
MATH. SCAND. 102 (2008), 305–319

FELL BUNDLES ASSOCIATED TO
GROUPOID MORPHISMS

VALENTIN DEACONU, ALEX KUMJIAN and BIRANT RAMAZAN

Abstract

Given a continuous open surjective morphism π : G → H of étale groupoids with amenable
kernel, we construct a Fell bundleE overH and prove that its C∗-algebra C∗

r (E) is isomorphic to
C∗
r (G). This is related to results of Fell concerning C∗-algebraic bundles over groups. The case
H = X, a locally compact space, was treated earlier by Ramazan. We conclude that C∗

r (G) is
strongly Morita equivalent to a crossed product, the C∗-algebra of a Fell bundle arising from an
action of the groupoid H on a C∗-bundle over H 0. We apply the theory to groupoid morphisms
obtained from extensions of dynamical systems and from morphisms of directed graphs with the
path lifting property. We also prove a structure theorem for abelian Fell bundles.

1. Introduction

In his Memoir [6], J. M. G. Fell generalizes Mackey’s theory of unitary repres-
entations of group extensions to a natural enrichment of the concept of Banach
∗-algebra, called Banach ∗-algebraic bundle. Given a normal subgroup K of
G, he constructs a bundle B over H = G/K with the fiber over the neut-
ral element identified with the algebra L1(K), such that L1(G) is isomorphic
to the cross-sectional algebra of B. He also proves that there is a one-to-one
correspondence between isomorphism classes of Banach ∗-algebraic bundles
with one-dimensional fibers over the group H and the family of isomorphism
classes of central topological extensions of H by the unit circle T.

ReplacingL1(K) byC∗(K), we get the notion ofC∗-algebraic bundle over
a locally compact group (see [7, §11]). This may be thought of as a continuous
version of a group grading in a C∗-algebra; one may regard the associated
C∗-algebra as a fairly general sort of crossed product of the fiber algebra over
the neutral element by the group (in [14] it is shown that the C∗-algebra is
endowed with a coaction by the group).

There is a natural generalization of the notion of C∗-algebraic bundle to
groupoids (see [27]), which when specialized to topological spaces yields the
more usual notion of (continuous) C∗-bundle. Such objects are often called
Fell bundles (see [12], [17]).
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The main result of this note is the construction of a Fell bundle associated
to certain groupoid homomorphisms. We restrict ourselves to étale groupoids
(the range and the source maps are local homeomorphisms), but we expect that
our results hold more generally. Given a continuous open surjective morphism
π : G → H of étale groupoids with amenable kernel, we construct a Fell
bundle E over H by extending a result of Ramazan’s dissertation (see [23]),
which appears in [16]. The authors show that if H is a locally compact space,
there is a C∗-bundle overH with fibers given by C∗-algebras associated to the
fibers of π . It follows easily that C∗

r (G) is isomorphic to the C∗-algebra of
continuous sections of this bundle. In our situation, their result may be applied
to the restriction of π to the preimage of H 0 (which is an étale groupoid)
to obtain a C∗-bundle over H 0. This forms the “nucleus” of the desired Fell
bundle E (that is, its restriction to H 0).

Lee showed in [15, Theorem 4] that if A is a C∗-algebra and X is a locally
compact space, then A may be realized as the C∗-algebra associated to a
C∗-bundle over X if and only if there is a continuous open surjection π :
PrimA → X. In this case the fiber of the bundle over x ∈ X is the quotient of
A corresponding to the closed set π−1(x) ⊂ PrimA. Hence, if π : Y → X is a
continuous open surjection of locally compact spaces, thenC0(Y ) is realizable
as theC∗-algebra associated to aC∗-bundle overX with fibersC0(π

−1(x)). In
Ramazan’s result, the space Y is replaced by a groupoid and π is required to be
a groupoid morphism (where X is regarded as a groupoid). In our result, X is
also replaced by a groupoid, but we need Fell bundles rather than C∗-bundles.

Several examples are considered, coming from extensions of dynamical
systems and graph morphisms.

In the last section we consider abelian Fell bundles (the fibers over the
unit space are abelian C∗-algebras) and prove a structure theorem that states
that every such bundle arises from a twisted groupoid covering. We also give
various examples of abelian Fell bundles and an application of the structure
theorem.

2. Fell bundles over groupoids

Recall the definition of a Fell bundle over a groupoid G (see [12]). Note that
it follows from the first nine axioms that Eu is a C∗-algebra for all u ∈ G0, so
it makes sense in (10) to require the positivity of e∗e for all e ∈ E.

