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ON THE GEVREY WELL-POSEDNESS FOR SECOND
ORDER STRICTLY HYPERBOLIC CAUCHY

PROBLEMS UNDER THE INFLUENCE
OF THE REGULARITY OF

THE COEFFICIENTS

MASSIMO CICOGNANI and FUMIHIKO HIROSAWA

Abstract

We consider the loss of regularity of the solution to the backward Cauchy problem for a second
order strictly hyperbolic equation on the time interval [0, T ] with time depending coefficients
which have a singularity only at the end point t = 0. The main purpose of this paper is to show
that the loss of regularity of the solution on the Gevrey scale can be described by the order of
differentiability of the coefficients on (0, T ], the order of singularities of each derivatives as t → 0
and a stabilization condition of the amplitude of oscillations described by an integral on (0, T ).
Moreover, we prove the optimality of the conditions forC∞ coefficients on (0, T ] by constructing
a counterexample.

1. Introduction

Let us consider the following backward Cauchy problem for a second order
strictly hyperbolic equation:

(1.1)

{ (
∂2
t − a(t)2�

)
u(t, x) = 0, (t, x) ∈ [0, T )× Rn,

u(T , x) = u0(x), (∂tu)(T , x) = u1(x), x ∈ Rn,

where T is a positive small constant and a(t) satisfies

a0 ≤ a(t) ≤ a1

for some positive constants a0 and a1.
We are interested in the loss of regularity of the solution due to singularities

of the coefficients. In particular, we focus on theL2 and Gevrey well-posedness
of (1.1) in the case that the coefficients are singular only at t = 0; thus we
assume that a(t) ∈ C∞((0, T ]). Here we adopt the following definition of the
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(inductive) Gevrey class γ (s) with s > 1 taking the Paley-Wiener theorem into
account: γ (s) =⋃ρ>0 γ

(s)
ρ , where

γ (s)ρ =
{
f (x) ∈ C∞

0 (R
n); sup

ξ∈Rn

{
exp
(−ρ〈ξ〉 1

s

)∣∣f̂ (ξ)∣∣} < ∞
}

and f̂ (ξ) denotes the Fourier transform of f (x) with respect to the space
variable x.

One of the earliest results for such a problem is the following, contained in
[3]:

Theorem 1.1 ([3]). Let σ ≥ 1 be a real number. Assume that a(t) satisfies

(1.2) |a′(t)| ≤ Ct−σ

for a positive constant C. If σ > 1, then (1.1) is γ (s) well-posed for s <
σ/(σ − 1). If σ = 1, then (1.1) is C∞ well-posed. On the other hand, there
exists a(t) satisfying 1/2 ≤ a(t) ≤ 3/2 and (1.2) such that (1.1) is not γ (s)

well-posed for any s > σ/(σ − 1).

Remark 1.1. If σ < 1, then a′(t) ∈ L1((0, T )), which immediately gives
the L2 well-posedness of (1.1). For σ = 1, the C∞ well-posedness in The-
orem 1.1 is proved with a loss of derivatives.

The equation of (1.1) describes forced oscillations, so it is natural to discuss
the relations between the stability of the solution and the speed of oscillation
|a′(t)| of the coefficient. The regularity of the solution is conserved on [0, T ] if
|a′(t)| is bounded, therefore one comes to consider unbounded derivatives as
in (1.2). Theorem 1.1 shows that the related classification of well-posedness
is natural in the scale of Gevrey spaces. The conclusions of Theorem 1.1
are optimal, however, an additional condition on the second order derivative
improves the result in the case σ = 1 as follows:

Theorem 1.2 ([5] (cf. [7])). Assume that a(t) satisfies

(1.3)
∣∣a(k)(t)∣∣ ≤ Ckt

−k for k = 1, 2,

where a(k)(t) = dk

dtk
a(t). Then (1.1) is L2 well-posed.

Remark 1.2. We shall denote universal positive constants by C and Ck
(k = 0, 1, . . .).

Remark 1.3. The L2 well-posedness of (1.1) with the coefficient a(t) =
2 + cos(log(1/t)) follows from Theorem 1.2 but cannot be obtained by The-
orem 1.1.
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The additional condition on the second order derivative in Theorem 1.2 is
required for a precise representation of WKB solutions of (1.1). If a(t) = a

is a constant coefficient, then (1.1) can be reduced to a completely diagonal
first order system, otherwise the equivalent system operator contains anti-
diagonal elements where the factor a′(t) appears. In a certain sense, the results
of Theorem 1.1 are proved by means of a diagonalization procedure in theWKB
analysis which takes only theC1 regularity of the coefficient a(t) into account,
thus we call this method C1 property. On the other hand, the conclusion of
Theorem 1.2 is proved by introducing one more step of diagonalization where
the C2 regularity of the coefficient a(t) is used, so we call this method C2

property. In the C2 theory, we have a more precise representations of WKB
solutions which gives theL2 well-posedness under the assumptions of (1.3). In
other words, the C2 property provides a reduced system whose anti-diagonal
components are negligible errors for the L2 well-posedness.

The well-posedness of (1.1) has been investigated also in relation to the
modulus of continuity of the coefficients. If a(t) is Lipschitz continuous on
[0, T ], then (1.1) is obviously L2 well-posed. On the other hand, one cannot
expect in general the L2 well-posedness if a(t) is not a Lipschitz continuous
function. This means that some singular behavior of the coefficient with respect
to the Lipschitz continuity brings loss of regularity of the solution. We are
referring to the following well known result:

Theorem 1.3 ([1]). Let α be a real number satisfying 0 < α < 1. Assume
that a(t) satisfies

(1.4) sup
τ∈[0,T ]

{∫ t

0
|a(τ + s)− a(τ)| ds

}
≤ Ctα+1.

Then (1.1) is γ (s) well-posed for s < 1/(1 − α). Moreover, there exists a(t)
satisfying 1/2 ≤ a(t) ≤ 3/2 and (1.4) such that (1.1) is not γ (s) well-posed
for any s > 1/(1 − α).

