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SHARPENED FORMS OF A VON NEUMANN
INEQUALITY FOR ρ-CONTRACTIONS

GILLES CASSIER and NICOLAE SUCIU

Abstract

The purpose of this paper is to give some sharpened forms of the von Neumann inequality for
strict ρ-contractions which were obtained in [6], [7]. Also, some sharpened forms of the Schwarz
inequality for strict ρ-contractions will be given, and as applications, corresponding inequalities
for strict contractions and for uniformly stable operators will be derived. In particular, we recover
the results of K. Fan [12], [13] covering the strict contractions, and in the scalar context we find
an improved form of the interior Schwarz inequality quoted by R. Osserman [19].

1. Introduction and preliminaries

Let H be a complex Hilbert space and B(H) be the C∗-algebra of all bounded
linear operators on H . For any scalar ρ > 0, we denote by Cρ(H) the set
of all operators T ∈ B(H) which admit a unitary ρ-dilation in the sense of
Nagy-Foias [21], [22]. This means that there exists a Hilbert space H ⊇ H

and a unitary operator U acting on H such that

T nh = ρPHUnh (h ∈ H, n ≥ 1),

where PH is the orthogonal projection of H onto H . We know that C1(H)

consists of all contractions on H [20], that is the operators T on H with
‖T ‖ ≤ 1, and that T ∈ C2(H) if and only if the numerical range of T is
contained in the closed unit disc [2].

According to J. Holbrook [15] and J. Williams [23] we define the ρ-numer-
ical radius of an operator T ∈ B(H) by the formula

wρ(T ) = inf

{
μ : μ > 0,

1

μ
T ∈ Cρ(H)

}
.

Clearly, an operator T belongs to Cρ(H) if and only if wρ(T ) ≤ 1. Hence the
operators inCρ(H) are contractions with respect to theρ-numerical radius, and
according to this fact, any operator T ∈ Cρ(H) will be called a ρ-contraction
on H (as in [4], [6]–[8], [9], [16], for instance).
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Let us remark that w1(T ) = ‖T ‖ and w2(T ) = w(T ) this being the numer-
ical radius of T . Hence C2(H) consists of all operators with numerical radius
less or equal to one ([2], [3], [21]). Also, since the classes Cρ(H) increase with
ρ ([3], [5], [21], [22]), one has wρ1(T ) ≥ wρ2(T ) if ρ1 ≤ ρ2 for T ∈ B(H),
and

lim
ρ→+∞ wρ(T ) = r(T )

where r(T ) is the spectral radius of T .
Recall that if T is an operator with r(T ) < 1 and if f is an analytic function

on the open unit disc D of the complex plane, then the operator f (T ) on H is
well-defined by the Riesz-Dunford integral [10]. Clearly, if wρ(T ) < 1 that is,
T is a strict ρ-contraction (see [6], [7]), then r(T ) < 1 and therefore f (T ) is
well-defined for f as above. Also, if r(T ) < 1 then wρ(T ) < 1 for ρ > 1 large
enough. Thus, many facts on the uniformly stable operators can be obtained
from the strict ρ-contractions [6], [8].

It is well-known that an operator T with r(T ) ≤ 1 belongs to Cρ(H) if and
only if the following von Neumann equality holds

(1.1) ‖f (T )‖ ≤ sup
|z|≤1

|ρf (z) + (1 − ρ)f (0)|

for any analytic function f on an open neighborhood of D. In fact, the in-
equality (1.1) for T ∈ Cρ(H) was essentially given by Sz.-Nagy-Foias [21],
[22] and the converse assertion that the inequality (1.1) ensures T ∈ Cρ(H)

was proved by D. Gaspar [14]. Clearly, the inequality (1.1) holds also for
any continuous function f on D which is analytic on D (notation f ∈ A(D))
if T ∈ Cρ(H), where f (T ) is defined by setting f (T ) = limr→1− f (rT ) in
B(H) ((1.1) clearly implies the convergence of f (rT ) with respect to the norm
of B(H))

An equivalent inequality to (1.1) can be obtained, namely

(1.2) wρ(f (T )) ≤ ‖f ‖∞ := sup
|z|≤1

|f (z)|

for T ∈ Cρ(H) and f as in (1.1) with f (0) = 0. Indeed, if (1.2) holds for
T ∈ B(H) with r(T ) ≤ 1 and for any function f as above, then for f (z) = z,
(1.2) implies wρ(T ) ≤ 1 that is, T ∈ Cρ(H) and consequently (1.1) holds for
such a T . The converse implication is a consequence of the following version
for ρ-contractions of the classical von Neumann theorem [18] for contractions,
which was proved in [6].

