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FATOU-TYPE THEOREMS FOR GENERAL
APPROXIMATE IDENTITIES

MARCUS CARLSSON

Abstract

For functions f ∈ L1(Rn) we consider extensions to Rn × R+ given by convolving f with an
approximate identity. For a large class of approximate identities we obtain a Fatou-type theorem
where the convergence regions are sometimes effectively larger than the non-tangential ones. We
then study a more restricted class of approximate identities for which the convergence regions
are shown to be optimal. Finally we will consider products of approximate identities. The results
extend previous results by Sjögren [4], Rönning [2] and Brundin [1].

1. Introduction

For a function f ∈ L1(R), let f̂ denote its harmonic extension to the upper
half plane, i.e.

(1.1) f̂ (x, r) =
∫

R
P(x − t, r)f (t) dt,

where
P(x, r) = r

π(x2 + r2)

is the Poisson kernel on R. The classical Fatou theorem asserts that for a.e.
θ ∈ R, the harmonic extension f̂ (x, r) has the limit f (θ) when (x, r) → (θ, 0)

within the angle
A (θ) = {(x, r) : |x − θ | < ar},

where a > 0 is any fixed constant.
The Poisson kernel is a special case of an approximate identity. In general,

these are defined as follows.

Definition 1.1. An approximate identity on Rn is a function P : Rn ×
R+ → R+ such that

(1.2) ‖P(·, r)‖1 = 1 for all r > 0.
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For any open set � containing 0, P(·, r) converge to 0 in both

(1.3) L∞(Rn \ �) and L1(Rn \ �), as r → 0.

Using any approximate identity P , we may extend a function f ∈ L1(Rn)

to a function f̂ on Rn×R+ as in the formula (1.1). The question wether Fatou’s
theorem continues to hold for other approximate identities has been thoroughly
investigated and plays an important role in harmonic analysis, especially in
the theory of Hardy spaces. The special types of approximate identities which
occur in this context arise by dilation of functions on R+ (see [5], p. 23–24),
that is, approximate identities of the type

(1.4) Ph(x, r) = 1

rn
h

( |x|
r

)
,

where |·| denotes the Euclidean distance in Rn and h is some positive decreasing
L1(R+)-function such that ‖Ph(·, r)‖1 = 1. By ([5], p. 57), it follows that
Fatou’s theorem continues to hold for any approximate identity P which is
bounded above by an approximate identity Ph as in (1.4). More precisely, for
such P , any f ∈ L1(Rn) and a.e. θ ∈ Rn, the function

f̂ (x, r) = (P (·, r) ∗ f )(x) =
∫

Rn

P (x − t, r)f (t) dλ(t)

has the limit f (θ) when r → 0 and |x − θ | < ar , where a > 0 is any fixed
constant and λ denotes the Lebesgue measure on Rn.

An interesting phenomenon related to these results has been observed by
Sjögren [4]. Let D denote the unit disc and let T denote its boundary.

Let us consider approximate identities on the unit circle obtained by nor-
malizing powers of the usual Poisson kernel, that is, approximate identities of
the form

Pα(eit , r) = (P (eit , r))α

‖(P (·, r))α‖1
,

where 1/2 ≤ α ≤ 1 and P(eit , r) = 1−r2

|eit−r|2 . If α > 1/2, then using the
previously mentioned result about approximate identities of the form (1.4) one
can show that Fatou’s theorem continues to hold in this case as well, i.e. given
f ∈ L1(T) the function f̂ defined on D by

f̂ (reit ) =
∫ 2π

0
Pα(ei(s−t), r)f (eis)

ds

2π

has the limit f (ξ) when reit → ξ non-tangentially for a.e. ξ ∈ T. However,
in the limit case when α = 1/2, the approximate identity P1/2 cannot be



fatou-type theorems for general approximate identities 233

treated with these methods. Sjögren [4] was the first to observe that for P1/2

we actually get larger regions of convergence. Later Rönning [2] improved this
for functions f ∈ Lp(T) with p > 1, and showed that these regions increase
with p. Their results can be summarized in the following theorem.