Remark 1.4. In [1] the stronger condition a(t) ∈ Cα([0, T ]) is assumed,
where Cα([0, T ]) denote the class of Hölder continuous functions on [0, T ]
of exponent α. However, (1.4) is the condition used in the proof.

It is also considered in [3] the mixed case of the conditions (1.2) and (1.4)
as follows:

Theorem 1.4 ([3]). Let α and σ be real numbers satisfying 0 < α < 1
and σ > 1. If a(t) satisfies (1.2) and (1.4), then (1.1) is γ (s) well-posed for
s < σ/((1 − α)(σ − 1)).

We observe from Theorem 1.1 to 1.4 the following properties:
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(i) The order of loss of regularity of the solution is described by the oscil-
lation speed of a(t) near t = 0, that is by the behavior of |a′(t)| (from
Theorem 1.1).

(ii) If we assume the further condition (1.4), which describes some stabil-
ization of the amplitude of a(t), besides (1.2), then we have less loss of
regularity (from Theorem 1.4).

(iii) Further assumptions on higher order derivatives of the coefficient can
provide some improvements (from Theorem 1.2).

We introduce a further result, which supports the observation (iii).

Theorem 1.5 ([2]). Let m be a positive integer, α and σ be real numbers
satisfying 0 < α < 1, σ > (1 − α/m)/(1 − α). If a(t) ∈ Cm((0, T ]) ∩
Cα([0, T ]) satisfies

(1.5)
∣∣a(k)(t)∣∣ ≤ Ckt

−kσ for k = 1, . . . , m,

then (1.1) is γ (s) well-posed for

s < s̃m := σ

σ (1 − α)+ α
m

− 1
.

Remark 1.5. In the case m = 1, Theorem 1.5 reduces to Theorem 1.4.
In general we have s̃m > s̃1 for m ≥ 2, which implies that the additional
assumptions on the higher order derivatives ensure the well-posedness in a
wider class under the same condition on the oscillation speed |a′(t)| near
t = 0.

Remark 1.6. The original result in [2] is proved under the sole assumption
(1.5) with k = m on the highest order derivative a(m)(t).

The main purpose of this paper is to obtain results in the direction of ob-
servation (iii) as in Theorem 1.5, but considering such a problem from an
essentially different point of view. The details of the difference will be dis-
cussed by the aid of Example 2.1. Our main result will be introduced in the
next section, here we state a corollary of it, cf. Theorem 1.5.

Corollary 1.1 (from Theorem 2.1). Let m be a positive integer, μ and σ
be real numbers satisfying σ > μ+ 1 − μ/m. If a(t) satisfies (1.5) and

(1.6)
∫ t

0
|a(s)− a(0)| ds ≤ Ctμ+1,
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then (1.1) is γ (s) well-posed for

s < sm := σ + μ

m

σ + μ

m
− μ− 1

.

In particular, if m ≥ 2 and (1.5) holds for σ = μ + 1 − μ/m, then (1.1) is
L2 well-posed.

The proof of the corollary will be given in the appendix.
Corollary 1.1 generalizes Theorem 1.1 and Theorem 1.2. In fact, if m = 1,

σ > 1 and μ = 0, then s1 = σ/(σ − 1). If m = 2, σ = 1 and μ = 0, then the
conclusion from Corollary 1.1 corresponds to Theorem 1.2. Moreover, sm is
monotone increasing with respect tom sinceμ > 0. Obviously, aCα function,
α < 1, satisfies (1.6) with μ = α and we have sm > s̃m if we put α = μ in the
definitions of these indices of well-posedness. So, Corollary 1.1 extends also
Theorem 1.5.

2. The main theorem and a typical example

Let us say that
 = 
(t) ∈ C0([0, T ]) is a reference function if
(t) is mono-
tone increasing, 
(0) = 0, 
(t) > 0 for any t > 0, supt∈(0,T ){
(t)/t} < ∞
and supt∈(0,T ){
(2t)/
(t)} < ∞. We introduce a class of functions, which
describes a stabilization of the amplitude by the reference function 
 as fol-
lows:

L((0, T );
) =
{
f (t) ∈ L∞((0, T ));

∫ t

0
|f (s)− f (0)| ds ≤ C
(t)

}
.

In particular, if
(t) = tα for α > 1, we denote L((0, T );
) by L(α)((0, T )).
Actually, the reference function 
(t) should satisfy the following property:

(2.1) lim
t→0


(t)

t
= 0;

otherwise, the condition a(t) ∈ L((0, T );
) is true for any bounded function
a(t).

After having introduced the class L((0, T );
), we can now state our main
theorem:

Theorem 2.1. Let m be a positive integer, β be a real number satisfying
β ≥ 1 and 
 be a reference function satisfying (2.1). Assume that a(t) ∈
Cm((0, T ]) ∩ L((0, T );
) satisfies

(2.2)
∣∣a(k)(t)∣∣ ≤ Ck

(
1


(t)β

(

(t)

t

) 1
m
)k

for k = 1, . . . , m.
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If β > 1, then (1.1) is γ (s) well-posed for s < β/(β− 1). If β = 1 andm ≥ 2,
then (1.1) is L2 well-posed.

Theorem 2.1 and the corresponding Corollary 1.1 will be proved using the
Cm regularity of a(t) on (0, T ] and m steps of diagonalization; we call this
method Cm property. Incidentally, we can naturally introduce the following
theorem and corresponding corollary as consequences of the C∞ property.

Theorem 2.2. Let β be a positive real number. Assume that a(t) ∈
C∞((0, T ]) ∩ L((0, T );
) satisfies

(2.3)
∣∣a(k)(t)∣∣ ≤ Ck
(t)

−kβ

for any k ∈ N. If β > 1, then (1.1) is γ (s) well-posed for s < β/(β − 1), and
if β < 1, then (1.1) is L2 well-posed.

