated probability measure μ, called the fixed point
measure.

We already know that μ({0}) = 0 because μ = T̂ (μ), but it is also
convenient to notice that μ({1}) = 0. It is clear that (mn)n decreases to
c = μ({1}) ≥ 0, hence m0 + m1 + · · · + mn ≥ (n + 1)mn. By (1.3) we
get 1 ≥ (n+ 1)m2

n ≥ (n+ 1)c2, showing that c = 0.
In Section 4 we prove much more, namely

(1.5) mn ∼ 1/
√

2n for n → ∞.

We will study μ by determining what we call the Bernstein transform

(1.6) f (z) = B(μ)(z) =
∫ 1

0

1 − t z

1 − t
dμ(t), Re z > 0
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as well as the Mellin transform

(1.7) F (z) = M(μ)(z) =
∫ 1

0
t z dμ(t), Re z > 0.

These functions are clearly holomorphic in the half-plane Re z > 0 and con-
tinuous in Re z ≥ 0, the latter because μ({0}) = 0.

As a first result we prove:

Theorem 1.1. The functions f, F can be extended to meromorphic func-
tions in C and they satisfy

(1.8) f (z+ 1)F (z) = 1, z ∈ C

(1.9) f (z) = f (z+ 1)− 1

f (z+ 1)
, z ∈ C.

They are holomorphic in Re z > −1. Furthermore z = −1 is a pole of f and
F .

The fixed point measure μ has the properties

(1.10)
∫ 1

0
tx dμ(t) < ∞, x > −1;

∫ 1

0

d μ(t)

t
= ∞.

Proof. By (1.2) with ν replaced by the fixed point measure μ we get
f (z+ 1)F (z) = 1 for Re z ≥ 0, showing in particular that f (z+ 1) and F(z)
are different from zero for Re z ≥ 0. For Re z ≥ 0 we get by (1.6)

f (z+ 1)− f (z) =
∫ 1

0

t z − t z+1

1 − t
dμ(t) =

∫ 1

0
t z dμ(t) = F(z) = 1

f (z+ 1)
,

which shows (1.9) for these values of z.
We remark that Re f (z) > 0 and in particular f (z) �= 0 for Re z > 0. This

follows by (1.6) because Re(tz) ≤ |t z| < 1 for 0 < t < 1 and Re z > 0.
We next use equation (1.9) to define f (z) for Re z ≥ −1, yielding a

holomorphic continuation of f to the open half-plane Re z > −1 because
f (z+ 1) �= 0.

Using equation (1.9) once more we obtain a meromorphic extension of
f to the half-plane Re z > −2. There will be poles at points z for which
f (z+ 1) = 0, in particular for z = −1 because f (0) = 0.

Repeated use of equation (1.9) makes it possible to obtain a meromorphic
extension to C. At each step, z will be a pole if z+ 1 is a zero or a pole.
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At this stage we cannot give a complete picture of the poles of f , but we
return to that in Theorem 1.4.

Having extended f to a meromorphic function in C such that (1.9) holds,
we extend F to a meromorphic function in C such that equation (1.8) holds.

Let us notice that also F has no poles in Re z > −1 because f (z+ 1) �= 0.
Moreover z = −1 is a pole of F because f (0) = 0.

By a classical result (going back to Landau for Dirichlet series), see [23,
p. 58], we then get equation (1.10).

The function f can be characterized in analogy with the Bohr-Mollerup
theorem about the Gamma function, cf. [2]. More precisely we have:

Theorem 1.2. The Bernstein transform (1.6) of the fixed point measure is
a function f : ]0,∞[ → ]0,∞[ with the following properties

(i) f (1) = 1,

(ii) log(1/f ) is convex,

(iii) f (s) = f (s + 1)− 1/f (s + 1), s > 0.

Conversely, if f̃ : ]0,∞[ → ]0,∞[ satisfies (i)–(iii), then it is equal to f and
for 0 < s ≤ 1 we have

(1.11) f̃ (s) = lim
n→∞ψ

◦n
(

1

mn−1

(
mn−1

mn

)s)
,

where ψ is the rational function ψ(z) = z − 1/z. In particular (1.11) holds
for f .

Here and elsewhere we use the notation for composition of mappings
ψ◦1(z) = ψ(z), ψ◦n(z) = ψ(ψ◦(n−1)(z)), n ≥ 2. Theorem 1.2 will be proved
in Section 3. Using the relation f (s + 1)F (s) = 1 it is clear that Theorem 1.2
can be reformulated to a characterization of F :

Theorem 1.3. There exists one and only one function F : ]−1,∞[ →
]0,∞[ with the following properties

(i) F(0) = 1,

(ii) F is log-convex,

(iii) 1/F (s) = 1/F (s + 1)− F(s + 1), s > −1,

namely F is the Mellin transform

F(s) =
∫ 1

0
t s dμ(t), s > −1

of the fixed point measure.
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Let H denote the set of normalized Hausdorff moment sequences con-
sidered as a subset of [0, 1]N0 with the product topology, N0 = {0, 1, . . .}. In
Section 2 we prove that the fixed point m = (mn)n is attractive in the sense
that for each a = (an)n ∈ H the sequence of iterates T ◦n(a) converges to m in
H . Focusing on probability measures we see that every probability measure
τ on [0, 1] belongs to the domain of attraction of the fixed point measure μ
in the sense that limn→∞ T̂ ◦n(τ ) = μ weakly. For q ∈ R we denote by δq the
probability measure with mass 1 concentrated at the point q. By specializing
the iteration using τ = δ0 we prove the following result:

Theorem 1.4. Let f and F be the meromorphic functions in C extending
(1.6) and (1.7) respectively. The zeros and poles of f are all simple and are
contained in ]−∞, 0]. The zeros of f are denoted ξ0 = 0 and ξp,k , p =
1, 2, . . ., k = 1, . . . , 2p−1 with −p − 1 < ξp,1 < ξp,2 < · · · < ξp,2p−1 < −p.

The poles of f are −l, ξp,k − l, l = 1, 2, . . . with p, k as above.
Defining

(1.12) ρ0 = 1

f ′(0)
; ρp,k = 1

f ′(ξp,k)
,

then ρ0, ρp,k > 0.
The following representations hold

(1.13) F (z) = ρ0

z+ 1
+

∞∑
p=1

2p−1∑
k=1

ρp,k

z+ 1 − ξp,k
,

and

(1.14) f (z) = z

∞∑
l=1

[
ρ0

l(z+ l)
+

∞∑
p=1

2p−1∑
k=1

ρp,k

(l − ξp,k)(z+ l − ξp,k)

]
.

The fixed point measureμ has an increasing and convex density D with respect
to Lebesgue measure on ]0, 1[ and it is given by

(1.15) D(t) = ρ0 +
∞∑
p=1

2p−1∑
k=1

ρp,kt
−ξp,k .