Definition 2.1. LetG be a locally compact Hausdorff groupoid with unit
space G0, range and source maps r, s and set of composable pairs G2, which
admits a left Haar system. A Banach bundle p : E → G is said to be a Fell
bundle if there is a continuous multiplication E2 → E, where

E2 = {(e1, e2) ∈ E × E | (p(e1), p(e2)) ∈ G2},
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and an involution e �→ e∗ which satisfy the following axioms (Eg is the fiber
p−1(g)).

1. p(e1e2) = p(e1)p(e2) ∀ (e1, e2) ∈ E2;

2. the induced map Eg1 × Eg2 → Eg1g2 , (e1, e2) �→ e1e2 is bilinear
∀ (g1, g2) ∈ G2;

3. (e1e2)e3 = e1(e2e3) whenever the multiplication is defined;

4. ‖e1e2‖ ≤ ‖e1‖‖e2‖ ∀ (e1, e2) ∈ E2;

5. p(e∗) = p(e)−1 ∀ e ∈ E;

6. the induced map Eg → Eg−1 , e �→ e∗ is conjugate linear for all g ∈ G;

7. e∗∗ = e ∀ e ∈ E;

8. (e1e2)
∗ = e∗2e∗1 ∀ (e1, e2) ∈ E2;

9. ‖e∗e‖ = ‖e‖2 ∀ e ∈ E;

10. e∗e ≥ 0 ∀ e ∈ E.

A Fell bundleE is called saturated ifEg1 ·Eg2 is total inEg1g2 for all (g1, g2) ∈
G2.

2.2. Facts. For g ∈ G, Es(g), Er(g) are C∗-algebras, and Eg is a right Hilbert
Es(g)-module with inner product 〈e1, e2〉s = e∗1e2 and a left Hilbert Er(g)-
module with inner product 〈e1, e2〉r = e1e

∗
2. If E is saturated, then Eg is an

Er(g)-Es(g) equivalence bimodule, and for all (g1, g2) ∈ G2, multiplication
induces an isomorphism Eg1 ⊗Eu Eg2

∼= Eg1g2 , where u = s(g1) = r(g2).
The restriction E0 = E|G0 is a C∗-algebra bundle, and C0(E

0), the set of
continuous sections vanishing at ∞, is a C∗-algebra. We refer to Addendum 2
in [11] for other facts about C∗-bundles.

Recall that a subset S of a groupoidG is called a bisection if the restrictions
of the range and source maps to S are injective.

Lemma 2.3. Let E be a saturated Fell bundle over an étale groupoid G
and let U be an open bisection of G. Then the completion of Cc(U,E), the
continuous compactly supported sections on U , with respect to the the su-
premum norm, is an A − B equivalence bimodule, where A = C0(r(U),E)

and B = C0(s(U),E), when endowed with the natural inner products and
actions.

Proof. The right and left multiplications are given by

(ξ · b)(g) = ξ(g)b(s(g)), (a · ξ)(g) = a(r(g))ξ(g),

for a ∈ A, b ∈ B, ξ ∈ Cc(U,E), g ∈ U . The inner products are

〈ξ, η〉B(s(g)) = ξ(g)∗η(g), 〈ξ, η〉A(r(g)) = ξ(g)η(g)∗,
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where ξ, η ∈ Cc(U,E), g ∈ U . The positivity of the inner products follows
from Definition 2.1.10.

For G an étale groupoid and p : E → G a Fell bundle, one can define
multiplication and involution on the space of compactly supported continuous
sections Cc(E) by

(ξη)(g) =
∑
g=g1g2

ξ(g1)η(g2), ξ ∗(g) = ξ(g−1)∗

for ξ, η ∈ Cc(E). Define an inner product 〈ξ, η〉 = P(ξ ∗η) for ξ, η ∈ Cc(E),
where P : Cc(E) → Cc(E

0) is the restriction map; denote by L2(E) the
completion of Cc(E) in the norm defined by this inner product (so ‖ξ‖2 =
‖〈ξ, ξ〉‖). Observe that Cc(E) acts by left multiplication on L2(E).

Definition 2.4. The C∗-algebra C∗
r (E) is defined as the completion of

Cc(E) in L (L2(E)), with respect to the operator norm.