Theorem 1.2. Let f ∈ Lp(T) where 1 ≤ p < ∞ and set ρ(r) =
(1 − r)

(
log 1

1−r

)p
. Then for a.e. ξ ∈ T the function

f̂ (reit ) =
∫ 2π

0
P1/2(e

i(t−s), r)f (eis)
ds

2π

has the limit f (ξ) when reit → ξ inside the region

A (ξ) = {reit : | arg ξ − t | < aρ(r)}
for any fixed constant a. Moreover, these regions are optimal in the sense
that if ρ is any function for which the above conclusion holds, then ρ(r) =
O

(
(1 − r)

(
log 1

1−r

)p)
when r → 1−. (O stands for “big ordo”.)

The arguments given in [4] and [2] are quite involved and recently Brundin
[1] has obtained a simpler proof of these results. However, all proofs are rather
long and are essentially based on the specific formula defining P1/2.

It is the purpose of this paper to show that this type of result continues
to hold for any approximate identity whose level sets are sufficiently regular.
This general point of view not only yields Fatou-type theorems and maximal
function estimates for a large class of approximate identities which covers
all examples mentioned above, but also leads to considerably shorter proofs,
which, in some sense are a refinement of the approach used in the theory
of Hardy spaces (see [5]). The regularity assumption which we are going to
use has a simple formulation in geometrical terms, namely that the Lebesgue
measure of each level set of the approximate identity P is bounded below by a
constant multiple of the measure of the smallest ball centered at 0 that includes
the level set. In other words, if we set

L(r, s) = {x ∈ Rn : P(x, r) > s}
then our condition is

(1.5) sup{|x|n : x ∈ L(r, s)} ≤ cλ(L(r, s)).

for some constant c and all r, s.

Throughout the paper, p will be a fixed number with 1 ≤ p < ∞ and q

will be its conjugate index defined by 1
p

+ 1
q

= 1. The main theorem reads as
follows.
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Theorem 1.3. Let f ∈ L
p

loc(R
n)∩L1(Rn). Let P be an approximate identity

such that (1.5) holds and set

ρ(r) = 1

‖P(·, r)‖p/n
q

Then for a.e. θ ∈ Rn the function

f̂ (x, r) = (P (·, r) ∗ f )(x) =
∫

Rn

P (x − t, r)f (t) dλ(t)

has the limit f (θ) when r → 0 and x → θ inside the region

A (θ) = {(x, r) : |x − θ | < aρ(r)},
where a > 0 is any fixed constant.

The proof of Theorem 1.3, as well as a number of extensions, will be given
in section 2.

In section 3 we consider a special class of approximate identities that contain
all previous examples and for which our results are sharp, in the sense that the
regions of convergence provided by Theorem 1.3 are optimal.

These approximate identities include those of type (1.4). They are defined
in terms of a single positive function h on R+ and a number 0 < R ≤ ∞, and
the corresponding approximate identity is denoted by Ph,R . We shall show that
the regions of convergence are completely determined by the function

ι(r) =
∫ R/r

0
h(s)sn−1 ds.

More specifically, we will show that for each f ∈ L
p

loc(R
n) ∩ L1(Rn) and a.e.

θ ∈ Rn the function

f̂ (x, r) = (Ph,R(·, r) ∗ f )(x) =
∫

Rn

Ph,R(x − t, r)f (t) dλ(t)

has the limit f (θ) when r → 0 and x → θ inside the region

A (θ) = {(x, r) : |x − θ | < arιp/n(r)}
where a is any fixed constant. We will also show that these regions are optimal
in the sense that if γ is any function such that the above result holds at a.e. θ

with arιp/n(r) replaced with γ , then γ (r) = O(rιp/n(r)) when r → 0.
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In particular, Theorem 1.2 is a direct consequence of these results and in
general we see that the phenomenon observed by Sjögren occurs if and only
if R < ∞ and ∫ ∞

0
h(s)sn−1 ds = ∞.