While clearly D(0) = ρ0, we prove in Theorem 3.9 that

D(t) ∼ 1/
√

2π(1 − t), t → 1.
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It is possible to obtain expressions for ξp,k and ρp,k in terms of the moments
(mn). This is quite technical and is given in Theorem 3.8.

We recall that a function ϕ is called a Stieltjes transform if it can be written
in the form

(1.16) ϕ(z) = a +
∫ ∞

0

dσ(x)

x + z
, z ∈ C \ ]−∞, 0],

where a ≥ 0 and σ is a positive measure on [0,∞[ such that (1.16) makes
sense, i.e.

∫
1/(x + 1) dσ (x) < ∞.

It is clear that if σ �= 0 then ϕ is strictly decreasing on ]0,∞[ with a =
lims→∞ ϕ(s). Furthermore, ϕ is holomorphic in C \ ]−∞, 0] with

Im ϕ(z)

Im z
< 0 for z ∈ C \ R,

so in particular ϕ is never zero in C \ ]−∞, 0]. The Stieltjes transforms we
are going to consider will be meromorphic in C. The function (1.16) is mero-
morphic precisely when the measure σ is discrete and the set of mass-points
have no finite accumulation points, i.e. if and only if

ϕ(z) = a +
∞∑
p=0

σp

z+ ηp

with σp > 0, 0 ≤ η0 < η1 < η2 < · · · → ∞.
For results about Stieltjes transforms see [10]. Stieltjes transforms are

closely related to Pick functions, cf. [1], [16]. We recall that a Pick function is
a holomorphic function ϕ : C \ R → C satisfying

Im ϕ(z)

Im z
≥ 0 for z ∈ C \ R,

so if ϕ �= 0 is a Stieltjes transform, then 1/ϕ is a Pick function. Notice that
z/(z+ a) is a Pick function for any a > 0.

Corollary 1.5. In the notation of Theorem 1.4 f (z)/z and F(z) are
Stieltjes transforms and f is a Pick function.

We have used the name Bernstein transform for (1.6). In general, if ν is a
positive finite measure on ]0, 1], we call

(1.17) B(ν)(z) =
∫ 1

0

1 − t z

1 − t
dν(t)
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the Bernstein transform of ν, because it is a Bernstein function in the termin-
ology of [10]. In fact we can write

B(ν)(z) = ν({1})z+
∫ ∞

0

(
1 − e−xz

)
dλ(x), Re z ≥ 0,

where λ is defined as the image measure of (1 − t)−1(ν|]0, 1[) under log(1/x)
mapping ]0, 1[ onto ]0,∞[. We recall that λ is called the Lévy measure of the
Bernstein function. It follows that B(ν)′ is a completely monotonic function.
Bernstein functions are very important in the theory of Lévy processes, see
[11].

In Section 4 we prove that (mn)n is infinitely divisible in the sense that
(mαn)n is a Hausdorff moment sequence for all α > 0.

2. An iteration leading to the fixed point measure

For n = 0, 1, . . . we denote the moments of μn = T̂ ◦n(δ0) by (mn,k)k , i.e.∫ 1

0
tk dT̂ ◦n(δ0)(t) = mn,k,

hence for n ≥ 1

(2.1) mn,k = (
mn−1,0 +mn−1,1 + · · · +mn−1,k

)−1
.

Notice thatmn,0 = 1 for all n andm0,k = δ0k, m1,k = 1,m2,k = 1/(k+ 1) for
all k.

Lemma 2.1. For fixed k = 0, 1, . . . we have

m0,k ≤ m2,k ≤ m4,k ≤ · · ·
m1,k ≥ m3,k ≥ m5,k ≥ · · ·

and these sequences have the same limit

lim
n→∞m2n,k = lim

n→∞m2n+1,k = mk,

where (mk)k is the fixed point given by (1.3).
Furthermore, limk→∞mn,k = 0 for n ≥ 2, implying that μn = T̂ ◦n(δ0) has

no mass at t = 1 for n ≥ 2.

Proof. Since the result is trivial for k = 0, we assume that k ≥ 1 and have

0 = m0,k < m2,k = 1

k + 1
; 1 = m1,k > m3,k = 1

Hk+1
,
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where Hp = 1 + 1
2 + · · · + 1

p
is the p’th harmonic number. We now get

1

m4,k
=

k∑
j=0

m3,j < k + 1

hence m4,k > m2,k . We next use this to conclude

1

m5,k
=

k∑
j=0

m4,j >

k∑
j=0

m2,j = 1

m3,k
,

hence m5,k < m3,k . It is clear that this procedure can be continued and refor-
mulated to a proof by induction.

Defining
m′
k = lim

n→∞m2n,k, m′′
k = lim

n→∞m2n+1,k,

we get the following relations from (2.1)
(2.2)
m′
k = (

1 +m′′
1 + · · · +m′′

k

)−1
, m′′

k = (
1 +m′

1 + · · · +m′
k

)−1
, k ≥ 1,

because clearlym′
0 = m′′

0 = m0 = 1. It follows easily by induction using (2.2)
that m′

k = m′′
k = mk for all k.

Since m2n,k ≤ mk we get limk→∞m2n,k = 0. Furthermore, for n ≥ 1

1

m2n+1,k
=

k∑
j=0

m2n,j ≥
k∑

j=0

m2,j = Hk+1

and hence limk→∞m2n+1,k = 0.

We recall that H denotes the set of normalized Hausdorff moment sequences
a = (an)n. The mapping ν → (

∫
xn dν(x))n from the set of probability

measures ν on [0, 1] to H is a homeomorphism between compact sets, when
the set of probability measures carries the weak topology and H carries the
topology inherited from [0, 1]N0 equipped with the product topology.

Defining an order relation ≤ on H by writing a ≤ b if ak ≤ bk for k =
0, 1, . . ., we easily get the following Lemma:

Lemma 2.2. The transformation T : H → H is decreasing, i.e.

a ≤ b ⇒ T (a) ≥ T (b).

Theorem 2.3. For every a ∈ H we have

lim
n→∞ T

◦n(a) = m,
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where m = (mn)n is the fixed point.

Proof. For 0 ≤ q ≤ 1 we write q = (qn)n, hence 0 ≤ a ≤ 1 for every
a ∈ H . By Lemma 2.2 we get

T ◦(2n)(0) ≤ T ◦(2n)(a) ≤ T ◦(2n)(1) = T ◦(2n+1)(0)

T ◦(2n+1)(0) ≥ T ◦(2n+1)(a) ≥ T ◦(2n+1)(1) = T ◦(2n+2)(0),

and since limn→∞ T ◦n(0) = m by Lemma 2.1, we get

lim
n→∞ T

◦(2n)(a) = lim
n→∞ T

◦(2n+1)(a) = m.