Corollary 2.1. Let μ and σ be positive real numbers. Assume that a(t) ∈
C∞((0, T ])∩L(μ+1)((0, T )) satisfies (1.5) for anym. If σ > μ+1, then (1.1)
is γ (s) well-posed for s < σ/(σ − μ− 1), and if σ < μ+ 1, then (1.1) is L2

well-posed.

Moreover, the optimality of the condition (2.3) for the conclusion of The-
orem 2.2 is ensured by the following theorem:

Theorem 2.3. For any β > 1 and any reference function 
(t) satisfying
(2.1), there exists a(t) ∈ C∞((0, T ]) ∩ L((0, T );
) satisfying 1/2 ≤ a(t) ≤
3/2 and (2.3) such that (1.1) is not well-posed in γ (s) for any s > β/(β − 1).

We introduce now a typical example of a(t) to which Theorem 2.1 and
Corollary 1.1 apply, but that cannot be handled by any results of well-posedness
from previous papers quoted in the introduction.

Example 2.1. Let χ(τ) ∈ C∞
0 (R) satisfying the following properties:

(2.4) suppχ(τ) ⊂ [−1, 1], 0 ≤ χ(τ) ≤ 1,

χ(τ ) = χ(−τ) and
∫ 1

−1
χ(τ) dτ = 1.

For non-negative real numbers p, q and r satisfying

(2.5) r < 1 < q − p

and a large integer N0 satisfying N−p
0 +N

−q
0 ≤ T , we define a(t) by

a(t) = a0 +
∞∑

j=N0

j−rχ
(
jq(t − j−p)

)
.
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Here we note that suppχ(jq(t − j−p)) ∩ suppχ(q(t − −p)) = ∅ for j = 

and j,  ≥ N0 by (2.5). Let us fix t ∈ (0, T ), and set the positive integer N
satisfying (N + 1)−p ≤ t < N−p. Then we have∫ t

0
|a(τ)− a(0)| dτ �

∞∑
j=N

j−q−r � N−q−r+1,

and it follows that a(t) ∈ C∞((0, T ]) ∩ L
(
q+r−1
p

)
((0, T )). Moreover, for any

fixed positive integer m we have

∣∣a(k)(t)∣∣ ≤ Ckt
−k
(
mq−r
mp

)
.

Here we note that a(t) ∈ Cr/q([0, T ]) and (1.4) is not valid for any α > r/q.
Hence we have, from Theorem 1.5 with α = r/q and σ = (mq − r)/(mp),
that (1.1) is γ (s) well-posed for

(2.6) s < s̃m = q

q − r − p
.

On the other hand, Corollary 1.1 with μ = (q + r − 1)/p − 1 and σ =
(mq − r)/(mp) gives the γ (s) well-posedness of (1.1) for

s < sm = q(m+ 1)− p − 1

q − p − 1 +m(1 − r)
.

Note that sm > s̃m since (q − p − 1)(mq − p − r) > 0, which is ensured by
(2.5). (For calculations in more details, we refer to Appendix.)

The function a(t) of Example 2.1 is a typical one which we want to deal
with in this paper. Indeed, we observe the following properties:

• Decaying amplitude and sparse oscillation of a(t) contribute to the sta-
bility of the solution: sm (and also s̃m) is monotone increasing with re-
spect to r and p, which describe faster decay of the amplitude and longer
frequency of the oscillations respectively.

• If we apply Theorem 1.5 to a(t), we have no benefit fromCm regularity of
a(t) for m ≥ 2: The Gevrey index s̃m in (2.6) is independent of m; thus
the Cm regularity of a(t) on (0, T ] with m ≥ 2 gives no contribution.

• Higher oscillation speed may have a good influence: Suppose that r = 0
for simplicity. Then the oscillation speed of a(t) is higher the larger is q.
On the other hand, sm is strictly increasing with respect to q if m > p.
Taking here m = ∞, we have that (1.1) is γ (s) well-posed for s < q, so
we have a larger class of well-posedness for a higher speed of oscillation.
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Our main theorems with Example 2.1 develop the essential problem on the
strictly hyperbolic equation of (1.1) “which properties of the coefficients lead
to small perturbations of the wave equation with constant propagation speed?”
Indeed, most of the previous papers dealt with such a problem by controlling the
oscillation speed in some form. Following another point of view, our theorems
propose that smoothness of the coefficient and its integral in the definition of
L((0, T );
) should be essential.

3. Proof of Theorem 2.1

Let us suppose that the initial data are functions with compact support. The
proof of Theorem 2.1 will be carried out by the usual microenergy estimates
in [0, T ] × Rnξ and Paley-Wiener theorem, where ξ is the dual variable of the
space variable x in the Fourier transform. The proof consists of the following
three steps.

In the first step we consider a regularization of a(t) near t = 0 and its estim-
ates. Indeed, the regularity of the solution is not influenced by the oscillating
behavior of a(t) but by the stabilization of the amplitude near t = 0. Hence
the regularization has to take the property a(t) ∈ L((0, T );
) into account.
The second step is a diagonalization procedure in the high frequency part of
the phase space where the hyperbolicity of the equation and the C1 regularity
of a(t) are the main tools. Actually, this step is a typical microenergy estimate.
The third step is the main part of the proof. In this step we introduce a refined
diagonalization procedure in the high frequency part, which is performed by
means of the Cm regularity of a(t) under the assumptions (2.2). Indeed, we
can derive some good estimates in high frequency part from this procedure;
this step is the core of what we call Cm property.