At the end of section 3 we construct an example related to condition (1.5). It is
not hard to see that the conclusion of Theorem 1.3 cannot hold for all approx-
imate identities, but an interesting question is wether (1.5) can be removed for
the approximate identities Ph,R discussed above. We will show that the answer
is negative.

Finally, in section 4 we consider the boundary behavior of convolutions
with products of approximate identities. More specifically, let P1, . . . , Pn be
approximate identities on R and set

(1.6) P ((x1, . . . , xn), (r1, . . . , rn)) = P1(x1, r1) . . . Pn(xn, rn).

For functions f ∈ Lp(Rn) we will investigate the boundary behavior of

f̂ (x, r) =
∫

Rn

P (x − t, r)f (t) dλ(t).

This was studied by Zygmund (see [6], Ch. XVII) in the case when all Pi’s
are equal to the Poisson kernel and more recently Brundin [1] studied the
corresponding problem with Pi = P1/2 and f ∈ L∞(Tn).

Note that P is not an approximate identity and moreover the level sets of
P do not satisfy a condition like (1.5) even in the case when the approximate
identities Pi equal the Poisson kernel.

As an application of the main theorem of section 4 we will extend The-
orem 1.2 in the following way: Let P : Tn × [0, 1)n → R+ be given by

P(τ, r) = P1/2(τ1, r1) . . . P1/2(τn, rn)

and the corresponding extension to Dn of a function f ∈ Lp(Tn) be given by

f̂
(
(r1e

it1 , . . . , rne
itn )

)
=

∫
[0,2π ]n

P
(
(ei(t1−s1), . . . , ei(tn−sn)), r

)
f

(
(eis1 , . . . , eisn )

)ds1 . . . dsn

(2π)n

We then have:

Theorem 1.4. Let 1 ≤ p < ∞, ε > 0 and f ∈ Lp+ε(Tn) be given. Let
a > 0 be arbitrary and set

ρ(r) = a(1 − r)

(
log

1

1 − r

)p

.
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Then, for a.e. ξ ∈ Tn, f̂ (z) → f (ξ) when z → ξ inside

A (ξ) = {(r1e
it1 , . . . , rne

itn ) ∈ Dn : | arg ξk − tk| < ρ(rk)}.

This result is new and should be compared with Theorem 2 of Brundin [1],
where the same result is proved under the assumption that f ∈ L∞(Tn) and
that ρ satisfies ρ(r) = O((1 − r)α) for all α < 1.

2. Main results

Throughout this paper p will be a fixed number with 1 ≤ p < ∞ and q will
be the conjugate index defined by the equation 1

p
+ 1

q
= 1. Also, for L ⊂ Rn

let |L| = sup{|x| : x ∈ L}. Let P be an approximate identity on Rn. As before
we let ρ : R+ → R+ be the function

(2.1) ρ(r) = 1

‖P(·, r)‖p/n
q

,

and we define L(r, s) = {x ∈ Rn : P(x, r) > s}. To obtain more generality,
we shall work with the following assumption which is weaker than (1.5). It
essentially says that for fixed r , (1.5) holds for all s in a certain interval.

(2.2)

There exist positive constants c1, c2, c3, c4 and a function

u : R+ → R+ such that |L(r, u(r))| ≤ c1ρ(r) and |L(r, s)|n ≤
c2λ(L(r, s)) holds for all s with u(r) > s > c3 and r < c4.

The main theorem is the following result.

Theorem 2.1. Let f ∈ L
p

loc(R
n) ∩ L1(Rn), 1 ≤ p < ∞, and let P be an

approximate identity such that (2.2) holds. Then for a.e. θ ∈ Rn the function

f̂ (x, r) = (P (·, r) ∗ f )(x) =
∫

Rn

P (x − t, r)f (t) dλ(t)

has the limit f (θ) when r → 0 and x → θ inside the region

A (θ) = {(x, r) : |x − θ | < aρ(r)},
where a is any fixed constant.