Theorem 2.3 can also be expressed that T̂ ◦n(τ ) → μ weakly for any prob-
ability measure τ on [0, 1]. Specializing this to τ = δ0 and using formula (1.2),
we obtain:

Corollary 2.4. The iterated sequence μn = T̂ ◦n(δ0) of measures con-
verges weakly to the fixed point measure μ and
(2.3)∫ 1

0

1 − t z+1

1 − t
dμn(t)

∫ 1

0
t z dμn+1(t) = 1, Re z ≥ 0, n = 0, 1, . . .

We have μ0 = δ0, μ1 = δ1, μ2 = χ]0,1[(t)dt , where χ]0,1[(t) denotes
the indicator function for the interval ]0, 1[. The Bernstein transform of the
measure μ2 is

(2.4) B(μ2)(z) =
∫ 1

0

1 − t z

1 − t
dt =

∞∑
l=1

(
1

l
− 1

z+ l

)
= �(z+ 1)+ γ,

where γ is Euler’s constant and�(x) = �′(x)/�(x) is the Digamma function.
The measure μ3 has been calculated in [9] and the result is

μ3 =
( ∞∑
p=0

αpt
−ξp

)
χ]0,1[(t) dt,

where 0 = ξ0 > ξ1 > ξ2 > · · · satisfy −p − 1 < ξp < −p for p =
1, 2, . . . and αp > 0, p = 0, 1, . . . .More precisely, it was proved that ξp is the
unique solution x ∈ ]−p − 1,−p[ of the equation �(1 + x) = −γ . Writing
ξp = −p − 1 + δp, we have 0 < δp+1 < δp <

1
2 , δp ∼ 1/ logp, p → ∞.

Furthermore, αp = 1/� ′(1 + ξp) ∼ 1/ log2 p. Since
∑
αp/(1 − ξp) = 1, we

have the crude estimate αp < p + 2.
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We shall now prove that all the measures μn, n ≥ 4 have a form similar to
that of μ3.

Lemma 2.5. For n ≥ 3 the measure μn has the form

(2.5) μn =
(
ρ
(n)
0 +

∞∑
p=1

N(n,p)∑
k=1

ρ
(n)
p,kt

−ξ (n)p,k

)
χ]0,1[(t) dt,

where for each p ≥ 1

(i) 1 ≤ N(n, p) ≤ 2p−1,

(ii) −p − 1 < ξ
(n)
p,1 < ξ

(n)
p,2 < · · · < ξ

(n)

p,N(n,p) < −p,

(iii) 0 < ρ
(n)
0 < 1, 0 < ρ

(n)
p,k < p + 2, k = 1, . . . , N(n, p).

Proof. The result for n = 3 follows from the description above from [9]
with ρ(3)0 = α0, N(3, p) = 1, ρ(3)p,1 = αp, ξ (3)p,1 = ξp.

Assume now that the result holds for μn and let us prove it for μn+1. For
Re z > 0 we then have

fn(z) := B(μn)(z)

=
∫ 1

0

1 − t z

1 − t
dμn(t) =

∞∑
l=0

∫ 1

0

(
t l − t z+l

)
dμn(t)

=
∞∑
l=0

[
ρ
(n)
0

∫ 1

0

(
t l − t z+l

)
dt +

∞∑
p=1

N(n,p)∑
k=1

ρ
(n)
p,k

∫ 1

0

(
t l−ξ

(n)
p,k − t z+l−ξ

(n)
p,k

)
dt

]

= z

∞∑
l=1

[
ρ
(n)
0

l(z+ l)
+

∞∑
p=1

N(n,p)∑
k=1

ρ
(n)
p,k

(l − ξ
(n)
p,k)(z+ l − ξ

(n)
p,k)

]
.

This shows that fn(z)/z is a Stieltjes transform and a meromorphic function
in C with poles at the points

−l, ξ (n)p,k − l, l = 1, 2, . . . , p = 1, 2, . . . , k = 1, . . . , N(n, p),

so in the interval ]−p − 1,−p] we have the poles

(2.6) −p, ξ (n)p−l,k − l, k = 1, . . . , N(n, p − l), l = 1, . . . , p − 1.

Since fn(x)/x is strictly decreasing between the poles, we conclude that there
is precisely one simple zero between two consecutive poles. Let N(n+ 1, p)
denote the number of zeros of fn in ]−p − 1,−p[ and let ξ (n+1)

p,k denote the
zeros numbered such that

−p − 1 < ξ
(n+1)
p,1 < ξ

(n+1)
p,2 < · · · < ξ

(n+1)
p,N(n+1,p) < −p.
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In addition also z = 0 is a zero of fn. There are no zeros or poles in C\]−∞, 0]
because fn(z)/z is a Stieltjes transform.

We are now ready to prove equation (2.5) and (i)–(iii) with n replaced by
n+ 1.

(i). By (2.6) we get

N(n+ 1, p) ≤ 1 +
p−1∑
l=1

N(n, p − l) ≤ 1 +
p−1∑
l=1

2p−l−1 = 2p−1.

(ii) is clear by definition, when we have proved that the measure μn+1 has
the form (2.5) using the numbers ξ (n+1)

p,k .
(iii). By a classical result, see [19], [18], [4], 1/fn(z) is a Stieltjes transform

because fn(z)/z is so, i.e.

1

fn(z)
= ρ

(n+1)
0

z
+

∞∑
p=1

N(n+1,p)∑
k=1

ρ
(n+1)
p,k

z− ξ
(n+1)
p,k

,

withρ(n+1)
0 , ρ

(n+1)
p,k > 0. There is no constant term in the Stieltjes representation

because fn(x) → ∞ for x → ∞. In fact, by Lemma 2.1 we get

lim
x→∞ fn(x) =

∫ 1

0

dμn(t)

1 − t
=

∞∑
k=0

mn,k = lim
k→∞

1

mn+1,k
= ∞.

Note that

(2.7) ρ
(n+1)
0 = 1

f ′
n(0)

, ρ
(n+1)
p,k = 1

f ′
n(ξ

(n+1)
p,k )

.

By (2.3) we get

∫ 1

0
t z dμn+1(t) = 1

fn(z+ 1)
= ρ

(n+1)
0

z+ 1
+

∞∑
p=1

N(n+1,p)∑
k=1

ρ
(n+1)
p,k

z+ 1 − ξ
(n+1)
p,k

,

which shows that

μn+1 =
(
ρ
(n+1)
0 +

∞∑
p=1

N(n+1,p)∑
k=1

ρ
(n+1)
p,k t−ξ

(n+1)
p,k

)
χ]0,1[(t) dt,

which is (2.5) with n replaced by n+ 1.



22 christian berg and antonio j. durán

Since μn+1 is a probability measure we get

ρ
(n+1)
0 < 1, ρ

(n+1)
p,k

∫ 1

0
t−ξ

(n+1)
p,k dt < 1,

hence
ρ
(n+1)
p,k < 1 − ξ

(n+1)
p,k < p + 2.