Theorem 1.1 (Mapping theorem). Let f ∈ A(D) be a non-constant func-
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tion with f (D) ⊆ D. Then, for T ∈ Cρ(H) we have f (T ) ∈ Cρf
(H) where

(1.3) ρf =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + (ρ − 1)
1 − |f (0)|
1 + |f (0)| if ρ ≤ 1

1 + (ρ − 1)
1 + |f (0)|
1 − |f (0)| if ρ ≥ 1.

Moreover, if ρ > 0 is the smallest scalar such that T ∈ Cρ(H) then there
exists a function f as above such that ρf is the smallest positive scalar for
which f (T ) ∈ Cρf

(H).

It is clear from (1.3) that ρ = 1 implies ρf = 1 for any f . Also, when
ρ �= 1 we have ρf = ρ if and only if f (0) = 0. Thus the inequality (1.2), and
hence (1.1), can be derived from Theorem 1.1. In general one has ρ ≤ ρf , and
ρf ≤ 1 if ρ ≤ 1.

Using the fact that for any ρ > 0 the mapping S → wρ(S) is norm continu-
ous for S ∈ B(H) (see [3]), we can derive (as in Corollary 8 [6]) the following
useful result.

Theorem 1.2. Let f ∈ A(D) be a non-constant function with f (D) ⊆ D.
Then, the inequality

(1.4) wρf
(T ) < 1

holds for every operator T with wρ(T ) < 1, where ρf is as in (1.3).

In the case ρ = 1, from this theorem we deduce the well-known result of
K. Fan [11] which is concerned with strict contractions. In [12], [13] K. Fan
obtained some sharpened forms of von Neumann’s inequality, as well as of
Schwarz’s inequality and of Schwarz-Pick inequality, for strict contractions.

In the present paper we sharpen the versions of Schwarz’s inequality and
of Schwarz-Pick’s inequality given in [6], [7] for ρ-contractions. When ρ = 1
we recover the results of K. Fan [12], [13], and in addition, we complete
some results of K. Fan in this case. We find also corresponding sharpened
inequalities relative to the spectral radius, as consequences. Among others,
we give an analogue of interior Schwarz inequality for ρ-contractions, which
provides in the scalar case an improved form of the corresponding inequality
proved by R. Osserman [19].

To obtain these inequalities, the following inequality proved in [6] (The-
orem 5.8 and Remark 5.9) will be used more than once in our proofs. Namely,
if f is a non-constant analytic self map of D, ρ > 0 and 0 < r < 1, then we
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have

(1.5) wρ ′(f (T )) ≤ sup
|z|=r

|f (z)| := Mf (r)

for every operator T on H with wρ(T ) ≤ r , ρ ′ being as in (1.3) with z →
f (rz)/Mf (r) instead of f , that is ρ ′ = ρf (r) where

ρf (r) =
⎧⎨
⎩

1 + (ρ − 1)
Mf (r)−|f (0)|
Mf (r)+|f (0)

if ρ ≤ 1

1 + (ρ − 1)
Mf (r)+|f (0)|
Mf (r)−|f (0)| if ρ ≥ 1.

Clearly, ρf is related to the value f (0) (by (1.3)), but we also apply (1.5)
relatively to any point a ∈ D with ρ(a) instead of ρ > 0 and ρf (a, r) instead
of ρf , where

ρ(a) = ρϕa
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + (ρ − 1)
1 − |a|
1 + |a| if ρ ≤ 1

1 + (ρ − 1)
1 + |a|
1 − |a| if ρ ≥ 1,

(1.6)

ρf (a, r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 + (ρ(a) − 1)
r(1 − |f (a)|2)

r(1 + |f (a)|2) + 2|f (a)| if ρ ≤ 1

1 + (ρ(a) − 1)
r(1 + |f (a)|2) + 2|f (a)|

r(1 − |f (a)|2) if ρ ≥ 1.

(1.7)

and ϕb for b ∈ D is the Möbius transformation given by

ϕb(z) = b − z

1 − bz
(z ∈ D).

It is obvious that if T ∈ Cρ(H) with ρ > 0 then the operator

Ta = ϕa(T ) = (aI − T ) (I − aT )−1

is well-defined in B(H) for any a ∈ D. In fact, we have Ta ∈ Cρ(a)(H) (by
Theorem 1.1), and wρ(a)(T ) < 1 if wρ(T ) < 1 (by Theorem 1.2).

2. Sharpened von Neumann inequality for strict ρ-contractions

Like in the case ρ = 1, which was studied by K. Fan [12], [13], the corres-
ponding inequality (1.4) for a ∈ D can be sharpened by using an analogue of
the Schwarz-Pick inequality for ρ-contractions.
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Theorem 2.1. Let f be a non-constant analytic self map of D, and let
a ∈ D and n be the the order of multiplicity of the zero a for the function
f − f (a). Then for every operator T on H with wρ(T ) < 1 for some ρ > 0
we have

(2.1) wρ(a)[ϕf (a)(f (T ))] ≤ wρ(a)(Ta)
n

and

(2.2) wρf (a,wρ(a)(Ta)n)(f (T )) ≤ wρ(a)(Ta)
n + |f (a)|

1 + wρ(a)(Ta)n|f (a)| ,

where ρ(a) and ρf (a, wρ(a)(Ta)
n) are as in (1.6) and (1.7).