Observe that we necessarily have limr→0 ρ(r) = 0. To see this, note that
by (1.3) and Hölder’s inequality we have that for each open set � containing
zero the inequality

1/2 ≤
∫

�

P (·, r) dλ ≤ (λ(�))1/p ‖P(·, r)‖q



fatou-type theorems for general approximate identities 237

holds for sufficiently small r , which implies that for such r we have ρ(r) ≤
(2pλ(�))1/n.

As in the classical case of the Fatou theorem one can either give a direct
proof of the result, or deduce it from an estimate of the corresponding maximal
functions. We will give the latter proof.

With notation as in Theorem 2.1 we define the maximal function

(2.3) f ∗(θ) = sup
(x,r)∈A (θ)

|f̂ (x, r)|

and let fHL denote the standard Hardy-Littlewood maximal function, i.e.

fHL(θ) = sup
r>0

∫
B(θ,r)

|f | dλ

λ(B(θ, r))
,

where B(θ, r) is the ball centered at θ with radius r .

Theorem 2.2. Let f ∈ Lp(Rn) ∩ L1(Rn) and let P be an approximate
identity such that (2.2) holds with c3 = 0, c4 = ∞ and arbitrary constants
c1, c2 > 0. Then there exists a constant C, independent of f , such that

f ∗(θ) < C
(
fHL(θ) + (

(|f |p)HL(θ)
)1/p)

for all θ ∈ Rn.

Proof. Let χ(S, ·) denote the characteristic function of a set S. We can
clearly assume that θ = 0. Let (x, r) ∈ A (0) be fixed, let J ∈ N be arbit-
rary and set η = u(r)/J . Moreover let J ′ be the smallest integer such that
|L(r, ηJ ′)| ≤ c1ρ(r) and note that we then have J ′ ≤ J by (2.2). If j < J ′
and

y ∈ L(r, jη) \ L(r, (j + 1)η)

then clearly jη < P(y, r) ≤ (j + 1)η which implies that

0 ≤ P(x − t, r) − η

J ′−1∑
j=1

χ(L(r, jη), x − t) < η

whenever x − t /∈ L(r, J ′η). Set S(s) = {t : x − t ∈ L(r, s)} and note that

(2.4) η

J ′−1∑
j=1

λ(S(jη)) ≤
∫

P(x − t, r) dλ(t) = 1.



238 marcus carlsson

We then have

∣∣f̂ (x, r)
∣∣ =

∣∣∣∣
∫

P(x − t, r)f (t) dλ(t)

∣∣∣∣
≤

∣∣∣∣
∫ (

P(x − t, r) − η

J ′−1∑
j=1

χ(L(r, jη), x − t)

)
f (t) dλ(t)

∣∣∣∣

+
∣∣∣∣
∫

η

J ′−1∑
j=1

χ(L(r, jη), x − t)f (t) dλ(t)

∣∣∣∣

≤ η ‖f ‖1 +
∣∣∣∣
∫

S(J ′η)

P (x − t, r) f (t) dλ(t)

∣∣∣∣ +
∣∣∣∣η

J ′−1∑
j=1

∫
S(jη)

f (t) dλ(t)

∣∣∣∣(2.5)

First we will estimate the second term. Set Bn = λ(B(0, 1)).∣∣∣∣
∫

S(J ′η)

P (x − t, r)f (t) dλ(t)

∣∣∣∣
≤ ‖P(·, r)‖q

(∫
B(0,|S(J ′η)|)

|f (t)|p dλ(t)

)1/p

≤ ‖P(·, r)‖q

(
(|f |p)HL(0)Bn(|S(J ′η)|)n)1/p

≤ ‖P(·, r)‖q

(
(|f |p)HL(0)