Corollary 2.6. For n ≥ 0 let μn = T̂ ◦n(δ0). The functions fn = B(μn)

are meromorphic Pick functions and the functions Fn = M(μn) are mero-
morphic Stieltjes transforms satisfying

(2.8) fn(z+ 1)Fn+1(z) = 1, z ∈ C.

All zeros and poles of fn are contained in ]−∞, 0].

Proof. We have f0(z) = 1, f1(z) = z, F0(z) = 0, F1(z) = 1, F2(z) =
1/(z+ 1) and for n ≥ 2 the result follows from Lemma 2.5 and its proof.

In order to obtain a limit result for n → ∞ in Corollary 2.6 we need the
following:

Lemma 2.7. Let (ϕn)n be a sequence of Stieltjes transforms of the form

ϕn(z) =
∫ ∞

0

dσn(x)

x + z
, n = 1, 2, . . .

and assume that ϕn(z) → ϕ(z) uniformly on compact subsets of Re z > 0 for
some holomorphic function ϕ on the right half-plane.

Then ϕ is a Stieltjes transform

ϕ(z) = a +
∫ ∞

0

dσ(x)

x + z

and limn→∞ σn = σ vaguely. Furthermore, ϕn(z) → ϕ(z) uniformly on com-
pact subsets of C \ ]−∞, 0].

Proof. Since ∫ ∞

0

dσn(x)

x + 1
= ϕn(1) → ϕ(1),

there exists a constantK > 0 such that
∫

1/(x + 1) dσn(x) ≤ K for all n. Let
σ be a vague accumulation point for (σn)n. Replacing (σn)n by a subsequence
we can assume without loss of generality that σn → σ vaguely. By standard
results in measure theory, cf. [7, Prop. 4.4], we have∫ ∞

0

dσ(x)

x + 1
≤ K, lim

n→∞

∫
f dσn =

∫
f dσ
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for any continuous functionf : [0,∞[ → C which is o(1/(x+1)) for x → ∞.
In particular

ϕ′
n(z) = −

∫ ∞

0

dσn(x)

(x + z)2
→ −

∫ ∞

0

dσ(x)

(x + z)2
, z ∈ C \ ]−∞, 0],

showing that
ϕ′(z) = −

∫ ∞

0

dσ(x)

(x + z)2
, Re z > 0,

hence
ϕ(z) = a +

∫ ∞

0

dσ(x)

x + z
, Re z > 0

for some constant a. Using ϕ(x) = limn→∞ ϕn(x) ≥ 0 for x > 0, we get
a ≥ 0, showing that ϕ is a Stieltjes transform. By uniqueness of a and σ in the
representation of ϕ as a Stieltjes transform, we conclude that the accumulation
point σ is unique, hence limn→∞ σn = σ vaguely.

It is now easy to see that (ϕn(z))n is uniformly bounded on compact subsets
of C \ ]−∞, 0], and the last assertion of Lemma 2.7 is a consequence of the
Stieltjes-Vitali theorem.

Proof of Theorem 1.4. From Lemma 2.5 follows that the Mellin trans-
form M(μn)(z) coincides on Re z ≥ 0 with the meromorphic function

ρ
(n)
0

z+ 1
+

∞∑
p=1

N(n,p)∑
k=1

ρ
(n)
p,k

z+ 1 − ξ
(n)
p,k

=
∫ ∞

0

dσn(x)

x + z
,

where σn is the discrete measure

σn = ρ
(n)
0 δ1 +

∞∑
p=1

N(n,p)∑
k=1

ρ
(n)
p,kδ1−ξ (n)p,k

.

Since M(μn)(z) → M(μ)(z) uniformly on compact subsets of Re z > 0 by
Corollary 2.4, it follows by Lemma 2.7 that M(μ) is a Stieltjes transform

M(μ)(z) = a +
∫ ∞

0

dσ(x)

x + z
,

and σn → σ vaguely. Since M(μ)(k) = mk → 0 as k → ∞, we get a = 0.
Using that σn has at most 2p−1 mass points in [p + 1, p + 2], p = 1, 2, . . .
and that ρ(n)p,k < p + 2 by Lemma 2.5, we can write

σ = ρ0δ1 +
∞∑
p=1

Np∑
k=1

ρp,kδ1−ξp,k ,
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withρ0 ≥ 0, 0 < ρp,k ≤ p+2 and −p−1 ≤ ξp,1 < ξp,2 < · · · < ξp,Np < −p,
whereNp ≤ 2p−1. At this stage we cannot confirm that ρ0 > 0, −p−1 < ξp,1,
Np = 2p−1 and that ξp,k are the zeros of f . The function

(2.9)
ρ0

z+ 1
+

∞∑
p=1

Np∑
k=1

ρp,k

z+ 1 − ξp,k

is a meromorphic extension of M(μ) and therefore equal to the meromorphic
function F of Theorem 1.1. This shows that μ has the density

(2.10) D(t) = ρ0 +
∞∑
p=1

Np∑
k=1

ρp,kt
−ξp,k ,

which is clearly increasing and convex since −ξp,k ≥ 1. Finally, by (2.10) the
Bernstein transform B(μ) has the meromorphic extension

(2.11) z

∞∑
l=1

[
ρ0

l(z+ l)
+

∞∑
p=1

Np∑
k=1

ρp,k

(l − ξp,k)(z+ l − ξp,k)

]
,

which is a Pick function. The function given by (2.11) equals the meromorphic
function f of Theorem 1.1. By Lemma 2.7 applied to the Stieltjes transforms
fn(z)/z, we conclude that fn(z) → f (z) uniformly on compact subsets of
C \ ]−∞, 0].

We already know from Theorem 1.1 that F has a pole at z = −1 and hence
ρ0 > 0. The remaining poles of F are ξp,k − 1, so by formula (1.8) the zeros
of f are z = 0 and z = ξp,k . By the expression (2.11) for f the poles of f are
−l, ξp,k − l and therefore −p − 1 < ξp,1, p = 1, 2, . . ..

We have now proved that the zeros and poles of f are all simple and are
contained in ]−∞, 0]. Since f (z+ 1)F (z) = 1 we get by (2.9) that

1

f (z)
= ρ0

z
+

∞∑
p=1

Np∑
k=1

ρp,k

z− ξp,k
,

which shows equation (1.12).
To finish the proof we shall establish that Np = 2p−1.
From the functional equation (1.9) and the fact that f is strictly increasing

between the poles, we see the following about the generation of zeros and
poles of f :

(1) If z+ 1 is regular point, then f (z+ 1) = ±1 if and only if f (z) = 0.
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(2) If z+ 1 is regular point, then f (z+ 1) = 0 if and only if z is a pole. In
the affirmative case Res(f, z) = −1/f ′(z+ 1).

(3) If z+ 1 is a pole then z is a pole with the same residue as in z+ 1.