Proof. Let f and a as above, and g = ϕf (a) ◦ f . Then, we see that

g(z) = f (a) − f (z)

1 − f (a)f (z)
= a − z

1 − az
h(z) (z ∈ D)

where h is an analytic function on D such that h(D) ⊆ D (maximum principle).
Since ϕ−1

b = ϕb, for any operator T with wρ(T ) < 1 we have

ϕf (a)(f (T )) = g(T ) = ϕa(T )h(T ) = ϕa(T )ha(ϕa(T )) = G(Ta),

where ha = h ◦ ϕa and G(z) = zha(z) for z ∈ D. As Ta ∈ Cρ(a)(H) and
G(0) = 0, we have G(Ta) ∈ Cρ(a)(H). Since ra = wρ(a)(Ta) < 1 (by (1.4)),
we can apply (1.5) to obtain

wρ(a)(G(Ta)) ≤ MG(ra).

But we have

MG(ra) = sup
|z|=ra

|G(z)| = sup
|z|=ra

|zh(ϕa(z))|

= ra sup
|z|=ra

∣∣∣∣ f (a) − f (ϕa(z))

1 − f (a)f (ϕa(z))

1 − aϕa(z)

a − ϕa(z)

∣∣∣∣
= sup

|z|=ra

|ϕf (a)(f (ϕa(z)))| ≤ sup
|z|=ra

|ϕa(ϕa(z))|n ≤ rn
a ,

the inequality being based on Schwarz-Pick’s lemma for derivatives (Lemma
2.1, [1], for instance). Thus, we obtain

wρ(a)[ϕf (a)(f (T ))] ≤ rn
a = wρ(a)(Ta)

n,

which is just inequality (2.1).
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Now let us write S = ϕf (a)(f (T )). Then f (T ) = ϕf (a)(S), and since (2.1)
yields

wρ(a)(S) ≤ wρ(a)(Ta)
n := r < 1,

from (1.5) we infer

wρf (a,wρ(a)(Ta)n)(f (T )) = wρf (a,wρ(a)(Ta)n)(ϕf (a)(S)) ≤ sup
|z|=r

|ϕf (a)(z)|

= r + |f (a)|
1 + r|f (a)| = wρ(a)(Ta)

n + |f (a)|
1 + wρ(a)(Ta)n|f (a)| ,

that is the inequality (2.2). The proof is finished.

The sharpened form of the inequality (1.4) with ρf = ρf (0) (defined by
(1.3)) is obtained in the following

Corollary 2.2. For f and T as in Theorem 2.1 we have

(2.3) wρ[ϕf (0)(f (T ))] ≤ wρ(T )n

and

(2.4) wρf (0,wρ(T )n)(f (T )) ≤ wρ(T )n + |f (0)|
1 + |f (0)|wρ(T )n

,

where either n = 1, or n ≥ 2 such that f ′(0) = · · · = f (n−1)(0) = 0.

Proof. One applies (2.1) and (2.2) in the case a = 0.

Corollary 2.3. Let f , a and n be as in Theorem 2.1. Then, for any
operator T on H with ‖T ‖ < 1 we have

(2.5) ‖ϕf (a)(f (T ))‖ ≤ ‖ϕa(T )‖n

and

(2.6) ‖f (T )‖ ≤ ‖ϕa(T )‖n + |f (a)|
1 + |f (a)|‖ϕa(T )‖n

.

In particular, for n as in Corollary 2.2 one has

(2.7) ‖f (T )‖ ≤ ‖T ‖n + |f (0)|
1 + |f (0)|‖T ‖n

.

We remark that these inequalities for n = 1 (and ρ = 1) were obtained by
K. Fan [12], but his inequalities are weaker than the above ones if n ≥ 2. We
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also observe that (2.6) yields

(2.8) |f (z)| ≤ |ϕa(z)|n + |f (a)|
1 + |f (a)| |ϕa(z)|n (z ∈ D),

if f , a and n are as in Theorem 2.1.
Now, in the case ρ = 2 we derive from Corollary 2.2 the following

Corollary 2.4. Let f and n be as in Corollary 2.2. If T ∈ B(H) with
w(T ) < 1 then

(2.9) wρf (0,w(T )n)(f (T )) ≤ w(T )n + |f (0)|
1 + |f (0)|w(T )n

.

Proof. If ρ = 2 then ρf (0, wρ(T )n) = ρf (0, w(T )n), and when
ρf (0, wρ(T )n) = 2 we have ρ = 2(wρ(T )n +|f (0)|)[wρ(T )n(1+|f (0)|2)+
2|f (0)|]−1, so (2.9) obtained from (2.4).