)1/p
B1/p

n

(
(a + c1)ρ(r)

)n/p

= c5
(
(|f |p)HL(0)

)1/p

by (2.1) and the choice of J ′, where c5 = B
1/p
n (a + c1)

n/p

We now turn to the third term. Note that for 0 ≤ s ≤ (J ′ − 1)η we have
|L(r, s)| > c1ρ(r) by the choice of J ′ and the assumption that c3 = 0. For
such s we thus get

|S(s)| ≤ |L(r, s)| + |x| ≤ (
1 + ac−1

2

)|L(r, s)|
which together with (2.2) implies that

(2.6) |S(s)|n ≤ (
1 + ac−1

2

)n
c2λ(L(r, s)) = c6λ(S(s)),

where we have set c6 = (
1 + ac−1

2

)n
c2. This combined with (2.4) gives

η

J ′−1∑
j=1

|S(jη)|n ≤ c6
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so ∣∣∣∣η
J ′−1∑
j=1

∫
S(jη)

f (t) dλ(t)

∣∣∣∣ ≤ η

J ′−1∑
j=1

∫
B(0,|S(jη)|)

|f (t)| dλ(t)

≤ ηfHL(0)

J ′−1∑
j=1

Bn|S(jη)|n

≤ Bnc6fHL(0)

By (2.5) and the fact that η can be taken arbitrarily small we obtain the in-
equality |f̂ (x, r)| ≤ Bnc6fHL(0) + c5((|f |p)HL(0))1/p,

and the proof is complete.

Proof of Theorem 2.1. By (1.3) it is easily seen that it is sufficient to prove
the theorem for the function f (·)χ(B(0, R), ·) where R > 0 is arbitrary but
fixed. Moreover a short compactness argument shows that f (·)χ(B(0, R), ·) ∈
Lp, so we may assume that f ∈ Lp and has compact support. It is also clear
that we may assume that c4 = ∞.

Set E(r) = {x ∈ Rn : P(x, r) ≤ c3} and define functions P1 and P2 via

P1(r, x) = P(r, x)χ(E(r), x) and P2(r, x) = P(r, x)χ(Rn \ E(r), x).

Using the fact that limr→0
∫
B(θ,r)

|f | = 0 for all θ ∈ Rn and the properties
(1.2) and (1.3) of P , it is easily seen that

lim
r→0
x→θ

∫
Rn

P1(x − t, r)f (t) dλ(t) = 0

and
lim
r→0

‖P1(·, r)‖1 = 0.

Hence the equality

lim
(x,r)∈A (θ)

r→0

∫
Rn

P (x − t, r)f (t) dλ(t) = f (θ)

holds if and only if

lim
(x,r)∈A (θ)

r→0

∫
Rn

P2(x − t, r)

‖P2(·, r)‖1
f (t) dλ(t) = f (θ)

does. But P2(·,r)
‖P2(·,r)‖1

is an approximate identity that satisfies condition (2.2) with
c3 = 0. Thus we may assume that f and P are such that Theorem 2.2 applies.
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From this point the proof follows standard arguments which we will only
outline. Set

hf (θ) = lim
R→0

sup
(x,r)∈A (θ)

r<R

|f̂ (x, r) − f (θ)|

If g is a continuous function with compact support we get

|hf (θ)| ≤ |f (θ) − g(θ)| + (f − g)∗(θ)

≤ |f (θ) − g(θ)| + C(|f − g|)HL(θ) + C((|f − g|p)HL(θ))1/p.

Fix ε > 0. Since the Hardy-Littlewood maximal function is weak (1, 1), we
have that

λ({θ : hf (θ) > ε}) < C ′(‖f − g‖1 + ‖|f − g|p‖1
)

where C ′ is some constant which depends on ε but not on g. But g can be chosen
such that the right hand side is arbitrarily small and thus λ({θ : hf (θ) > ε}) =
0. As ε was arbitrary, we are done.