Remark 2.5. The restriction map Cc(E) → Cc(E
0) extends to a faithful

conditional expectation P : C∗
r (E) → C0(E

0). Also, L2(E) is the Hilbert
module associated to a bundle of Hilbert modules V over G0, where Vu =⊕

s(g)=u Eg (see [12, 3.3]). If E is saturated, there is a natural action of the
groupoid G on the C∗-algebra bundle K (V ) with fibers K (Vu) ∼= Vu ⊗ V ∗

u .
One can form the semi-direct product bundle G � K (V ) over G. Kumjian
proved in [12, 4.5] that, if E is saturated, then C∗

r (G� K (V )) and C∗
r (E) are

strongly Morita equivalent.

3. The Fell bundle associated to a groupoid morphism

Definition 3.1. Let G and H be topological groupoids. A groupoid morph-
ism π : G → H is a continuous map that intertwines both the range and
source maps and that satisfies π(g1g2) = π(g1)π(g2) for all (g1, g2) ∈ G2. It
follows that π(G0) ⊂ H 0.

Definition 3.2. A groupoid fibration is an open surjective morphism of
locally compact groupoids π : G → H with the property that for any h ∈ H
and x ∈ G0 with π(x) = s(h) there is g ∈ G with s(g) = x and π(g) = h. If
g is unique for any such h and x, then π is called a groupoid covering. Note
that for a groupoid covering we have π−1(H 0) = G0 (see [4]).

For example, if Y → X is a Serre fibration of topological spaces, then
π1(Y ) → π1(X) is a groupoid fibration, and if X̃ → X is a covering, then
π1(X̃) → π1(X) is a groupoid covering. Here π1(X) denotes the fundamental
groupoid of the space X.

The following is essentially a restatement of Ramazan’s result.
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Lemma 3.3. Given an open surjective morphism π : K → X, where K
is a locally compact amenable groupoid and X is a locally compact space,
there is a C∗-bundle F over X with fibers C∗

r (K(x)), where K(x) = π−1(x).
Moreover, C∗

r (K) is isomorphic to the C∗-algebra of continuous sections of
this bundle.

Proof. We take F to be the disjoint union of C∗
r (K(x)) over x ∈ X with

the bundle structure defined as in Proposition 1.6 in [6] with � = Cc(K); we
may view � as sections of this bundle by means of the canonical maps πx :
Cc(K) → C∗

r (K(x)). The continuity of the norm is proved in Théorème 2.4.6
in Ramazan’s thesis ([23]) or Corollary 5.6 in [16]. Using Proposition 1.7 in [6]
with � the compactly supported sections of F , we get that C∗

r (K)
∼= C0(F ).

Theorem 3.4. Given an open surjective morphism of étale groupoids π :
G → H with amenable kernel K := π−1(H 0), there is a Fell bundle E =
E(π) overH such that C∗

r (G)
∼= C∗

r (E). Moreover, C∗
r (G) is strongly Morita

equivalent to a crossed product C∗
r (H � K (V )) (see Remark 2.5).

Proof. Using the lemma for the restriction ofπ toK = ker π = π−1(H 0),
we get a C∗-bundle F with fibers C∗

r (K(x)) over the unit space H 0. We will
extend this C∗-algebra bundle to a Fell bundle E = E(π) over H .

Note that K is an open étale subgroupoid of G, and there is a faithful
conditional expectation � : C∗

r (G) → C∗
r (K). Indeed, if � : C∗

r (K) →
C0(K

0) is the canonical conditional expectation, where K0 = G0 is the unit
space, then � must be faithful since � ◦� is faithful. We construct a Hilbert
module M(�) over C∗

r (K) by completing Cc(G) with respect to the norm
given by the inner product 〈f1, f2〉 = �(f ∗

1 f2) for f1, f2 ∈ Cc(G). The right
multiplication is given by convolution with elements in Cc(K) ⊂ C∗

r (K) (and
extending by continuity). Since C∗

r (K)
∼= C0(F ) and F is fibered over H 0,

it follows that M(�) ∼= C0(B), where B is a bundle of Hilbert modules over
H 0, with Bx a Hilbert module over Fx = C∗

r (K(x)) for each x ∈ H 0 (see 1.7
in [12]). The fiber Bx is the completion of Cc(G(x)), whereG(x) = {g ∈ G |
s(π(g)) = x} and the inner product is the natural restriction of the above inner
product on Cc(G). We define Ex = Fx for x ∈ H 0, and for arbitrary h ∈ H ,
we defineEh to be the completion ofCc(π−1(h)) in the norm coming from the
inclusion Cc(π−1(h)) ⊂ Cc(G(s(h))) ⊂ Bs(h). Note that Eh is a submodule
of Bs(h). The multiplication Eh1 × Eh2 → Eh1h2 is defined by