The version for spectral radius of Theorem 2.1 can be also derived.

Corollary 2.5. Let T , a, and n be as in Theorem 2.1. Then, for any
operator T on H with r(T ) < 1 we have

(2.10) r[ϕf (a)(f (T ))] ≤ r(Ta)
n

and

(2.11) r(f (T )) ≤ r(Ta)
n + |f (a)|

1 + |f (a)|r(Ta)n
.

Proof. Since r(T ) < 1, there is ρ0 > 1 such that wρ(T ) < 1 for ρ ≥ ρ0.
Then we have ρf (a, wρ(a)(Ta)

n) ≥ ρ(a) ≥ ρ, hence ρ(a) → +∞ and
ρf (a, wρ(a)(Ta)

n) → +∞ if ρ → +∞. Thus (2.10) and (2.11) are inferred
from (2.1) and (2.2) by letting ρ → +∞.

3. An interior Schwarz inequality for strict ρ-contractions

Under the hypotheses of Theorem 2.1, the inequality (2.3) in the case f (0) = 0
becomes

(3.1) wρ(f (T )) ≤ wρ(T )n

if wρ(T ) < 1. But this is the Schwarz inequality for ρ-contractions in the
generalized version for derivatives. In the sequel we will obtain some sharpened
forms of this inequality.
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Theorem 3.1. Let f be a non-constant analytic function such that f (D) ⊆
D and f (0) = f ′(0) = · · · = f (n−1)(0) = 0 for some integer n ≥ 1. Then,
for any operator T on H with wρ(T ) < 1, for some ρ > 0, and for any
a ∈ D \ {0}, we have the inequalities

(3.2) wρ(f (T )) ≤ wρ(T )n
(|a| + wρ(T )) + |a−nf (a)|(1 + |a|wρ(T ))

(1 + |a|wρ(T )) + |a−nf (a)|(|a| + wρ(T ))

and

(3.3) wρ(f (T )) ≤ wρ(T )n
wρ(T ) + 1

n! |f (n)(0)|
1 + 1

n! |f (n)(0)|wρ(T )

Proof. If f (z) = λzn with |λ| = 1 then each of two inequalities one
reduces to the power inequality : wρ(T

n) ≤ wρ(T )n, which can also be seen
as a particular case of (2.4). Now suppose that f does not have the form
f (z) = λzn with |λ| = 1. Define the function g on D by setting

g(0) = 1

n!
f (n)(0) and g(z) = f (z)

zn
for z ∈ D \ {0}.

Then g is an analytic function on D and g(D) ⊆ D because f (z) �= λzn. Thus,
if T ∈ B(H) with ‖T ‖ < 1 then applying (2.2) for g and T with ρ = 1 and
a �= 0, we obtain

‖f (T )‖ = ‖T ng(T )‖ ≤ ‖T n‖ ‖Ta‖ + |g(a)|
1 + |g(a)|‖Ta‖

≤ ‖T n‖
(

|a|+‖T ‖
1+|a|‖T ‖

)
+ |a−nf (a)|

1 + |a−nf (a)|
(

|a|+‖T ‖
1+|a|‖T ‖

)

= ‖T n‖ (|a| + ‖T ‖) + |f (a)|(|a−1| + ‖T ‖)
(1 + |a|‖T ‖) + |f (a)|(1 + |a−1|‖T ‖) .

Letting a → 0, one also finds that

‖f (T )‖ ≤ ‖T n‖ ‖T ‖ + |an|
1 + |an|‖T ‖

where an = (1/n!)f (n)(0). Consequently, the inequalities (3.2) and (3.3) have
been proved in the case ρ = 1. In addition, the above inequalities show for
T = zI with z ∈ D that

(3.4) |f (z)| ≤ |z|n (|a| + |z|) + |a−nf (a)|(1 + |az|)
(1 + |az|) + |a−nf (a)|(|a| + |z|)
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for a ∈ D \ {0}, and

(3.5) |f (z)| ≤ |z|n |z| + |an|
1 + |z||an| .

Now let T ∈ B(H) with wρ(T ) < 1 for some ρ > 0, ρ �= 1. Since
f (0) = 0, we have ρ ′ = ρ, and for a ∈ D \ {0} we infer using (1.5) and (3.4)
that

wρ(f (T )) ≤ sup
|z|=wρ(T )

|f (z)|

≤ wρ(T )n
(|a| + wρ(T )) + |a−nf (a)|(1 + |a|wρ(T ))

(1 + |a|wρ(T )) + |a−nf (a)|(|a| + wρ(T ))

Also, using (1.5) and (3.5) we obtain

wρ(f (T )) ≤ sup
|z|=wρ(T )

|f (z)| ≤ wρ(T )n
wρ(T ) + |an|
1 + |an|wρ(T )

.