(4) For a pole β let αβ be the smallest zero in ]β,∞[. Then f (]β, αβ[) =
]−∞, 0[ and there exists a unique point x∗ in ]β, αβ[ such that f (x∗) =
−1.

(5) For a pole β let γβ be the biggest zero in ]−∞, β[. Then f (]γβ, β[) =
]0,∞[ and there exists a unique point x∗ in ]γβ, β[ such that f (x∗) = 1.

From (1)–(5) we deduce that f has the following properties. Since f (0) = 0
we see that f has poles at z = −1,−2, . . . in accordance with (2.11). There
are no poles in ]−2,−1[ since f is regular in ]−1, 0[ and non-zero. Notice
that f is strictly increasing on ]−1,∞[ mapping this interval onto the whole
real line by (2.11). There is a unique point x∗ ∈ ]−1, 0[ such that f (x∗) = −1,
hence x∗ − 1 is a zero and x∗ − 2, x∗ − 3, . . . are poles. In ]−3,−2] there are
two poles namely x∗ − 2 and −2 and since f is strictly increasing between
consecutive poles we have two zeros in ]−3,−2[. By induction it is easy to
see that there are exactly 2p−1 poles in each interval ]−p − 1,−p] and 2p−1

zeros in the open interval ]−p − 1,−p[, p ≥ 1. This shows that Np = 2p−1.
Note that ξ1,1 = x∗ − 1.

�1

�1

1

2

3

�2

�3

1�2 2�3 3

Figure 1. The graph of f with vertical lines at the poles.

We give some further information about the poles of f .
We call the negative integers poles of the first generation of f and say that

a pole of f is of the l-th generation, l ≥ 2, if it is generated by a zero ξl−1,k ,
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i.e. the pole is of the form ξl−1,k − m, for some integer m ≥ 1. Then it can
easily be proved by induction on p that:

(1) In ]−p−1,−p] there is one pole of the first generation (namely, −p), one
pole of the second generation (namely ξ1,1−p+1), and for l = 3, . . . , p,
2l−2 poles of the l-th generation (so that the total number of poles is
1 + ∑p

l=2 2l−2 = 2p−1).

(2) For each interval [−p−1,−p], the poles of one generation separate the
set of poles of lower generations, and the zeros ξp,k , k = 1, . . . , 2p−1,
separate the set of all poles. That means that the set of poles of generation
less than or equal to l separate the zeros ξp,k , k = 1, . . . , 2p−1, in groups
of 2p−l consecutive elements.

(3) For l ≥ 2 the poles in ]−p − 1,−p[ of the l-th generation are zeros of
f (z+ p − l + 1) but they are still poles of f (z+ j) if 0 ≤ j ≤ p − l.

3. Iteration of the rational function ψ

In this section we will prove Theorem 1.2 and discuss the relationship with the
classical study of iteration of rational functions of degree ≥ 2, cf. e.g. [3].

We have already introduced the rational function ψ by

(3.1) ψ(z) = z− 1

z
.

It is a mapping of C \ {0} onto C with a simple pole at z = 0. Moreover,
ψ(0) = ψ(∞) = ∞. It is two-to-one with the exception that ψ(z) = ±2i has
only one solution z = ±i. It is strictly increasing on the half-lines ]−∞, 0[
and ]0,∞[, mapping each of them onto R. The functional equation (1.9) can
be written

(3.2) f (z) = ψ(f (z+ 1)).

We notice that ψ and hence all iterates ψ◦n are Pick functions. It is con-
venient to define ψ◦0(z) = z. We claim that the Julia set is J (ψ) = R∗, and
the Fatou set is F(ψ) = C \ R. This is because ψ is conjugate to the rational
function

R(z) = 3z2 + 1

z2 + 3

i.e.g◦R = ψ◦g, whereg is the Möbius transformationg(z) = i(1+z)/(1−z).
Note that g is the Cayley transformation mapping the unit circle T onto R∗.
In [3, p. 200] the Julia set of R is determined as J (R) = T, and the assertion
follows.
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The sequence (λn)n is defined in terms of (mn)n from (1.3) by

(3.3) λ0 = 0, λn+1 = 1/mn, n ≥ 0.

By (1.7) and (1.8) we clearly have

(3.4) mn = F(n), λn = f (n), n ≥ 0,

hence by (3.2)

(3.5) λn = ψ(λn+1), n ≥ 0,

which can be reformulated to

(3.6) λn+1 = 1

2

(
λn +

√
λ2
n + 4

)
, n ≥ 0.

The following result is easy and the proof is left to the reader.

Lemma 3.1. Defining

(3.7) Yn = (ψ◦n)−1({0}) = {z ∈ C | ψ◦n(z) = 0},
i.e.

Y0 = {0}, Y1 = {−1, 1}, Y2 = {(±1 ± √
5 )/2}, . . .

we have for n ≥ 1

(i) ψ(Yn) = Yn−1, Yn = ψ◦−1(Yn−1),

(ii) The set of poles of ψ◦n is ∪n−1
j=0Yj ,

(iii) Yn consists of 2n real numbers and is symmetric with respect to zero.

(iv) The function ψ◦n is strictly increasing from −∞ to ∞ in each of the 2n

intervals in which ∪n−1
j=0Yj divides R. There is exactly one zero of ψ◦n in

each of these intervals, and these zeros form the set Yn.

We write Yn = {αn,k : k = 1, . . . , 2n} arranged in increasing order (n ≥ 1):

αn,1 < αn,2 < · · · < αn,2n−1 < 0 < αn,2n−1+1 < · · · < αn,2n .

It is easy to see that −αn,1 = αn,2n = λn for n ≥ 0.

Proposition 3.2. The set

∪∞
p=0Yp = {

αp,k | p ≥ 0, k = 1, . . . , 2p
}

is dense in R.
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Proof. The set in question is the so-called backward orbit of 0 for ψ , and
since 0 ∈ J (ψ) the result follows by [3, Theorem 4.2.7].

We next give some asymptotic properties of the sequence (λn)n and the
function f :

Lemma 3.3. (1)
√
n ≤ λn ≤ √

2n, n ≥ 0.

(2) (λn)n is an increasing divergent sequence and λn+1/λn is decreasing

with lim
n→∞

λn+1

λn
= 1.

(3) lim
n→∞(λ

2
n+1 − λ2

n) = 2.

(4) lim
n→∞

λ2
n

n
= 2.

(5) lim
n→∞

λ2
n − 2n

log n
= −1

2
.

(6) lim
s→∞ f (s)/

√
2s = 1.

(7) lim
s→∞ f

′(s)
√

2s = 1.

Proof.
(1) These inequalities follow easily from (3.6) using induction on n.
(2) The sequence (λn)n increases to infinity since it is the reciprocal of the

Hausdorff moment sequence (mn)n. By the Cauchy-Schwarz inequalitym2
n ≤

mn−1mn+1, which proves that (λn+1/λn)n is decreasing. The limit follows now
easily from (3.6).