3.1. Regularization of the coefficient

Let us extend a(t) as an even function for t < 0. For a positive real number ε,
which will depend on ξ , we define ã(t) = ã(t; ε) by

ã(t; ε) = a(t)
(
1 − χ(ε−1t)

)+ a ∗ χε(t)χ(ε−1t),

where a ∗ χε(t) = ε−1
∫
a(s)χ(ε−1(t − s)) ds and χ(τ) ∈ C∞

0 (R) satisfies
(2.4), χ(τ) ≡ 1 on [−1/2, 1/2] and

∫
χ(k)(τ ) dτ = 0 for any positive integer

k. Then we have the following lemmas:

Lemma 3.1. If a(t) ∈ L((0, T );
), then the following estimate holds:

∫ T

0
|ã(t; ε)− a(t)| dt ≤ C
(ε).
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Proof. Noting the estimates

|a ∗ χε(t)− a(0)| ≤ ε−1
∫ ε

−ε
|a(t − τ)− a(0)|χ(ε−1τ) dτ

≤ Cε−1
(ε)

for t ∈ [0, ε], we have∫ T

0
|ã(t; ε)− a(t)| dt ≤

∫ ε

0
|a ∗ χε(t)− a(0)| dt +

∫ ε

0
|a(t)− a(0)| dt

≤ C
(ε).

Lemma 3.2. If a(t) ∈ L((0, T );
) ∩ Cm((0, T ]) satisfies (2.2), then the
following estimates hold:∣∣∣∣ dkdtk ã(t; ε)

∣∣∣∣
≤ Ck

((
1


(t)β

(

(t)

t

) 1
m
)k
φ(t; [ε/2, T ])+ ε−k−1
(ε)φ(t; [0, ε])

)

for any k = 1, . . . , m, where φ(t; I ) denotes the characteristic function on I .

Proof. For t ∈ [0, ε] and 1 ≤ j ≤ k, we have∣∣∣∣ djdtj a ∗ χε(t)
∣∣∣∣ =

∣∣∣∣ djdtj a ∗ χε(t)− ε−j a(0)
∫
χ(j)(τ ) dτ

∣∣∣∣
= ε−j

∣∣∣∣
∫ 1

−1
χ(j)(τ )(a(t − ετ)− a(0)) dτ

∣∣∣∣
≤ ε−j−1

∫ ε

−ε
|a(t − s)− a(0)| ds

≤ ε−j−1
∫ 2ε

−2ε
|a(τ)− a(0)| dτ

≤ Cε−j−1
(ε).
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Therefore, noting the estimates

ε−k+j
(

1


(t)β

(

(t)

t

)1
m
)j

≤
(

1


(t)β

(

(t)

t

)1
m
)k(

t


(t)β

(

(t)

t

)1
m
)j−k

≤
(

1


(t)β

(

(t)

t

)1
m
)k

(t)(β−1)(k−j)

≤
(

1


(t)β

(

(t)

t

)1
m
)k

for t ∈ [0, ε] and ã(t; ε) = a(t) for t ∈ [ε, T ], we obtain∣∣∣∣ dkdtk ã(t; ε)
∣∣∣∣

≤ ∣∣a(k)(t)∣∣φ(t; [ε/2, T ])+
∣∣∣∣ dkdtk a ∗ χε(t)

∣∣∣∣φ(t; [0, ε])

+
k−1∑
j=0

(
k

j

)
ε−k+j

(∣∣a(j)(t)∣∣+ ∣∣∣∣ djdtj a ∗ χε(t)
∣∣∣∣
)
φ(t; [ε/2, ε])

≤ Ck

((
1


(t)β

(

(t)

t

)1
m
)k
φ(t; [ε/2, T ])+ ε−k−1
(ε)φ(t; [0, ε])

)

for any t ∈ [0, T ].

3.2. First step of diagonalization procedure – C1 property

By partial Fourier transform with respect to x, (1.1) is rewritten as follows:

(3.1)

{ (
D2
t − a(t)2|ξ |2) v(t, ξ) = 0, (t, ξ) ∈ [0, T )× Rn,

v(T , ξ) = û0(ξ), (∂tv)(T , ξ) = û1(ξ), ξ ∈ Rn,

where v(t, ξ) = û(t, ξ) and D = −i∂ .
Let us arbitrarily fix ξ ∈ Rn for |ξ | � 1. Indeed, we are only interested in

the behavior of large |ξ |, hence such a restriction is not essential. For a positive
parameter ε = ε(ξ) we define V = V (t, ξ) by

V = V (t, ξ) =
(
ã(t, ξ)|ξ |v(t, ξ)
Dtv(t, ξ)

)
,

where ã(t, ξ) = ã(t; ε(ξ)). Then the equation of (3.1) is represented as the
following system:

(Dt − A+ B + R)V = 0,
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where

A = A(t, ξ) =
(

0 ã(t, ξ)|ξ |
ã(t, ξ)|ξ | 0

)
,

B = B(t, ξ) = −Dt ã(t, ξ)

ã(t, ξ)

(
1 0
0 0

)

and

R = R(t, ξ) = (ã(t, ξ)2 − a(t)2)|ξ |
ã(t, ξ)

(
0 0
1 0

)
.

We define M0 and V1 = V1(t, ξ) by

M0 =
(

1 −1

1 1

)
and V1(t, ξ) = M−1

0 V (t, ξ).

Then we have

M−1
0 (Dt − A+ B + R)M0 = Dt −�1 + B1 + R1,

where

�1 = �1(t, ξ) =
(
τ1− 0

0 τ1+

)
, τ1± = τ1±(t, ξ) = ∓ã(t, ξ)|ξ |+ Dt ã(t, ξ)

2ã(t, ξ)
,

B1 = B1(t, ξ) = i

(
0 β1(t)

β1(t) 0

)
, β1 = β1(t) = − iDt ã(t, ξ)

2ã(t, ξ)

(= β1
)

and R1 = M−1
0 RM0, and it follows that V1 is a solution of the equation

(3.2) (Dt −�1 + B1 + R1) V1 = 0.

We only used C1 regularity of a(t) on (0, T ] at this moment, hence this step
can be called C1-property. Indeed, Theorem 1.1 is immediately proved from
the reduced equation (3.2).