We conclude that the inequalities (3.2) and (3.4) hold, and this ends the proof.

We remark that (3.3) can be derived from (3.2) taking a → 0. Both (3.2)
and (3.3) are sharpened forms of (3.1) because the factors of the right-hand side
of (3.2) and (3.3) are stricly less than 1, and they are equal to 1 if f (z) = λzn

with |λ| = 1.
Having in mind that the inequality (3.5) for n = 1 is just the interior Schwarz

lemma for analytic functions on the unit disc which appears in K. Fan [12],
P. Mercer [17] and R. Osserman [19], we can also consider (3.2) and (3.3) as
being sharpened forms of the interior Schwarz inequality for ρ-contractions.

Now, in the case n = 1 we obtain from Theorem 3.1 the following result.

Corollary 3.2. Let f be an analytic function D with f (D) ⊆ D and
f (0) = 0. Then, for any operator strict ρ-contraction and for 0 �= a ∈ D we
have

(3.6) wρ(f (T )) ≤ wρ(T )
(1 + |f (a)|)wρ(T ) + |a| + |a−1f (a)|
(|a| + |a−1f (a)|)wρ(T ) + 1 + |f (a)|

and

(3.7) wρ(f (T )) ≤ wρ(T )
wρ(T ) + |f ′(0)|
1 + |f ′(0)|wρ(T )

.

In the case ρ = 1, (3.7) gives just the corresponding inequality of K. Fan
[12] for a = 0, but for a ∈ D \ {0} the inequality of K. Fan is obtained in the
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proof of Theorem 3.1, namely

(3.8) ‖f (T )‖ ≤ ‖T n‖ ‖Ta‖ + |a−1f (a)|
1 + |a−1f (a)|‖Ta‖

if f is as in Corollary 3.2. Clearly, this inequality is stronger than (3.6) in this
case. Also, for ρ = 1 we infer from the proof of Theorem 3.1 the following

Corollary 3.3. Let f and n ≥ 2 be as in Theorem 3.1. Then, for any
operator T on H with ‖T ‖ < 1 and a ∈ D \ {0} we have

(3.9) ‖f (T )‖ ≤ ‖T ‖n (|a| + ‖T ‖) + |a−nf (a)|(1 + |a|‖T ‖)
(1 + |a|‖T ‖) + |a−nf (a)|(|a| + ‖T ‖)

and

(3.10) ‖f (T )‖ ≤ ‖T ‖n
‖T ‖ + 1

n! |f (n)(0)|
1 + 1

n! |f (n)(0)|‖T ‖

Finally, letting ρ → +∞ in (3.2) and (3.3), we can obtain sharpened
forms of the inequality r(f (T )) ≤ r(T )n provided by (2.11) when a = 0
and f (0) = 0. So we have the following versions for interior Schwarz lemma
relatively to the spectral radius.

Corollary 3.4. Let f and n be as in Theorem 3.1. Then, for any operator
T on H with r(T ) < 1 and 0 �= a ∈ D we have

(3.11) r(f (T )) ≤ r(T )n
(|a| + r(T )) + |a−nf (a)|(1 + |a|r(T ))

(1 + |a|r(T )) + |a−nf (a)|(|a| + r(T ))

and

(3.12) r(f (T )) ≤ r(T )n
r(T ) + 1

n! |f (n)(0)|
1 + 1

n! |f (n)(0)|r(T )
.

4. An improved form of the sharpened von Neumann inequality for
strict ρ-contractions

Like in the case of contractions [12], [13], the inequalities (2.1) and (2.2) can
be sharpened as follows.

Theorem 4.1. Let f be a non-constant analytic function on D such that
f (D) ⊆ D and let a ∈ D and n ≥ 1 be a integer less than or equal to
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the multiplicity of the zero a for the function f − f (a). Then for any strict
ρ-contraction T on H for some ρ > 0 we have

(4.1) wρ(a)[ϕf (a)(f (T ))] ≤ βwρ(a)(Ta)
n

and

(4.2) wρf (a,βwρ(a)(Ta)n)(f (T )) ≤ βwρ(a)(Ta)
n + |f (a)|

1 + β|f (a)|wρ(a)(Ta)n
.

Here β can be taken either as β = βρ(f, T , a, n, b) with b ∈ D, b �= a, or as
β = βρ(f, T , a, n), where

βρ(f, T , a, n, b)

= (|ϕa(b)| + wρ(a)(Ta)) + |ϕa(b)−nϕf (a)(f (b))|(1 + |ϕa(b)|wρ(a)(Ta))

(1 + |ϕa(b)|wρ(a)(Ta)) + |ϕa(b)−nϕf (a)(f (b))|(|ϕa(b)| + wρ(a)(Ta))

and

βρ(f, T , a, n) = wρ(a)(Ta) + 1
n! (1 − |a|2)(1 − |f (a)|2)−1|f (n)(a)|

1 + 1
n! (1 − |a|2)(1 − |f (a)|2)−1|f (n)(a)|wρ(a)(Ta)

= lim
b→a

βρ(f, T , a, n, b).