(3) Using (3.5) we can write

λ2
n+1 − λ2

n = λn+1 + λn

λn+1
= 1 + λn

λn+1
,

and it suffices to apply part 2.
(4) is a consequence of part 3 and the following version of the Stolz criterion

going back to [21]:

Lemma 3.4. Let (an)n, (bn)n be real sequences, where (bn)n is strictly
increasing tending to infinity. Then

lim
n→∞

an+1 − an

bn+1 − bn
= L ⇒ lim

n→∞
an

bn
= L.
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(5) follows by using again the Stolz criterion and taking into account that

λ2
n+1 − λ2

n − 2

log n+1
n

= λ2
n+1 − λ2

n − 2λ2
n+1 + 2λn+1λn

log n+1
n

= − (λn+1 − λn)
2

log n+1
n

= − 1

n log n+1
n

n

λ2
n+1

→ −1

2
.

(6) Since f is increasing and f (n) = λn, the assertion follows from part 4.
(7) We write f (n + 1) − f (n) = f ′(tn), for a certain tn ∈ (n, n + 1).

Since f ′ is decreasing (f ′(s) is completely monotonic), part 7 follows if we
prove that f ′(tn)

√
2tn tends to 1 as n tends to ∞. However, using the recursion

formula for (λn)n, we get

f ′(tn)
√

2tn = (λn+1 − λn)
√

2tn =
√

2(n+ 1)

λn+1

√
2tn√

2(n+ 1)
,

and it suffices to apply part 4.

Proof of Theorem 1.2. We have already proved the properties (i) and
(iii). To see (ii) we notice that f = B(μ) is a Bernstein function, and there-
fore 1/f is completely monotonic. Every completely monotonic function is
logarithmically convex. For these statements see e.g. [10, § 14].

Suppose next that f̃ is a function satisfying (i)-(iii). Since f̃ (1) = 1 = λ1,
we see by (iii) and (3.5) that f̃ (n) = λn forn ≥ 1. Equation (1.11) is equivalent
with

(3.8) f̃ (s) = lim
n→∞ψ

◦n
(
λn

(
λn+1

λn

)s)
,

and if we prove this equation for 0 < s ≤ 1, then f̃ is uniquely determined on
]0, 1] and hence by (iii) for all s > 0.

We prove that the limit in (3.8) exists and coincides with f̃ (s) for 0 < s ≤ 1.
This is clear for s = 1 since ψ◦n(λn+1) = 1 for n ≥ 0.

For any convex function φ on ]0,∞[ we have for 0 < s ≤ 1 and n ≥ 2

φ(n)− φ(n− 1) ≤ φ(n+ s)− φ(n)

s
≤ φ(n+ 1)− φ(n).

By taking φ = log(1/f̃ ), which is convex by assumption, we get

log
λn−1

λn
≤ 1

s
log

f̃ (n)

f̃ (n+ s)
≤ log

λn

λn+1
;
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that is (
λn−1

λn

)s
≤ λn

f̃ (n+ s)
≤

(
λn

λn+1

)s
,

which finally gives:

λn

(
λn+1

λn

)s
≤ f̃ (n+ s) ≤ λn

(
λn

λn−1

)s
, 0 < s < 1.

Using thatψ is increasing on ]0,∞[, we get by applyingψ◦n to the previous
inequality

ψ◦n(bn(s)) ≤ f̃ (s) = ψ◦n(f̃ (n+ s)) ≤ ψ◦n(an(s)),

where we have introduced

an(s) = λn

(
λn

λn−1

)s
, bn(s) = λn

(
λn+1

λn

)s
.

It is now enough to prove that

lim
n→∞(ψ

◦n(an(s))− ψ◦n(bn(s)) = 0.

By applying the mean value theorem, we get for a certain w ∈ ]bn(s), an(s)[
that

ψ◦n(an(s))− ψ◦n(bn(s))

= (an(s)− bn(s))(ψ
◦n)′(w)

= (an(s)− bn(s))ψ
′(ψ◦n−1(w))ψ ′(ψ◦n−2(w)) · · ·ψ ′(w).

Since λn < bn(s) < w < an(s), we get λn−k < ψ◦k(bn(s)) < ψ◦k(w),
k = 0, 1, . . . , n, hence

∣∣ψ◦n(an(s))− ψ◦n(bn(s))
∣∣ ≤ ∣∣an(s)− bn(s)

∣∣ n−1∏
k=0

∣∣ψ ′(ψ◦k(w))
∣∣

≤ ∣∣an(s)− bn(s)
∣∣ n−1∏
k=0

(
1 + 1

λ2
n−k

)

= λn

((
λn

λn−1

)s
−

(
λn+1

λn

)s) n∏
k=1

(
1 + 1

λ2
k

)
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≤ λn

((
λn

λn−1

)s
−

(
λn+1

λn

)s) n∏
k=1

(
1 + 1

k

)

= (n+ 1)λn

((
λn

λn−1

)s
−

(
λn+1

λn

)s)
,

where we have used
√
k ≤ λk from Lemma 3.3 part 1.

Using that (xs − ys) ≤ s(x − y) for 1 < y < x and 0 < s ≤ 1, we get

∣∣ψ◦n(an(s))− ψ◦n(bn(s))
∣∣ ≤ s(n+ 1)λn

(
λn

λn−1
− λn+1

λn

)
,

and by (3.6) we finally get∣∣ψ◦n(an(s))− ψ◦n(bn(s))
∣∣

≤ 1

2
s(n+ 1)λn

((
1 +

√
1 + 4

λ2
n−1

)
−

(
1 +

√
1 + 4

λ2
n

))

= 1

2
s(n+ 1)λn

(√
1 + 4

λ2
n−1

−
√

1 + 4
λ2
n

)

=
2s(n+ 1)λn

(
1

λ2
n−1

− 1
λ2
n

)
√

1 + 4
λ2
n−1

+
√

1 + 4
λ2
n

≤ s(n+ 1)

λnλ
2
n−1

(λ2
n − λ2

n−1),

which tends to zero by part 2, 3 and 4 of Lemma 3.3.

For each real number s, we define the sequence (λn(s))n by λ0(s) = s and

(3.9) λn+1(s) = λn(s)+ √
λn(s)2 + 4

2
, n ≥ 0.

Notice that λn+1(s) is the positive root of z2 − λn(s)z− 1 = 0 and that

(3.10) ψ(λn+1(s)) = λn(s).

Therefore, if s ∈ Yl then λn(s) ∈ Yl+n, and for s = 0 we have λn(0) = λn,
n ≥ 0. Furthermore, λn(λl(s)) = λn+l(s).

Definition 3.5. For integers k, l ≥ 0 we denote by r(k, l) the unique
solution x ∈ {1, 2, . . . , 2l} of the congruence equation x ≡ k mod 2l .