(ξη)(g) =
∑
g1g2=g

ξ(g1)η(g2), for ξ ∈ Cc(π−1(h1)), η ∈ Cc(π−1(h2));

for ξ ∈ Cc(π
−1(h)) we define ξ ∗ ∈ Cc(π

−1(h−1)) by ξ ∗(g) = ξ(g−1). Ob-
serve that the norm on Eh inherited from Bs(h) satisfies ‖ξ‖ = ‖ξ ∗ξ‖1/2 for
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ξ ∈ Eh. Moreover, the element ξ ∗ξ ∈ Es(h) is positive since ξ ∗ξ = 〈ξ, ξ〉s(h),
where 〈·, ·〉s(h) is the inner product on Bs(h). The bundle structure for the union
of Eh’s is given by Cc(G), using the fact that each element in Cc(π−1(h)) is
the restriction of an element in Cc(G) (see Proposition 10.7 in [7]). To prove
the continuity of the norm, fix h0 ∈ H and take U an open bisection of H
containing h0. For ξ ∈ Cc(G), denote by ξh the restriction of ξ to π−1(h). By
a partition of unity argument, it will be sufficient to consider ξ with support
in π−1(U). Since ‖ξh‖ = ‖ξ ∗

h ξh‖1/2 and ξ ∗
h ξh = (ξ ∗ξ)s(h), it follows that the

map x �→ ‖(ξ ∗ξ)x‖ on s(U) is continuous. It is straightforward to check all
the other axioms of a Fell bundle. The bundle E is always saturated.

We can now identify C∗
r (K) with C0(E

0), where E0 is the restriction of E
toH 0. To prove thatC∗

r (G)
∼= C∗

r (E), we use the natural extension of the map
ψ : Cc(G) → Cc(E) given by

ψ(f )(h) = f |π−1(h)∈ Cc(π−1(h)) ⊂ Eh

to get an isomorphism Uψ between the C0(E
0)-Hilbert modules M(�) and

L2(E) (see §2 before Definition 2.4). Indeed, the module structures and the in-
ner product are preserved since in each case both are derived from convolution
and involution on Cc(G) (note that ψ is a map of ∗-algebras).

Both C∗
r (G) and C∗

r (E) are represented on these isomorphic Hilbert mod-
ules, using the left regular representation. The same map ψ preserves the
product, and it induces an isomorphism αψ = AdUψ between these C∗-
algebras.

The last part of the statement follows from Kumjian’s result mentioned in
Remark 2.5.

Example 3.5. Consider G a discrete group, K a normal subgroup and let
H = G/K with π : G → H the canonical morphism. Then we get a Fell
bundle E over H with the fiber C∗

r (K) over the identity element, such that
C∗
r (G)

∼= C∗
r (E). This is a particular case of the construction done by Fell in

the context of homogeneous Banach ∗-algebraic bundles over locally compact
groups (see Example 3 on page 77 in [6]). Recall that a Fell bundle over a
discrete group is equivalent to a grading.

We specialize to the discrete 3-dimensional Heisenberg group G ⊂
SL(3,Z). The group G consists of matrices of the form

[a, b, c] :=
⎡
⎣ 1 a c

0 1 b

0 0 1

⎤
⎦ .
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The group operation is

[a, b, c][a′, b′, c′] = [a + a′, b + b′, c + c′ + ab′].

It is easy to show that G is an extension of Z2 by its center Z. We have a
surjective homomorphism π : G → Z2 given by π [a, b, c] = (a, b) with
ker π ∼= Z. The C∗-algebra C∗(G) ∼= C∗

r (G) is called the rotational algebra in
[1], and it may be understood as the algebra of continuous sections of a field of
C∗-algebras over the unit circle T. Our construction from the morphismπ gives
a new perspective: C∗(G) is the C∗-algebra of a Fell bundle over the group
Z2 with fibers isometric to C(T). Note that the complexity of the structure of
C∗(G) is contained in the definition of the product between the fibers, since
for instance C(T3) ∼= C∗(Z3) is also the C∗-algebra of a Fell bundle over Z2

with fibers isometric to C(T).
There is another characterization of G as an extension of Z by Z2 coming

from the semi-direct product decompositionG ∼= Z2
�Z. Here Z2 is generated

by [1, 0, 0] and [0, 0, 1], and the action of Z is defined by conjugation with
[0, 1, 0]. The morphism π : G → Z given by π [a, b, c] = b describes C∗(G)
as the C∗-algebra of a Fell bundle over Z with fibers isometric to C(T2).