3.3. Refined diagonalization procedure – Cm property

We shall carry out further steps of diagonalization procedure making use of the
Cm regularity of a(t). The crucial points of this procedure are the regularity
of the coefficient and the symmetricity of the characteristic roots. (Originally,
this method was introduced in [6].)

Let us assume the following hypotheses:
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(i) Bj = Bj(t, ξ) is represented by

Bj(t, ξ) = i

(
0 βj (t, ξ)

βj (t, ξ) 0

)
.

(ii) �j = �j(t, ξ) is represented by

�j(t, ξ) =
(
τj−(t, ξ) 0

0 τj+(t, ξ)

)
,

where φj = φj (t, ξ) := τj+(t, ξ)− τj−(t, ξ) is real-valued.

(iii) The matrix Mj = Mj(t, ξ):

Mj(t, ξ) = I + i

φj (t, ξ)

(
0 −βj (t, ξ)

βj (t, ξ) 0

)

is invertible, that is, |βj (t, ξ)|2/φj (t, ξ)2 =: dj (t, ξ) < 1 uniformly with
respect to t and ξ , where I denotes the identity matrix.

Then the following equalities are straightforward:

M−1
j (�j − Bj)Mj

= 1

1 − dj

((
τj− − dj τj+ + 2|βj |2

φj
0

0 τj+ − dj τj− − 2|βj |2
φj

)
− djBj

)

and

M−1
j (DtMj )

= 1

1 − dj

⎛
⎝
⎛
⎝ 0 −∂t

(
βj
φj

)
∂t

(
βj
φj

)
0

⎞
⎠+

⎛
⎝ i βjφj ∂t

(
βj
φj

)
0

0 i
βj
φj
∂t

(
βj
φj

)
⎞
⎠
⎞
⎠ .

Consequently, we obtain

M−1
j

(
Dt −�j + Bj + Rj

)
Mj = Dt −�j+1 + Bj+1 + Rj+1,

where

�j+1 =
(
τ(j+1)− 0

0 τ(j+1)+

)
, Bj+1 =

(
0 (Bj+1)12

(Bj+1)21 0

)
,
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τ(j+1)+ = 1

1 − dj

(
τj+ − dj τj− − 2|βj |2

φj
+ i

βj

φj
∂t

(
βj

φj

))
,

τ(j+1)− = 1

1 − dj

(
τj− − dj τj+ + 2|βj |2

φj
+ i

βj

φj
∂t

(
βj

φj

))
,

(Bj+1)12 = i

1 − dj

(
djβj + i∂t

(
βj

φj

))
,

(Bj+1)21 = i

1 − dj

(
djβj − i∂t

(
βj

φj

))

and Rj+1 = M−1
j RjMj . We supposed that φj is real-valued, hence τ(j+1)±,

(Bj+1)12 and (Bj+1)21 are represented as follows:

τ(j+1)± = τj± ∓ 1

1 − dj

(
djφj + �

{
βj

φj
∂t

(
βj

φj

)})
− i∂tdj

2(dj − 1)
,

φj+1 = φj − 2

1 − dj

(
djφj + �

{
βj

φj
∂t

(
βj

φj

)})

and

βj+1 = 1

1 − dj

(
djβj − i∂t

(
βj

φj

))
= −i(Bj+1)21 = −i(Bj+1)12,

where we used the equalities:

βj

φj
∂t

(
βj

φj

)
= 1

2
∂t

(∣∣∣∣βjφj
∣∣∣∣
2)

+ i�
{
βj

φj
∂t

(
βj

φj

)}
= ∂tdj

2
+ i�

{
βj

φj
∂t

(
βj

φj

)}

and
βj

φj
∂t

(
βj

φj

)
= ∂tdj

2
− i�

{
βj

φj
∂t

(
βj

φj

)}
.

If j = 1, then the hypotheses (i) and (ii) are fulfilled. Therefore, our diag-
onalization procedure works for any j ≤ m − 1 by induction as far as the
conditions dj < 1 hold for j = 1, . . . , m− 1.

Let us show that the hypothesis (iii) is valid, that is, the estimates dj < 1
for any j = 1, . . . , m− 1 are inductively proved. Actually, such estimates can
be realized by a suitable choice of the parameter ε with respect to ξ in the
following way:

ε(ξ) = min
{
τ ∈ (0, T ];N = 
(τ)β |ξ |}
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for a large parameter N , to be chosen later.
For non-negative integers p, q, r and a large parameterN , we introduce the

symbol class S
p
q = S

p
q (N, r) as follows:

S p
q (N, r) = {f (t, ξ) ∈ Cr ((0, T ];H−∞(Rn)

) ;∣∣∂kt f (t, ξ)∣∣ ≤ Ck|ξ |p
(
N−1|ξ |)q+k, |ξ | ≥ 1, 0 ≤ k ≤ r

}
.

Then we immediately have the following properties:

(i) If f ∈ S
p
q (N, r), then ∂kt f ∈ S

p

q+k(N, r − k).

(ii) If f1 ∈ S
p1
q1 (N, r1) and f2 ∈ S

p2
q2 (N, r2), then

f1f2 ∈ S
p1+p2
q1+q2

(N,min{r1, r2}).
(iii) S

p
q (N, r) ⊂ S

p+k
q−k (N, r) and S

p
q (N, r) ⊂ S

p

q+k(N, r) for any k ≥ 0.

These properties imply the following lemma, which ensures the invertibility
of Mj = Mj(t, ξ) for j = 1, . . . , m− 1.

Lemma 3.3. There exists N = N(m) such that dj ≤ 1/2 for any 1 ≤ j ≤
m−1, that is, {Mj(t, ξ)}m−1

j=1 are uniformly invertible in [0, T ]×Rnξ \{ξ ; |ξ | <
1}. Moreover, we have limN→∞ |Mj(t, ξ) − I | = 0 for j = 1, . . . , m − 1,

where |M| = (∑k,l |Mkl|2
)1/2

.