Lemma 3.6. For p ≥ 1, k = 1, 2, . . . , 2p we have

(i) ψ(αp,k) = αp−1,r(k,p−1).
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(ii) ψ◦l(αp,k) = αp−l,r(k,p−l) for l = 0, 1, . . . , p.

Proof. Sinceψ(Yp) = Yp−1 andψ is strictly increasing mapping ]−∞, 0[
onto R, we see that

ψ(αp,k) = αp−1,k, k = 1, 2, . . . , 2p−1,

and since similarly ψ maps ]0,∞[ onto R we get

ψ(αp,k) = αp−1,j , k = 2p−1 + j, j = 1, 2, . . . , 2p−1.

In the first case k = r(k, p− 1) and in the second case j = r(k, p− 1) so the
assertion (i) follows.

The assertion (ii) is clear for l = 0 and l = p and follows for l = 1 by (i).
Assuming (ii) for some l such that 1 ≤ l ≤ p − 2 we get by (i)

ψ◦(l+1)(αp,k) = ψ(αp−l,r(k,p−l)) = αp−l−1,j ,

where j := r(r(k, p − l), p − l − 1). By definition

k ≡ r(k, p − l) mod 2p−l , 1 ≤ r(k, p − l) ≤ 2p−l

j ≡ r(k, p − l) mod 2p−l−1, 1 ≤ j ≤ 2p−l−1.

The first congruence also holds mod 2p−l−1, hence j ≡ k mod 2p−l−1 and
finally j = r(k, p − l − 1).

Corollary 3.7. For a zero ξp,k of f we have

(i) f (ξp,k + l) = αl,r(k,l), l = 0, 1, . . . , p,

(ii) f (ξp,k + l) = λl−p(αp,k), l = p + 1, p + 2, . . ., where λn(s) is defined
in (3.9).

Proof. We first prove (i) for l = p, i.e. that f (ξp,k + p) = αp,k since
r(k, p) = k. Note that by (3.2) we have

ψ◦p(f (ξp,k + p)) = f (ξp,k) = 0,

hence f (ξp,k + p) ∈ Yp. On the other hand ξp,k + p ∈ ]−1, 0[, and since f is
strictly increasing satisfying f (]−1, 0[) = ]−∞, 0[, we see that f (ξp,k + p),
k = 1, 2, . . . , 2p−1 describe 2p−1 negative numbers in Yp in increasing order.
Therefore, f (ξp,k + p) = αp,k , k = 1, 2, . . . , 2p−1.

By Lemma 3.6 and (3.2) we then get for 0 ≤ l ≤ p

f (ξp,k + l) = ψ◦(p−l)(f (ξp,k + p)) = ψ◦(p−l)(αp,k) = αl,r(k,l).
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Clearly 0 < f (ξp,k + p + 1) ∈ Yp+1 and αp,k = ψ(f (ξp,k + p + 1)), hence
f (ξp,k + p + 1) = λ1(αp,k) by definition of λ1(s). The assertion (ii) follows
easily by induction.

Theorem 3.8. The numbers ξp,k , ρp,k , p ≥ 1, k = 1, . . . , 2p−1 and ρ0

from Theorem 1.4 are given by the following formulas:

ξp,k = lim
N→∞

√
2N

( p∑
l=1

1

αl,r(k,l)
+

N−p∑
l=1

1

λl(αp,k)
− λN

)
,(3.11)

ρp,k =
p∏
l=1

(
1 + 1

α2
l,r(k,l)

)−1

lim
N→∞

√
2N

N∏
l=1

(
1 + 1

λ2
l (αp,k)

)−1

,(3.12)

ρ0 = lim
N→∞

√
2N

N∏
l=1

(
1 + 1

λ2
l

)−1

.(3.13)

Proof. By applying N times the functional equation (1.9) for the function
f and using Corollary 3.7 , we have for p < N :

0 = f (ξp,k) = f (ξp,k +N)−
N∑
l=1

1

f (ξp,k + l)

= f (ξp,k +N)−
( p∑
l=1

1

αl,r(k,l)
+

N−p∑
l=1

1

λl(αp,k)

)
.

Writing

yN,p,k =
p∑
l=1

1

αl,r(k,l)
+

N−p∑
l=1

1

λl(αp,k)
,

we get f (ξp,k +N) = yN,p,k . For N → ∞ it follows by part 6 of Lemma 3.3
that yN,p,k ∼ √

2N . Since f is a strictly increasing bijection of (−1,+∞)

onto R, we can consider its inverse f −1. Then we have N = f −1(λN), hence
ξp,k = f −1(yN,p,k)− f −1(λN). Since ξp,k is negative and f is increasing, we
deduce that yN,p,k < λN . This gives for a certain number σN,p,k ∈ ]yN,p,k, λN [
that

ξp,k = f −1(yN,p,k)− f −1(λN) = (f −1)′(σN,p,k)(yN,p,k − λN)

= yN,p,k − λN

f ′(ηN,p,k)
,
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where we have written ηN,p,k = f −1(σN,p,k). Clearly ηN,p,k ∈ ]ξp,k +N,N [.
Taking into account that lims→∞ f ′(s)

√
2s = 1 (part 7 of Lemma 3.3), we

have
ξp,k = lim

N

√
2N

(
yN,p,k − λN

)
,

that is, (3.11) holds.
The number f ′(ξp,k) can be computed as follows: Deriving the functional

equation (1.9) for f , we get

f ′(z) = f ′(z+ 1)

(
1 + 1

f 2(z+ 1)

)

hence by iteration

(3.14) f ′(z) = f ′(z+N)

N∏
l=1

(
1 + 1

f 2(z+ l)

)
.

Using Corollary 3.7 and lims→∞ f ′(s)
√

2s = 1, (Lemma 3.3, part 7) we get
for z = ξp,k

f ′(ξp,k) =
p∏
l=1

(
1 + 1

α2
l,r(k,l)

)
lim
N→∞

1√
2N

N∏
l=1

(
1 + 1

λ2
l (αp,k)

)
,

and since ρp,k = 1/f ′(ξp,k) by (1.12), we see that (3.12) holds.
Applying (3.14) for z = 0, we get

f ′(0) = f ′(N)
N∏
l=1

(
1 + 1

λ2
l

)
,

and (3.13) follows by (1.12) and limN→∞ f ′(N)
√

2N = 1.

We give some values of the numbers of Theorem 3.8:

ρ0 = 0.68 . . . ξ0 = 0

ρ1,1 = 0.14 . . . ξ1,1 = −1.46 . . .

ρ2,1 = 0.06 . . . ξ2,1 = −2.61 . . .

ρ2,2 = 0.05 . . . ξ2,2 = −2.33 . . .

Theorem 3.9. The density D given by (1.15) satisfies

D(t) ∼ 1√
2π(1 − t)

for t → 1.
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Proof. By formula (1.8) and Lemma 3.3 part 6 we get

F(s) =
∫ 1

0
t sD(t) dt ∼ 1√

2s
, s → ∞,

or ∫ ∞

0
e−usD(e−u)e−u du ∼ 1√

2s
, s → ∞.