Example 3.6. For G an étale groupoid, consider the equivalence relation

R = {
(x, y) ∈ G0 ×G0 | ∃ g ∈ G such that r(g) = x, s(g) = y

}
and the mapπ : G → R, π(g) = (r(g), s(g)). Assume that the isotropy group
bundle is amenable and open in G. Then π is an open surjective morphism,
and C∗

r (G) may be realized as the C∗-algebra of a Fell bundle over R.

4. Fell bundles from graph morphisms

Definition 4.1. Let V,W be (finite) graphs. A graph morphism φ : V → W

is a map which preserves the incidences. If φ is surjective, we say that it has
the path lifting property (or that it is a fibration) if for any vertex v ∈ V 0 and
any edge b ∈ W 1 starting at w = φ(v) there is an edge a ∈ V 1 starting at v
with φ(a) = b.

Recall (see [13]) that, if V has no sinks, the graph C∗-algebra C∗(V ) is the
C∗-algebra of the amenable groupoid

GV = {
(a, p − q, a′) ∈ XV × Z ×XV | σp(a) = σq(a′)

}
,

where σ(a1a2a3 · · ·) = a2a3a4 · · · is the shift map and XV is the space of
infinite paths a1a2a3 · · · of concatenated edges in V 1.
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Proposition 4.2. Assume that V and W have no sinks. A graph morphism
φ with the path lifting property induces a continuous open surjection

ϕ : XV → XW, given by ϕ(a1a2a3 · · ·) = φ(a1)φ(a2)φ(a3) · · ·
between the infinite path spaces, and an open surjective morphism

π : GV → GW, given by π(a, k, a′) = (ϕ(a), k, ϕ(a′))

between the associated groupoids, which is a fibration with kernel

K = {(a, 0, a′) ∈ GV | ϕ(a) = ϕ(a′)}.
Hence, C∗

r (GV ) is isomorphic to the C∗-algebra of a Fell bundle over GW .

Proof. To show thatϕ is surjective, consider an infinite path b1b2 · · · ∈ XW
beginning at w1 ∈ W 0. Since φ is onto, there is v1 ∈ V 0 with φ(v1) = w1. By
the path lifting property, there is a1 ∈ V 1 with φ(a1) = b1. Continuing induct-
ively, it follows that there is a1a2 · · · ∈ XV such that ϕ(a1a2 · · ·) = b1b2 · · ·,
and therefore ϕ is surjective. Consider a cylinder set Z ⊂ XV determined by
a finite path a1 · · · an, i.e.

Z = {a1 · · · anx1x2 · · · ∈ XV | x1x2 · · · ∈ XV }.
Again by the path lifting property, ϕ(Z) is the cylinder set in XW determined
by the finite path φ(a1) · · ·φ(an). It follows that ϕ : XV → XW is continuous
and open.

By definition, we have

π((a, k, a′)(a′, l, a′′)) = π(a, k + l, a′′) = (ϕ(a), k + l, ϕ(a′′))
= π(a, k, a′)π(a′, l, a′′),

andπ intertwines the range and source maps, therefore is a groupoid morphism.
Since ϕ is surjective and maps cylinder sets onto cylinder sets, it follows that
π is surjective, continuous and open. To show that π is a groupoid fibration,
consider h = (b, k, b′) ∈ GW and a′ ∈ G0

V = XV with ϕ(a′) = s(h) = b′.
Since ϕ is onto and intertwines the shift maps, we can find g = (a, k, a′) ∈ GV

with π(g) = h. Hence π is a groupoid fibration. Now (a, k, a′) ∈ ker π iff
ϕ(a) = ϕ(a′) and k = 0, and the last statement of the proposition follows
from Theorem 3.4.

Example 4.3. Consider the graphs V,W with V 0 = {v}, W 0 = {w},
V 1 = {a, b, c}, W 1 = {1, 2} and φ(a) = φ(b) = 1, φ(c) = 2. Then φ
induces a continuous map ϕ : {a, b, c}N → {1, 2}N between the infinite path
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spaces, and a morphism π between the Cuntz groupoids GV and GW . Hence,
the Cuntz algebra O3 is isomorphic to the C∗-algebra of a Fell bundle over
GW . Note that for x ∈ XW ,

K(x) = {(y, 0, z) ∈ GV | ϕ(y) = ϕ(y) = x}.
The fibers C∗(K(x)) of the Fell bundle are isomorphic to M2n , where n is the
number of 1’s in x. For n = ∞, M2∞ is the UHF-algebra of type 2∞. It is
interesting to note that these fibers are different.