Proof. We note that ã(t, ξ) is strictly positive and ã(t, ξ) ∈ S 0
0 (N,m) by

Lemma 3.2, it follows that β1 ∈ S 0
1 (N,m − 1), τ1±, φ1 ∈ S 1

0 (N,m − 1)
and |φ1| ≥ C|ξ |. Moreover, we have d1 ∈ S −1

1 (N,m − 1), so it follows that
there exists N1 > 1 such that d1 < 1 for any N ≥ N1. Thus M1 is invertible
for any N ≥ N1. For j = 1, . . . , m − 2, let us assume that there exists Nj
such that {Mk}jk=1 are invertible for any N > Nj . If βj ∈ S

−j+1
j (N,m − j),

τj±, φj ∈ S 1
0 (N,m − j) and |φj | ≥ C|ξ |, then we have dj ∈ S −1

1 (N,m −
j). It follows that there exists Nj such that Mj is invertible. Therefore, by
the constructions of �j and Bj+1, we have βj+1 ∈ S

−j
j+1(N,m − j − 1),

τ(j+1)±, φj+1 ∈ S 1
0 (N,m− j − 1) and |φj+1| ≥ C|ξ | for any N ≥ Nj . Thus

the invertibility of {Mj }m−1
j=1 is proved by induction. Here the convergence of

Mj(t, ξ ;N) to I as N → ∞ is trivial by dj ⊂ S −1
1 (N,m− j).

Let us choose the parameterN satisfyingdj ≤ 1/2 for any j = 1, . . . , m−1.
We define �m = �m(t, ξ) by

�m(t, ξ) =
(

exp
(−i ∫ T

t
τm−(s, ξ) ds

)
0

0 exp
(−i ∫ T

t
τm+(s, ξ) ds

)
)
.
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Then we have

�−1
m (Dt −�m + Bm + Rm)�m = Dt + B̃m + R̃m,

where B̃m = �−1
m Bm�m and R̃m = �−1

m Rm�m. Noting the identities
(3.3)

�
{
−i
∫ T

t

τm±(s, ξ) ds
}

= 1

2

(
log

(
ã(t, ξ)

ã(T , ξ)

)
+

m−1∑
j=1

log

(
dj (t, ξ)− 1

dj (T , ξ)− 1

))

we have |�m(t, ξ)| ≤ 2
m−1

2

√
ã(t, ξ)/ã(T , ξ). Thus we come to the following

proposition:

Proposition 3.1. For any small positive constant δ, there exists N > 1,
invertible matrices {Mj }m−1

j=1 , diagonal matrix �m, and matrices B̃m and R̃m
satisfying

m−1∑
j=1

|Mj(t, ξ)− I | ≤ δ,

∣∣∣∣∣�m(t, ξ)−
√
ã(t, ξ)

ã(T , ξ)
I

∣∣∣∣∣ ≤ δ,

∣∣B̃m(t, ξ)∣∣ ≤ C|ξ |−m+1

((
1


(t)β

(

(t)

t

) 1
m
)m
φ(t; [ε(ξ)/2, T ])

+ ε−m−1
(ε(ξ))φ(t; [0, ε(ξ)])

)

and ∫ T

0

∣∣R̃m(τ, ξ)∣∣ dτ ≤ C|ξ |
(ε(ξ))

such that the following equality holds:

(Dt + B̃m + R̃m)�
−1
m M

−1
m−1 · · ·M−1

1 M−1
0 V = 0.

Proof. Let us generalize the symbol class S
p
q taking the singularity at

t = 0 into account. For non-negative integers p, q, r and a large parameterN ,
we introduce the symbol class T

p
q = T

p
q (N, r) as follows:

T p
q (N, r) =

{
f (t, ξ) ∈ S p

q (N, r);
∣∣∂kt f (t, ξ)∣∣

≤ Ck|ξ |p
(

1


(t)β

(

(t)

t

) 1
m
)q+k

, ε(ξ) ≤ t ≤ T , 0 ≤ k ≤ r

}
.
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Then ã(t, ξ) ∈ T 0
0 (N,m), moreover we immediately have the same properties

(i)–(iii) on S
p
q (N, r). Moreover, we easily see that βj (t, ξ) ∈ T

−j+1
j (N,m−

j) for j = 1, . . . m inductively. Thus by Lemma 3.1, Lemma 3.3 and (3.3) we
can get all the of properties of Proposition 3.1.

3.4. Verification of the proof of Theorem 2.1

Let us conclude the proof of Theorem 2.1. By (2.1) and Proposition 3.1, we
have∫ T

0
|B̃m(τ, ξ)| dτ

≤ C|ξ |−m+1

(∫ T

ε(ξ)/2

(
1


(τ)β

(

(τ)

τ

) 1
m
)m

dτ + ε(ξ)−m
(ε(ξ))
)

≤ C|ξ |−m+1

((
ε(ξ)

2

)mβ−1




(
ε(ξ)

2

)−mβ+1∫ T

ε(ξ)/2
τ−mβ dτ + ε(ξ)−m
(ε(ξ))

)

≤ C|ξ |−m+1
(

(ε(ξ))−mβ+1 +
(ε(ξ))−m+1

) ≤ C|ξ |−m+1
(ε(ξ))−mβ+1

= CN
− mβ−1

β |ξ |1− 1
β ≤ CN

− mβ−1
β |ξ | 1

s

and ∫ T

0

∣∣R̃m(τ, ξ)∣∣ dτ ≤ CN
1
β |ξ |1− 1

β ≤ CN
1
β |ξ | 1

s .