Proof. Let us write F = ϕf (a) ◦ f ◦ ϕa . Then F is an analytic function on
D such that F (D) ⊆ D and F �= 0 because f is a non constant function on
D. Also, the multiplicity of the zero z = 0 for F is equal to the multiplicity of
the zero z = a for f − f (a). So, by the assumption on integer n ≥ 1 we have
F(0) = F ′(0) = · · · = F (n−1)(0) = 0, and F is not a constant function on D.

Let T be a strict ρ-contraction for some ρ > 0. Then one has wρ(a)(Ta) < 1
and ρF (a) = ρ(a) because F(0) = 0. We have also ϕf (a)(f (T )) = F(Ta).
Now let b ∈ D, b �= a and α = ϕa(b). Applying the inequality (3.2) with F ,
Ta , α and ρ(a) instead of f , T , a and ρ respectively, we get

wρ(a)[ϕf (a)(f (T ))] = wρ(a)(F (Ta))

≤ wρ(a)(Ta)
n (|α| + wρ(a)(Ta)) + |α−nF (a)|(1 + |α|wρ(a)(Ta))

(1 + |α|wρ(a)(Ta)) + |α−nF (a)|(|α| + wρ(a)(Ta))

= βρ(f, T , a, n, b)wρ(a)(Ta)
n

where βρ(f, T , a, n, b) is as in Theorem 4.1. On the other hand, applying the
inequality (3.3) with F , Ta and ρ(a) instead of f , T and ρ respectively, we
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find

wρ(a)[ϕf (a)(f (T ))] = wρ(a)(F (Ta))

≤ wρ(a)(Ta)
wρ(a)(Ta) + 1

n! |F (n)(0)|
1 + 1

n! |F (n)(0)|wρ(a)(Ta)

= wρ(a)(Ta)
wρ(a)(Ta) + 1

n! (1 − |a|2)(1 − |f (a)|2)−1|f (n)(a)|
1 + 1

n! (1 − |a|2)(1 − |f (a)|2)−1|f (n)(a)|wρ(a)(Ta)

= βρ(f, T , a, n)wρ(a)(Ta)
n.

Here we used the known fact (see [1], p. 18) that

F (n)(0) = (−1)n+1 1 − |a|2
1 − |f (a)|2 f (n)(a).

Thus we proved the inequality (4.1), that is, we have

wρ(a)(F (Ta)) ≤ βwρ(a)(Ta)
n := ra < 1,

where β can be chosen either as β = βρ(f, T , a, n, b), or as β = βρ(f, T ,

a, n). Since f (T ) = ϕf (a)(F (Ta)) and f (a) = ϕf (a)(0) (which yields ρf (a) =
ρϕf (a)

(0)), we obtain by (1.5)

wρf (a,βwρ(a)(Ta)n)(f (T )) = wρf (a,βwρ(a)(Ta)n)[ϕf (a)(F (Ta))] ≤ sup
|z|=ra

|ϕf (a)(z)|

= ra + |f (a)|
1 + |f (a)|ra

= βwρ(a)(Ta)
n + |f (a)|

1 + |f (a)|βwρ(a)(Ta)n
.

Hence the inequality (4.2) holds with the quoted values for β.
Now we remark that since one has (see [1], p. 20)

lim
z→0

F(z)

zn
= F (n)(0)

n!

and taking into account the above expressions of F (n)(0), βρ(f, T , a, n) and
βρ(f, T , a, n, b) with a �= b ∈ D, it follows that

lim
b→a

βρ(f, T , a, n, b) = wρ(a)(Ta) + 1−|a|2
1−|f (a)|2

|f (n)(a)|
n!

1 + 1−|a|2
1−|f (a)|2

|f (n)(a)|
n! wρ(a)(Ta)

= βρ(f, T , a, n).

This concludes the proof.
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Clearly β < 1 in (4.1) and (4.2), hence these inequalities are sharper than
the corresponding ones from Theorem 2.1.

In the case ρ = 1, which implies ρ(a) = 1, we infer from Theorem 4.1 the
following result which completes Theorem 4 in [12].

Corollary 4.2. Let f , a and n be as in Theorem 4.1. Then for any strict
contraction T acting on H , we have

(4.3) ‖ϕf (a)(f (T ))‖ ≤ βn‖ϕa(T )‖n

and

(4.4) ‖f (T )‖ ≤ βn‖ϕa(T )‖n + |f (a)|
1 + βn|f (a)|‖ϕa(T )‖n

,

where βn = β1(f, T , a, n).