Example 4.4. For a graph V with no sinks consider the collapsing map
φ onto the graph Z with one vertex and one loop. In this case XZ = {∗}
and GZ

∼= Z. The morphism π is given by π(x, k, y) = k and it induces the
canonical Z-grading on the C∗-algebra C∗(V ).

Remark 4.5. Notice that the open mapϕ : XV → XW from Proposition 4.2
may be interpreted as a factor map between the topological Markov shifts
(XV , σ ) and (XW , σ). More generally, letX, Y be locally compact spaces and
let σ : X → X, τ : Y → Y be two local homeomorphisms. Assume that there
is a continuous surjection ϕ : X → Y such that τ ◦ϕ = ϕ ◦σ . In the language
of dynamical systems, (X, σ ) is an extension of (Y, τ ), or (Y, τ ) is a factor of
(X, σ ). If ϕ is also open, it induces an open surjective groupoid morphism

π : G(σ) → G(τ) given by π(x, k, y) = (ϕ(x), k, ϕ(y)),

where G(σ) = {(x,m − n, y) ∈ X × Z × X | σmx = σny} and G(τ) is
defined in the same way. These groupoids are amenable by Proposition 2.4 in
[25]. Moreover, π is a groupoid fibration.

Example 4.6. Let X = {1, 2}N × T, Y = {1, 2}N and let σ : X → X be
given by

σ(a1a2 · · · , z) =
{
(a2a3 · · · , z2) if a1 = 1

(a2a3. · · · , z3) if a1 = 2.

Let τ : Y → Y and ϕ : X → Y be given by τ(a1a2 · · ·) = a2a3 · · · and
ϕ(a, z) = a.

In this case the C∗-bundle over the unit space G(τ)0 = {1, 2}N has fibers
over a ∈ {1, 2}N isomorphic to Bunce-Deddens algebras of type 2n3m where
n,m ∈ N ∪ {∞} are the number of 1′s and 2′s in a, respectively.

Remark 4.7. The notion of graph morphism with the path lifting property
can be generalized to continuous graphs (see [9]). This gives a larger class of
examples.
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5. Abelian Fell bundles

Definition 5.1. A Fell bundle over a groupoid H is called abelian if Eu is
an abelian C∗-algebra for all u ∈ H 0.

Example 5.2. Consider π : G → H a groupoid covering (see Definition
3.2). Then the corresponding Fell bundle E(π) is abelian, since π−1(H 0) =
G0. So in the notation of Theorem 3.4, Eu = C0(π

−1(u)) for all u ∈ H 0.

Coverings of groupoids are intimately related to groupoid actions on spaces.
We will prove that every covering comes from such an action and vice versa.
Other examples are related to some groupoid extensions. A Fell line bundle is
an abelian Fell bundle (see Example 5.5). The main result in this section is a
structure theorem for abelian Fell bundles that, loosely speaking, asserts that
every such bundle arises from a “twisted” covering.

Recall (see [18]) that a groupoid G is said to act (on the left) on a locally
compact spaceX, if there are given a continuous, open surjection ρ : X → G0

and a continuous map

G ∗X → X, write (g, x) �→ g · x,
where G ∗X = {(g, x) ∈ G×X | s(g) = ρ(x)}, that satisfy

i) ρ(g · x) = r(g), ∀ (g, x) ∈ G ∗X,

ii) (g1, x) ∈ G ∗ X, (g2, g1) ∈ G2 implies (g2g1, x), (g2, g1 · x) ∈ G ∗ X
and

g2 · (g1 · x) = (g2g1) · x,
iii) ρ(x) · x = x, ∀ x ∈ X.

Note that the fibered productG ∗X has a natural structure of groupoid, called
the semi-direct product or action groupoid and denoted by G � X (cf. [2]),
where

(G�X)2 = {((g2, x2), (g1, x1)) | x2 = g1 · x1}
(g2, g1 · x1)(g1, x1) = (g2g1, x1)

(g, x)−1 = (g−1, g · x).
Here the source and range maps are

s(g, x) = (g−1g, x) = (s(g), x) = (ρ(x), x),

r(g, x) = (gg−1, g · x) = (r(g), g · x) = (ρ(g · x), g · x),
and the unit space may be identified with X.
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For G an étale groupoid, consider the groupoid morphism π : G � X →
G, π(g, x) = g. Then ker π may be identified with X, and C∗

r (G � X)

may be regarded as the C∗-algebra of an abelian Fell bundle over G since
ker π = X is amenable and E(π)u ∼= C0(ρ

−1(u)) for all u ∈ G0.