Noting the representation:

W(t0, ξ) =
(
I +

∞∑
k=0

∫ T

t0

Q̃m(t1, ξ) · · ·
∫ T

tk

Q̃m(tk+1, ξ) dtk+1 · · · dt1
)
W(T, ξ),

where W = �−1
m M

−1
m−1 · · ·M−1

1 M−1
0 V and Q̃m(τ, ξ) = −i(B̃m(τ, ξ) +

R̃m(τ, ξ)), we have

|W(t, ξ)|2 ≤ exp

(
C

(∫ T

0

(|B̃m(τ, ξ)| + |R̃m(τ, ξ)|
)
dτ

))
|W(T, ξ)|2

≤ exp
(
C|ξ | 1

s

)|W(T, ξ)|2.
Finally, noting |M−1

0 V (t, ξ)|2 = 2ã(t, ξ)2|ξ |2|v(t, ξ)|2 + 2|vt (t, ξ)|2, and
ã0 ≤ ã(t, ξ) ≤ ã1 for some positive constants ã0 and ã1, we obtain the
following uniform estimate in (0, T ] × Rn:

|ξ |2|v(t, ξ)|2 + |vt (t, ξ)|2 ≤ C exp
(
C|ξ | 1

s

) (|ξ |2|û0(ξ)|2 + |û1(ξ)|2
)
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for β > 1, and

|ξ |2|v(t, ξ)|2 + |vt (t, ξ)|2 ≤ C
(|ξ |2|û0(ξ)|2 + |û1(ξ)|2

)
for β = 1 respectively; which imply the conclusions of Theorem 2.1.

4. Proof of Theorem 2.3

In this section we prove Theorem 2.3 by an explicit construction of a coefficient
a(t). The idea of the proof is based on the method which was developed in the
series of papers [1], [2] and [4].

For v(t, ξ) the solution of (3.1), let us define E (t, ξ) by

E (t, ξ) = |vt (t, ξ)|2 + a(t)2|ξ |2 |v(t, ξ)|2 .
Then we have the following property:

Proposition 4.1. For any reference function 
 satisfying (2.1), for any
small positive real number κ and for any given positive real numbers s, β sat-
isfyingβ > 1 and s > β/(β−1), there exist a(t) ∈ C∞((0, T ])∩L((0, T );
)
satisfying 1/2 ≤ a(t) ≤ 3/2 and (2.3), initial data (û0(ξ), û1(ξ)) satisfying

(4.1) E (T , ξ) ≤ exp
(−κ|ξ | 1

s

)
for any ξ ∈ Rn, a positive constant κ0, sequences of positive real numbers
{rj }∞j=1 and {Tj }∞j=1 satisfying limj→∞ rj = ∞ and limj→∞ Tj = 0, such that
the solutions v(t, ξ) to (3.1) satisfies

(4.2) E (Tj , ξ) ≥ exp
(
κ0|ξ |

β−1
β

)
for any ξ ∈ {ξ ∈ Rn; |ξ | = rj } and j ∈ N.

Proof. Let us take a real, non-negative, C∞ and 2π -periodic function ϕ
such that ϕ(τ) = 0 for τ in a neighborhood of τ = 0 and∫ 2π

0
ϕ(τ)(cos τ)2 dτ = π.

For a positive small constant ε, we define w(τ) and ψ(τ) by

w(τ) = exp

(
2ε
∫ τ

0
ϕ(σ)(cos σ)2 dσ

)
cos τ

and

ψ(τ) = 1 + 4εϕ(τ) sin 2τ − 2εν ′(τ )(cos τ)2 − 4ε2ϕ(τ)2(cos τ)4.
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Here we remark that the any choice of small ε ensures 1/2 ≤ ψ(τ) ≤ 3/2.
Then w(τ), ψ(τ) ∈ C∞(R) and satisfy

w′′(τ )+ ψ(τ)w(τ) = 0, w(0) = 1, w′(0) = 0.

For a large natural number η, to be chosen later, we set the sequences of positive
real numbers {rj }∞j=1 and {�}∞j=1 by rj = ηjβ/(β−1) and �j = 2πr−1/β

j =
2πη−j/(β−1) for j ∈ N. Moreover, we choose the strictly decreasing sequence
of positive real numbers {tj }∞j=1 satisfying t1/2 ≤ T ,

(4.3) C−1
0 
(tj ) ≤ �j ≤ C0
(tj ) and �j
(tj )

−β ∈ N

for a positive constant C0. Here we note that �j
(tj )−β → ∞ as j → ∞,

(4.4)
∞∑
k=j

�k = �j

1 − η
− 1
β−1

≤ 2C0
(tj ) ≤ tj

2

and

(4.5)
j−1∑
k=1

�
1−β
k = (2π)1−β (ηj − η

)
η − 1

≤ 2(2π)1−βηj−1 = 2η−1�
1−β
j

for η ≥ max{2, 2β−1} and large j . We define the coefficient a(t) by

a(t) =
⎧⎨
⎩
√
ψ
(
2π
(tj )−β(tj − t)

)
for t ∈ [tj − �j , tj + �j ],

1 for t ∈ [0, T ] \⋃∞
j=1[tj − �j , tj + �j ].

Then, we see that a(t) ∈ C∞((0, T ]) ∩ L((0, T );
), 1/2 ≤ a(t) ≤ 3/2 and
satisfies (2.3) for any k ∈ N with small ε > 0 from the definition of ψ and
(4.4). For a continuous function ν, to be chosen later, we define v(t, ξ) by

v(t, ξ) = ν(ξ)w
(
rj (tj − t)

)
for ξ ∈ �j := {ξ ; |ξ | = rj } and j ∈ N. Then v(t, ξ) is a solution to

(4.6)
(
∂2
t + a(t)2|ξ |2) v(t, ξ) = 0

with

v(tj ± �j , ξ) = ν(ξ) exp
(∓2πε|ξ | β−1

β

)
and ∂tv(tj ± �j , ξ) = 0

for (t, ξ) ∈ [tj − �j , tj + �j ] ×�j and j ∈ N. Hence we have

E (tj ± �j , ξ) = |ξ |2ν(ξ)2 exp
(∓4πε|ξ | β−1

β

)
,
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and it follows that

E (tj + �j , ξ) = E (tj − �j , ξ) exp
(−8πε|ξ | β−1

β

)
for ξ ∈ ⋃∞

j=1�j . Let us prolong v(t, ξ) for all (t, ξ) ∈ [0, T ] × Rn as the
solution of (4.6). Let us note the following estimates:

∫ T

tj+�j
|a′(τ )| dτ =

j−1∑
k=1

∫ tk+�k

tk−�k
|a′(τ )| dτ ≤ 2C1

j−1∑
k=1

�k
(tk − �k)
−β

≤ 2C1

β

0

j−1∑
k=1

�k
(tk)
−β ≤ 2Cβ0C1


β

0

j−1∑
k=1

�
1−β
k

= 4Cβ0C1

β

0η
−1�

1−β
j = 4(2π)1−βCβ0C1


β

0η
−1r

β−1
β

j

for any j ∈ N by (2.3) and (4.5), where 
0 = supt∈(0,T ){
(2t)/
(t)}. Dif-
ferentiating E (t, ξ) with respect to t and applying Gronwall’ lemma, we have

E (T , ξ) ≤ E (tj + �j , ξ) exp

(
4
∫ T

tj+�j
|a′(τ )| dτ

)

≤ E (tj − �j , ξ) exp
(
−8πε|ξ | β−1

β + 16(2π)1−βCβ0C1

β

0η
−1|ξ | β−1

β

)
≤ exp

(
−2κ0|ξ |

β−1
β

)
for any η ≥ 8(2π)−βCβ0C1


β

0 ε
−1, ξ ∈ �j and j ∈ N, where κ0 = 2πε.

Consequently, for any given positive real number κ , under the choice of the
initial data (û0(ξ), û1(ξ)) with ν(ξ) satisfying |ν(ξ)| ≤ 1 and

ν(ξ) = |ξ |−1 exp

(
−1

2

(
κ|ξ | 1

s − 2κ0η
))

for
⋃∞
j=1 ξ ∈ �j , we have

E (T , ξ) ≡ E (t1 + �1, ξ) = |ξ |2ν(ξ)2 exp
(
−2κ0r

β−1
β

1

)
= exp

(−κ|ξ | 1
s

)
.

It follows that

E (tj − �j , ξ) ≥ exp
(

2κ0|ξ |
β−1
β

)
E (T , ξ) ≥ exp

(
κ0|ξ |

β−1
β

)
for any j ≥ N with

N = min
{
k ∈ N; κ0/κ ≥ η

− k
s

(
s− β

β−1

)}
.
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Thus we complete the proof the of Proposition 4.1 by setting Tj = tj+N−�j+N .

5. Appendix

5.1. Proof of Corollary 1.1

We set 
(t) = tμ+1. Then we have


(t)β
(
t
(t)−1

) 1
m = tβ(μ+1)− μ

m .

Thus the condition (1.5) is equivalent to (2.2) for σ = β(μ+1)−μ/m. Noting
β = (σ+μ/m)/(μ+1), we have β/(β−1) = (σ+μ/m)/(σ+μ/m−μ−1)
for σ > μ+ 1 − μ/m and σ = μ+ 1 − μ/m if β = 1.

5.2. Some estimates for a(t) from Example 2.1

Let us fix t > 0 and give a large number N such as (N + 1)−p < t ≤ N−p
and N ≥ N0. Then we have from the definition of a(t) the followings:

∫ t

0
|a(τ)− a(0)| dτ

=
∞∑

j=N0

j−r
∫ t

0
χ
(
jq(t − j−p)

)
dτ

=
∞∑

j=N+1

j−q−r +N−r
∫ t

N−p−N−q
χ
(
Nq(t −N−p)

)
dτ

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

≤
∞∑
j=N

j−q−r

≥
∞∑

j=N+1

j−q−r;

it follows that∫ t

0
|a(τ)− a(0)| dτ � N−q−r+1 = (N−p) q+r−1

p � t
q+r−1
p

and

|a(k)(t)| = N−r+kq ∣∣χ(k) (Nq(t −N−p)
)∣∣ ≤ Ckt

−k
(
q

p
− r
kp

)
≤ Ckt

−k
(
q

p
− r
mp

)
.

Let h ∈ (0, N−q). By mean value theorem we have

sup
0<h≤N−q

{ |a(t + h)− a(t)|
h
r
q

}
≤ N−q+r |a′(t)| ≤ Ct

q−r
p |a′(t)| ≤ C1.
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On the other hand, for a positive real number α we have

sup
t∈(0,T )
τ∈(0,N−q )

{∫ τ
0 |a(t + s)− a(t)| ds

τα+1

}

≥ Nq(α+1)
∫ N−q

0

∣∣a(N−p + s)− a(N−p)
∣∣ ds

= Nq(α+1)−r
∫ N−q

0

∣∣χ(Nqs)− 1
∣∣ ds

= Nq(α+1)−r
(
N−q − N−q

2

)
= 1

2
Nqα−r .

Therefore, a(t) ∈ Cr/q([0, T ]) and satisfies (1.4) for α = r/q, but does not
satisfy (1.4) for any α > r/q. By applying Theorem 1.5 with α = r/q and
σ = (mq − r)/(mp), (1.1) is γ (s) well-posed for

s <
σ

σ(1 − α)+ α
m

− 1
=

mq−r
mp

mq−r
mp

(
1 − r

q

)+ r
mq

− 1
= q

q − p − r
= s̃m.

On the other hand, by applying Corollary 1.1 with μ = (q + r − 1)/p − 1,
(1.1) is γ (s) well-posed for

s <

mq−r
mp

− p−q−r+1
mp

mq−r
mp

− p−q−r+1
mp

− q+r−1
p

= q(m+ 1)− p − 1

q − p − 1 +m(1 − r)
= sm.

Here we note that sm is strictly increasing with respect to m. Therefore, the
estimate s1/s̃m = (2q − p − 1)/q > 1 ensures sm > s̃m for any m ≥ 1.
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