Remark. It is possible to give a direct proof of Theorem 2.1 largely based
on the inequalities of the proof of Theorem 2.2. This gives a slightly stronger
statement, because the proof then gives conditions on the points θ at which
f̂ (x, r) = (P (·, r) ∗ f )(x) has the desired limit. For p = 1 the condition is
simply that θ should be a Lebesgue point for f .

Another way to improve Theorem 2.1 is by the following simple observa-
tion.

Proposition 2.3. Let f ∈ L1(Rn) and let P1, P2 be approximate identities
such that P2 is bounded above by P1, and let ρ : R+ → R+ be some function.
Define

f̂i(x, r) = (Pi(·, r) ∗ f )(x) =
∫

Rn

Pi(x − t, r)f (t) dλ(t)

and set
A (θ) = {(x, r) : |x − θ | < ρ(r)}.

If
lim
r→0

(x,r)∈A (θ)

f̂1(x, r) = f (θ)

for a.e. θ ∈ Rn, then the same is true for f̂2.
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Proof. Let c > 0 be such that P2 < cP1 and let g ∈ L1 be continuous.
Then

lim
R→0

sup
(x,r)∈A (θ)

r<R

|f̂2(x, r) − f (θ)|

= lim
R→0

sup
(x,r)∈A (θ)

r<R

|(P2(·, r) ∗ f )(x) − f (θ)|

≤ |f (θ) − g(θ)| + lim sup |(P2(·, r) ∗ (f − g))(x)|
< |f (θ) − g(θ)| + c lim sup |(P1(·, r) ∗ |f − g|)(x)|
a.e.= (c + 1)|f (θ) − g(θ)|,

which implies that the integral of the first expression, (as a function of θ ), is 0.

Theorem 2.1 can easily be reformulated for the torus Tn. Let m denote the
normalized Haar measure on the group Tn, let f be a function in L1(Tn, m)

and let P : Tn × [0, 1) → R+ be an approximate identity on Tn, which here
means a positive function such that

∫
Tn P (·, r)dm = 1 for all r and such that

for any open set � ⊂ Tn containing 1, P(·, r) converge to 0 in L∞(Tn \ �) as
r → 1. We wish to study the boundary behavior of

f̂ (reit ) =
∫

[−π,π]n
P (ei(t−s), r)f (eis)

dλ(s)

(2π)n
,

where we use the notation eis = (eis1 , . . . , eisn ).
To do this, we define f̃ ∈ L1(Rn) by f̃ (t) = f (eit ) for t ∈ [−π, π ]n and

f̃ (t) = 0 otherwise. Similarly, define P̃ : Rn × (0, 1] → R+ by

P̃ (t, r) = (2π)−nP (eit , 1 − r)

for t ∈ [−π, π ]n and P̃ (t, r) = 0 otherwise. Extend P̃ to Rn × R+ by setting
P̃ (·, r) = P̃ (·, 1) for r > 1. Then P̃ is clearly an approximate identity for Rn

and we may apply Theorem 2.1 to f̃ and P̃ . The following proposition, whose
short proof we omit, transforms the conclusion to f̂ .

Proposition 2.4. Let f , f̃ , P , P̃ be as above, let ξ = eiθ ∈ Tn be fixed
with θ ∈ (−π, π)n and let ρ : R+ → R+ be given. Then

f̂ (reit ) =
∫

[−π,π]n
P (ei(t−s), r)f (eis)

dλ(s)

(2π)n

has the limit f (ξ) when |t − θ | ≤ ρ(1 − r) and r → 1 if and only if∫
Rn

P̃ (t − s, r)f̃ (s) dλ(s)
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has the limit f̃ (θ) when |t − θ | ≤ ρ(r) and r → 0.