Note that for n = 1, the inequalities (4.3) and (4.4) are respectively the
inequalities (20) and (22) from [12], where β1 = β1(f, T , a, 1).

Analogous versions of (4.1) and (4.2) for spectral radius can be derived as
follows

Corollary 4.3. Let f , a and n be as in Theorem 4.1. Then for any operator
T on H with r(T ) < 1 we have

(4.5) r[ϕf (a)(f (T ))] ≤ β∞r(Ta)
n

and

(4.6) r(f (T )) ≤ β∞r(Ta)
n + |f (a)|

1 + β∞|f (a)|r(Ta)n
,

where β∞ can be taken either as β∞ = limρ→+∞ βρ(f, T , a, n, b) with a �=
b ∈ D, or as β∞ = limρ→+∞ βρ(f, T , a, n).

When r(T ) < 1 and f (T ) = 0, we can derive from (4.5) a lower bound for
r(Ta)

n in terms of f (a) and f (n)(a) for a ∈ D. This gives also a lower bound
for ‖Ta‖n, and this result in the case n = 1 one reduces to Corollary 3 [12].

Corollary 4.4. Let f , a and n be as in Theorem 4.1. Let T be an operator
on H such that f (T ) = 0 and r(T ) < 1. Then we have

(4.7) r(Ta)
n ≥ γ (f, a, n) ≥ |f (a)|,

where

γ (f, a, n) =
[
|f (a)| +

(
(1 − |a|2)|f (n)(a)|

2n!(1 + |f (a)|)
)2

] 1
2

− (1 − |a|2)|f (n)(a)|
2n!(1 + |f (a)|) .
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In particular, if T ∈ B(H) is a strict ρ-contraction (ρ > 0) such that f (T ) =
0, then we have

(4.8) wρ(a)(Ta)
n ≥ γ (f, a, n).

In addition, the second inequality in (4.7) becomes an equality only when
either f (a) = 0, or f is an n-automorphism of D.

Proof. Since f (T ) = 0 one has r[ϕf (a)(f (T ))] = |f (a)|, and so from
(4.5) we obtain

|f (a)| ≤ r(Ta)
n

r(Ta)
n + 1−|a|2

1−|f (a)|2
|f (n)(a)|

n!

1 + 1−|a|2
1−|f (a)|2

|f (n)(a)|
n! r(Ta)n

.

This means that

|f (a)|
[

1 + 1 − |a|2
1 − |f (a)|2

|f (n)(a)|
n!

r(Ta)
n

]

≤ r(Ta)
n

[
r(Ta)

n + 1 − |a|2
1 − |f (a)|2

|f (n)(a)|
n!

]

or equivalently

|f (a)|+
(

1 − |a|2
2(1 + |f (a)|)

|f (n)(a)|
n!

)2

≤
[
r(Ta)

n+ 1 − |a|2
2(1 + |f (a)|)

|f (n)(a)|
n!

]2

,

whence the first inequality in (4.7) follows immediately. The second inequality
in (4.7) is equivalent to

|f (a)|
(

1 − 1 − |a|2
1 − |f (a)|2

|f (n)(a)|
n!

)
≥ 0.

Here, equality occurs only if either f (a) = 0 or

|G(0)| = (1 − |a|2)|f (n)(a)|
n!(1 − |f (a)|2) = 1

where G is the analytic function from D into D such that G(z) = F(z)/zn

for 0 �= z ∈ D. In this last case, the maximum modulus principle tells us
that G(z) = λ for some constant λ with |λ| = 1, hence F(z) = λzn, and
consequently f = ϕf (a) ◦ F ◦ ϕa , that is f is an n-automorphism of D.

Now if T ∈ B(H) is a strict ρ-contraction for some ρ > 0 then we have
r(T ) ≤ wρ(T ) < 1 and also r(Ta) ≤ wρ(a)(Ta) < 1. Thus (4.8) follows from
(4.7) and the proof is finished.
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Next we will show that the inequality (3.1) can also be sharpened in some
conditions, independent of (3.3).

Theorem 4.5. Let f �= 0 be an analytic function on D such that f (D) ⊆ D
and f (0) = f ′(0) = · · · = f (n−1)(0) = 0 for some integer n ≥ 1. Suppose
that f does not have the form f (z) = λzn with λ a unimodular constant. Then
for any strict ρ-contraction T on H for some ρ > 0 we have

(4.9) wρ(f (T )) ≤ wρ(T )n
γwρ(T ) + 1

n! |f (n)(0)|
1 + γ

n! |f (n)(0)|wρ(T )

where γ = γρ(f, T , n) is given by

(4.10) γ = wρ(T ) + n!
n+1

[
(n!)2 − |f (n)(0)|2]−1 |f (n+1)(0)|

1 + n!
n+1

[
(n!)2 − |f (n)(0)|2]−1 |f (n+1)(0)|wρ(T )

.