Proposition 5.3. LetG be an étale groupoid acting on the locally compact
spaceX. Then the morphism π : G�X → G, π(g, x) = g is a covering, and
gives rise to an abelian Fell bundle overG. Moreover, every covering of étale
groupoids is of this form. More precisely, given a covering map π : G → H

of étale groupoids, there is a space X and an action of H on X such that
G ∼= H �X.

Proof. Let g ∈ G and let x ∈ (G�X)0 = X such that π(x) = s(g); then
(g, x) ∈ G�X satisfies π(g, x) = g and s(g, x) = x, and is the unique such
element in G�X. Hence, π : G�X → G is a covering.

Conversely, let π : G → H be a covering of étale groupoids. Set X = G0

and ρ = π0 : X → H 0. The map π ∗ s : G → H � X is a continuous
bijection (bijectivity follows from the definition of covering). To prove that
π ∗ s is open, consider

U = {U ⊂ G | U is an open bisection of G
such that π(U) is an open bisection of H }.

Then U forms a basis forG, and if U ∈ U, then (π ∗ s)(U) is open inH �X.
Hence, π ∗ s is open and thus an isomorphism of locally compact groupoids.

See [10, Theorem 1.8] for an analogous result when H is a group. The
authors give conditions under which the groupoid C∗-algebra is Morita equi-
valent to a crossed product of an abelian C∗-algebra by an action of H .

Example 5.4. Let π : G → H be an open surjective morphism where G
and H are étale groupoids. Suppose that the restriction of π to G0 induces a
homeomorphismG0 ∼= H 0 and thatA = π−1(H 0) is a sheaf of abelian groups
over G0. Then the resulting sequence:

A
ι−→ G

π−→ H

is called an abelian extension where ι is the inclusion map. SinceA is amenable,
the main theorem in §3 applies and we get a Fell bundle E = E(π) over H .
Moreover, Eu = C∗(Au) for all u ∈ H 0, where Au is the fiber of A over u.
Since A is a sheaf of abelian groups, Eu is abelian for all u ∈ H 0. Hence, E
is an abelian Fell bundle.

Example 5.5. LetG be a proper T-groupoid overH , that is,G is a groupoid
endowed with the structure of a principal T-bundle over H compatible with
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the groupoid structure (see [11]). Form the associated line bundle:

E = G ∗T C = (G× C)/T

(where t (g, z) = (t · g, t−1z) ). One defines multiplication and involution as
follows:

(g1, z1)(g2, z2) = (g1g2, z1z2),

(g, z)∗ = (g−1, z̄).

One verifies that E is a Fell bundle over H with these operations and that
Eu ∼= C for all u ∈ H 0. A bundle of this type is called a Fell line bundle. Any
Fell bundle for which Eh is one dimensional for all h ∈ H is of this type. Its
C∗-algebra is isomorphic to the twisted groupoid C∗-algebra of G (see [20]).

Theorem 5.6. Given a saturated abelian Fell bundleE over an étale group-
oid H , there is a groupoid G, a covering π : G → H and a one-dimensional
Fell bundle L over G such that C∗

r (L)
∼= C∗

r (E).

Proof. Set X = ̂C0(E0) i.e. C0(E
0) = C0(X). Since C0(X) is the C∗-

algebra of a bundle overH 0, we get a continuous open surjection ρ : X → H 0

(see [15]). For u ∈ H 0 we have an isomorphism ju : Eu ∼= C0(Xu) where
Xu = ρ−1(u); for each h ∈ H , Eh is a C0(Xr(h)) − C0(Xs(h)) equivalence
bimodule and hence we get a homeomorphism αh : Xs(h) → Xr(h) (see
[22, Corollary 3.33], [26, Corollary 6.27]). This defines a map H ∗ X →
X, (h, x) �→ αh(x). We wish to show that this defines an action of H on X
(see the definition following Example 5.2). Conditions i) and iii) are immedi-
ate, while condition ii) follows from the isomorphism Eh1h2

∼= Eh1 ⊗ Eh2 .
By Lemma 2.3, ifU is an open bisection ofH , the completion of Cc(U,E)

may be endowed with the structure of an A−B equivalence bimodule, where
A = C0(r(U),E) and B = C0(s(U),E), with the natural inner products and
actions. Note that A ∼= C0(ρ