By the Karamata Tauberian theorem, cf. [12, Theorem 1.7.1′], we get

∫ t

0
D(e−u)e−u du ∼

√
2t

π
, t → 0,

and since D is increasing we can use the Monotone Density theorem, cf. [12,
Theorem 1.7.2b], to conclude that

D(e−u)e−u ∼ 1√
2πu

, u → 0,

which is equivalent to the assertion.

4. Miscellaneous about the fixed point

The fixed point sequence (mn)n given by (1.3) satisfies mn+1 = �(mn) with

�(x) =
√

4x2 + 1 − 1

2x
, x > 0.

This makes it possible to express (mn)n as iterates of �, viz.

mn = �◦n(1).

From Lemma 3.3 part 4 we get the asymptotic behaviour of mn as

mn ∼ 1√
2n
, n → ∞.

This behaviour can also be deduced from a general result about iteration, cf.
[13, p. 175]. The authors want to thank Bruce Reznick for this reference as
well as the following description of (mn)n.

Proposition 4.1. Define hn ∈ ]0, π/4] by tan hn = mn and let

G(x) = 1

2
arctan(2 tan x), |x| < π

2
.
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Then
hn = G◦n

(π
4

)
.

Proof. We have

tan hn = mn = mn+1

1 −m2
n+1

= tan hn+1

1 − tan2 hn+1
= 1

2
tan(2hn+1),

hence hn+1 = G(hn) and the assertion follows.

A Hausdorff moment sequence (an)n is called infinitely divisible if (aαn )n is
a Hausdorff moment sequence for all α > 0. If an = ∫ 1

0 t
n dν(t), n ≥ 0 then

(an)n is infinitely divisible if and only if ν is infinitely divisible for the product
convolution τ � ν of measures [0,∞[ defined by∫

g dτ � ν =
∫∫

g(st) dτ(s) dν(t).

For a general study of these concepts see [22], [5], [6]. In case the measure ν
does not charge 0, the notion is the classical infinite divisibility on the locally
compact group ]0,∞[ under multiplication.

Proposition 4.2. Hausdorff moment sequences of the form (1.1) are infi-
nitely divisible.

Proof. Let ν �= 0 be a positive measure on [0, 1] and let an = ∫
tn dν(t),

n ≥ 0 be the corresponding Hausdorff moment sequence. Let α > 0 be fixed.
We shall prove that ((a0 +a1 +· · ·+an)−α)n is a Hausdorff moment sequence.

For 0 < c < 1 we denote by νc = ν|[0, c[ + ν({1})δc, where the first
term denotes the restriction of ν to [0, c[. Then limc→1 νc = ν weakly and in
particular for each n ≥ 0

an(c) :=
∫ 1

0
tn dνc(t) → an for c → 1.

It therefore suffices to prove that

(4.1)
(
(a0(c)+ a1(c)+ · · · + an(c))

−α)
n

is a Hausdorff moment sequence. By a simple calculation we find( n∑
k=0

ak(c)

)−α
=

(∫ 1

0

1 − tn+1

1 − t
dνc(t)

)−α

=
(∫ 1

0

dνc(t)

1 − t
−

∫ 1

0
tn
t dνc(t)

1 − t

)−α
= H(τn),
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where

τn =
∫ 1

0
tn
t dνc(t)

1 − t
, H(z) =

(∫ 1

0

dνc(t)

1 − t
− z

)−α
.

The function H is clearly holomorphic in

|z| <
∫ 1

0

dνc(t)

1 − t

with non-negative coefficients in the power series. Applying Lemma 2.1 in [9],
shows that (4.1) is a Hausdorff moment sequence.

Corollary 4.3. The fixed point sequence (mn)n is infinitely divisible.

Remark 4.4. By Corollary 4.3 the fixed point measure μ is infinitely
divisible for the product convolution. The image measure η ofμ under log(1/t)
is an infinitely divisible probability measure in the ordinary sense, because
log(1/t) maps products to sums. The measure η has the density

(4.2) D(e−u)e−u = ρ0e
−u +

∞∑
p=1

2p−1∑
k=1

ρp,ke
−u(1−ξp,k), u > 0

with respect to Lebesgue measure on the half-line. Since (4.2) is clearly a com-
pletely monotonic density, the infinite divisibility of η is also a consequence of
the Goldie-Steutel theorem, see [20, Theorem 10.7]. These remarks also show
that Corollary 4.3 can be inferred from the complete monotonicity of (4.2) via
the Goldie-Steutel theorem. The formula∫ ∞

0
e−us dη(u) =

∫ 1

0
t s dμ(t) = F(s) = e− log f (s+1), s ≥ 0

shows that log f (s + 1) is the Bernstein function associated with the convo-
lution semigroup (ηt )t>0 of probability measures on the half-line such that
η1 = η, see [10, p. 68].

Remark 4.5. Let HI denote the set of normalized infinitely divisible Haus-
dorff moment sequences. By Proposition 4.2 we have T (H ) ⊆ HI . We claim
that this inclusion is proper. In fact, it is easy to see that T : H → T (H ) is
one-to-one, and that

T −1(b)n = 1

bn
− 1

bn−1
, n ≥ 1,
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for b = (bn)n ∈ T (H ). It follows that

T (H ) =
{

b ∈ H

∣∣∣∣
(

1

bn
− 1

bn−1

)
n

∈ H

}
.

(Here 1/bn − 1/bn−1 = 1 for n = 0.) Then b ∈ HI \ T (H ) if we define
bn = 1/(n+ 1)2.

The functions f, F being holomorphic in Re z > −1 with a pole at z = −1,
they have power series expansions

(4.3) F (z) = 1 +
∞∑
n=1

anz
n, f (z) =

∞∑
n=1

bnz
n, |z| < 1,

and the radius of convergence is 1 for both series.

Proposition 4.6. The coefficients in (4.3) are given for n ≥ 1 by

an = 1

n!

∫ 1

0
(log t)n dμ(t) = (−1)n

(
ρ0 +

∞∑
p=1

2p−1∑
k=1

ρp,k

(1 − ξp,k)n+1

)
,

bn = − 1

n!

∫ 1

0

(log t)n

1 − t
dμ(t)

= (−1)n−1

(
ρ0ζ(n+ 1, 0)+

∞∑
p=1

2p−1∑
k=1

ρp,kζ(n+ 1,−ξp,k)
)
,

where

ζ(s, a) =
∞∑
n=1

1

(n+ a)s
, s > 1, a > −1

is the Hurwitz zeta function.

Proof. The formula for an follows from (1.7) and (1.13), and the formula
for bn follows from (1.6) and (1.14).

Acknowledgement. The authors wish to thank Henrik L. Pedersen for
help with producing the graph of f .
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