3. Applications and further results

In section I.6 of [5] there are considered approximate identities of the special
type

Ph(x, r) = 1

rn
h

( |x|
r

)
,

where h is some decreasing positive function on R+ such that

‖Ph(·, r)‖1 = 1.

It is shown that for any f ∈ L1(Rn) and a.e. θ ∈ Rn the function

f̂ (x, r) = (Ph(·, r) ∗ f )(x) =
∫

Rn

Ph(x − t, r)f (t) dλ(t)

has the non-tangential limit f (θ). In this section we will consider a more gen-
eral class of approximate identities and show that the regions of convergence
given by Theorem 2.1 cannot be improved.

Let 1 ≤ p < ∞ and let q be its conjugate index. Let h be a positive
measurable function on R+ and let 0 < R ≤ ∞ be some fixed number. Set

(3.1) ι(r) =
∫

B(0,R)

1

rn
h

( |x|
r

)
dλ(x) = nBn

∫ R/r

0
h(t)tn−1 dt,

where Bn is the volume of B(0, 1) ⊂ Rn. We shall assume that h and R are such
that 0 < ι(r) < ∞ for all r > 0. Define the function Ph,R : Rn × R+ → R+
by

Ph,R(x, r) = χ(B(0, R), x)
1

ι(r)rn
h

( |x|
r

)
.

The aim is to show that if Ph,R is an approximate identity (that satisfies (2.2)
and h satisfies (3.2) below) then the regions of convergence are completely
determined by the function ι.

In order to simplify the formulas we will assume that

(3.2)

∫ ∞

0
hq(t)tn−1 dt < ∞

if q < ∞ and supt>0 |h(t)| < ∞ if q = ∞. Then

∥∥Ph,R(·, r)∥∥
q

= 1

ι(r)rn

(∫
B(0,R)

hq

( |x|
r

)
dλ(x)

)1/q

= 1

ι(r)rn

(
nBnr

n

∫ R/r

0
hq(t)tn−1 dt

)1/q

∼ 1

rn(1−1/q)ι(r)
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for small r so that

(3.3) ρ(r) ∼ rιp/n(r)

holds for small r , where ρ as before is defined by (2.1).
If now h and R are such that Ph,R is an approximate identity that satisfies

(2.2) and such that (3.2) holds, then Theorem 2.1 applies and the estimate above
shows that the regions of convergence given by Theorem 2.1 are effectively
larger than the non-tangential ones if and only if∫ ∞

0
h(t)tn−1 dt = ∞

and R < ∞. We also see that these regions are unaffected by the size of R.
The next theorem summarizes our conclusions and moreover says that these

regions are optimal.

Theorem 3.1. Let f ∈ L
p

loc(R
n) ∩ L1(Rn), let h be a positive function

on R+ such that (3.2) holds and let 0 < R ≤ ∞ be a constant. Assume that
Ph,R is an approximate identity such that (2.2) holds. Then for a.e. θ ∈ Rn the
function

f̂ (x, r) = (Ph,R(·, r) ∗ f )(x) =
∫

Rn

Ph,R(x − t, r)f (t) dλ(t)

has the limit f (θ) when r → 0 and x → θ inside the region

A (θ) = {(x, r) : |x − θ | < arιp/n(r)}
where a is any fixed constant. Moreover, these regions are optimal in the sense
that if γ is any function such that the conclusion above holds with arιp/n(r)

replaced with γ , then γ (r) = O(rιp/n(r)) when r → 0.

Proof. The first part is immediate by the remarks before the theorem. We
turn to the second part. Let γ be any function such that for a.e. θ ,

f̂ (x, r) =
∫

Rn

Ph,R(x − t, r)f (t) dλ(t)

has the limit f (θ) when r → 0 and x → θ inside the region

A (θ) = {(x, r) : |x − θ | < γ (r)}.
If we do not have γ (r) = O(rιp/n(r)) when r → 0, then we can take a
sequence (rk) converging to 0 such that rk < R and

(3.4)
rkι

p/n(rk)

γ (rk)
< 2−kp/n.
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We will show that this yields a contradiction. Let fk be the function on Rn

defined by fk(x) = ι(rk)χ(B(0, rk), x). Then

f̂k(0, rk) =
∫

Rn

Ph,R(t, rk)fk(t) dλ(t) = nBn

∫ 1

0
h(s)sn−1ds = d

where d is a constant that does not depend on k. Moreover

‖fk‖p
p = Bnr

n
k ιp(rk).