−1(r(U))) and B ∼= C0(ρ
−1(s(U))). So again

by [22, Corollary 3.33]) there is a homeomorphism ρ−1(s(U)) ∼= ρ−1(r(U))

compatible with the above fiberwise homeomorphisms αh. This proves that
the map H ∗ X → X is continuous. Thus, H acts on X. We set G = H � X

and by the above proposition, the map π : H �X → H given by π(h, x) = h

is a covering.
We construct L piecewise as follows. Let h ∈ H ; as noted above, Eh is

a C0(Xr(h))− C0(Xs(h)) equivalence bimodule and the equivalence induces a
homeomorphism αh : Xs(h) → Xr(h). Then by Proposition A3 in [21] there
is a Hermitian line bundle L(h) over π−1(h) = {(h, x) | ρ(x) = s(h)} and
an isomorphism ιh : Eh ∼= C0(π

−1(h), L(h)) such that for all ξ, η ∈ Eh and
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g ∈ π−1(h) we have

jr(h)(ξη
∗)(r(g)) = 〈ιh(η)(g), ιh(ξ)(g)〉

js(h)(ξ
∗η)(s(g)) = 〈ιh(ξ)(g), ιh(η)(g)〉,

where 〈·, ·〉 denotes the fiberwise sesquilinear inner-product (conjugate linear
in the first variable). For (h1, h2) ∈ H 2 with u = s(h1) = r(h2), we have an
isomorphism m : L(h1)⊗C0(Xu) L(h2) ∼= L(h1h2) such that for ξ1 ∈ Eh1 and
ξ2 ∈ Eh2 we have

m(ιh1(ξ1)⊗ ιh2(ξ2)) = ιh1h2(ξ1ξ2).

Moreover, involution on E defines a conjugate linear isomorphism L(h) ∼=
L(h∗) for all h ∈ H . Now for g ∈ G, we define Lg as the fiber over g of the
Hermitian line bundle L(π(g)) (note Lg ∼= C). We use the above operations
to define multiplication and involution.

We wish to endow L with the structure of a complex line bundle over G.
Let g ∈ G, and let U be an open bisection of H containing π(g). Then
C0(ρ

−1(r(U))) and C0(ρ
−1(s(U))) are abelian and Morita equivalent (and

hence isomorphic as noted above). Again by [21, Proposition A3] the equi-
valence bimodule may be identified with C0(π

−1(U), LU) where LU is a
Hermitian line bundle over π−1(U). One checks that L(h) ∼= LU

∣∣
π−1(h)

for
h ∈ U . This gives us the topology of L as a line bundle over G. The product
and involution defined above are compatible with this topology and, hence,
L is a Fell bundle over G. It follows that C∗

r (L)
∼= C∗

r (E), where the map
ψ : Cc(L) → Cc(E) is given by ψ(f )(h) = ι−1

h

(
f |π−1(h)

)
.

Note that E may be regarded as a push forward of L under π . Specializing
Example 5.4 to the case of groups, the above theorem yields a result that is no
doubt well known to specialists.

Corollary 5.7. Let π : G → H be a surjective homomorphism, where
G and H are discrete groups, such that A = ker π is abelian. Then we get an
action of H on the dual Â and a Fell line bundle over the groupoid H � Â

defined by a two-cocycleω : (H�Â)2 → T such thatC∗
r (G)

∼= C∗
r (H�Â, ω).

Note that the line bundle over H � Â is topologically trivial since we can
construct cross-sections, but the cocycle is not necessarily a coboundary.

Example 5.8. For the first description of the Heisenberg group G in Ex-
ample 3.5 as an extension of Z2 by its center Z, the action of Z2 on T ∼= Ẑ
is trivial, therefore the groupoid Z2

� T is just the cartesian product Z2 × T
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with (a, b, z) composable with (a′, b′, z′) iff z = z′, and (a, b, z) · (a′, b′, z) =
(a + a′, b + b′, z). The cocycle ω : (Z2

� T)2 → T is given by

ω((a, b, z), (a′, b′, z)) = zab
′
.

Indeed, from the group operation inG, it follows that the map f : Z2 ×Z2 → Z
associated to the group extension is given by f ((a, b), (a′, b′)) = ab′, and
since Z ∼= T̂, we get the formula for ω.

For the second description ofG as a semidirect product Z2
� Z, the cocycle

is trivial since the extension splits, but the action of Z on Ẑ2 ∼= T2 is given by
α(x, y) = (x, xy), and is induced by the conjugation with [0, 1, 0] on Z2 and
dualization.
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