Moreover, we have γ < 1 unless either wρ(T ) = 0 or f (z)/zn is an auto-
morphism of D.

Proof. Define the function g on D by setting

g(0) = 1

n!
f (n)(0) and g(z) = f (z)

zn
if z ∈ D \ {0}.

Then g is a non-constant analytic function on D such that g(D) ⊂ D. So,
applying the inequality (4.2) to the function g when T = zI with z ∈ D,
a = 0, n = 1 and ρ = 1 one obtains

|g(z)| ≤ βg(|z|)|z| + |g(0)|
1 + |g(0)|βg(|z|)|z| = βg(|z|)|z| + 1

n! |f (n)(0)|
1 + 1

n! |f (n)(0)|βg(|z|)|z|
,

where βg(|z|) = β1(g, zI, 0, 1) is given by Theorem 4.1, that is

βg(|z|) = |z| + (1 − |g(0)|2)−1|g′(0)|
1 + (1 − |g(0)|2)−1|g′(0)||z| = |z| + n!

n+1
|f (n+1)(0)|

(n!)2−|f (n)(0)|2

1 + n!
n+1

|f (n+1)(0)|
(n!)2−|f (n)(0)|2 |z|

.

Since we have

n!|f (n+1)(0)|
(n + 1)[(n!)2 − |f (n)(0)|2]

= |g′(0)|
1 − |g(0)|2 = |G(0)|

where G is the analytic function on D defined by

G(z) = ϕg(0)(g(z))

z
, z ∈ D \ {0},
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by the maximum modulus principle we infer that |G(0)| < 1 unless G is a
constant function, or equivalently g is an automorphism of D. Thus, if f does
not have the form f (z) = zng(z) where g is an automorphism of D, then we
have |G(0)| < 1 which yields βg(|z|) < 1 for any z ∈ D.

Now letT ∈ B(H)be a strictρ-contraction for someρ > 0. Sincef (0) = 0
one has ρ ′ = ρf = ρ so that f (T ) ∈ Cρ(H), and using the above estimation
of |g(z)| and the inequality (1.5) one obtains

wρ(f (T )) ≤ sup
|z|=wρ(T )

|f (z)| = sup
|z|=wρ(T )

|zng(z)| = wρ(T )n sup
|z|=wρ(T )

|g(z)|

≤ wρ(T )n
βg(wρ(T ))wρ(T ) + 1

n! |f (n)(0)|
1 + 1

n! |f (n)(0)|βg(wρ(T ))wρ(T )

= wρ(T )n
γwρ(T ) + 1

n! |f (n)(0)|
1 + 1

n! |f (n)(0)|γwρ(T )
,

where γ = βg(wρ(T )), that is

γ = wρ(T ) + n!
n+1

|f (n+1)(0)|
(n!)2−|f (n)(0)|2

1 + n!
n+1

|f (n+1)(0)|
(n!)2−|f (n)(0)|2 wρ(T )

.

In addition, taking into account the above remark, we conclude that γ < 1
unless either f has the form f (z) = zng(z) with g an automorphism of D, or
wρ(T ) = 0. This ends the proof.

Corollary 4.6. Let f and n be as in Theorem 4.5. Then, for any operator
T on H with ‖T ‖ < 1 we have

(4.11) ‖f (T )‖ ≤ ‖T n‖ γ1‖T ‖ + 1
n! |f (n)(0)|

1 + 1
n! |f (n)(0)|γ1‖T ‖ ,

where γ1 := γ1(f, T , n) is given by (4.10). In addition, γ1 < 1 unless either
T = 0, or f (z)/zn is an automorphism of D.

We remark that in the case n = 1, (4.11) is just the inequality (36) from
[12].

Finally, we can also obtain a version for spectral radius of (4.11) as follows.

Corollary 4.7. Let f and n be as in Theorem 4.5. Then, for any operator
T on H with r(T ) < 1 we have

(4.12) r(f (T )) ≤ r(T )n
γ∞r(T ) + 1

n! |f (n)(0)|
1 + 1

n! |f (n)(0)|γ∞r(T )
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where
(4.13)

γ∞ := lim
ρ→+∞ γρ(f, T , n) = r(T ) + n!

n+1

[
(n!)2 − |f (n)(0)|2]−1 |f (n+1)(0)|

1 + n!
n+1

[
(n!)2 − |f (n)(0)|2]−1 |f (n+1)(0)|r(T )

.

In addition, γ∞ < 1 unless either r(T ) = 0, or f (z)/zn is an automorphism
of D.

Proof. Since r(T ) < 1 we have wρ(T ) < 1 for sufficiently large ρ > 1.
So, (4.12) and (4.13) follow from (4.9) and (4.10) respectively by letting ρ →
+∞.
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