It is easy to show that there are constants c and C which only depend on n

such that for any s ∈ (0, 1) there are points p1, . . . , pN that satisfy

(i) N < C/sn,

(ii) |pi − pj | > cs whenever i �= j ,

(iii) B(0, 1) ⊂ ∪B(pi, s).

Pick such points for s = γ (rk) and set

(3.5) gk(·) =
∑

i

fk(pi − ·) = ι(rk)
∑

i

χ(B(pi, rk), ·).

By (iii) we have that
sup

|x−θ |<γ (rk)

ĝk(x, rk) ≥ d

for all θ ∈ B(0, 1). Moreover, rk/γ (rk) → 0 (by (3.4)) so it follows by (ii) that
when k is big enough the supports of the terms in (3.5) are mutually disjoint.
For such k we have the estimate

(3.6) ‖gk‖p <

(
C

(γ (rk))n
Bnr

n
k ιp(rk)

)1/p

< (CBn)
1/p2−k.

Set GK = ∑
k≥K gk . Then GK ∈ Lp(Rn) and

lim
r→0

sup
(x,s)∈A (θ)

s<r

ĜK(x, s) > d

for all θ ∈ B(0, 1), independently of K , so GK(θ) > d for a.e. θ ∈ B(0, 1).
But at the same time we have limK→∞ ‖GK‖p = 0 by (3.6), a contradiction.

Given a function Ph,R it might be difficult to check wether Theorems 2.1
and 3.1 apply. We now give a simple criterion on h which is sufficient for Ph,R

to be an approximate identity such that (2.2) holds.
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Proposition 3.2. Let h be a positive function on R+ such that (3.2) holds
and let 0 < R ≤ ∞ be a constant. Assume that ∃K ≥ 0 such that h(t)tn−1

is decreasing for t ≥ K . Then Ph,R is an approximate identity such that (2.2)
holds if and only if

(3.7) lim
r→0

1

ι(r)rn
h

(
1

r

)
= 0.

Proof. It is clear that Ph,R satisfies (1.2). Since h(t) is decreasing for
t ≥ K , the first part of (1.3) holds if and only if h satisfies

(3.8) lim
r→0

1

ι(r)rn
h

(
c

r

)
= 0, ∀c > 0.

Moreover, the fact that h(t)tn−1 is decreasing for t ≥ K implies that ι(cr) ∼
ι(r) for small r and thus (3.7) and (3.8) are equivalent. The second part of (1.3)
holds if and only if

(3.9) lim
r→0

∫
B(0,c)

Ph,R(·, r) dλ = 1

for c < R. But∫
B(0,c)

Ph,R(·, r) dλ = nBn

ι(r)
·
∫ c/r

0
h(t)tn−1dt = 1 − nBn

ι(r)
·
∫ R/r

c/r

h(t)tn−1dt,

and thus (3.9) holds if and only if

lim
r→0

∫ R/r

c/r

h(t)tn−1

ι(r)
dt = 0,

which is indeed the case by (3.8) and the estimate
∫ R/r

c/r

h(t)tn−1

ι(r)
dt ≤ R − c

r

h(c/r)(c/r)n−1

ι(r)
.

which holds for r < c/K . We have now shown that that Ph,R is an approximate
identity if and only if (3.7) holds. It remains to show that (2.2) holds.

First assume that h does not have compact support. Pick K ′ > K , set
c4 = R/2K ′ and

u(r) = h(K ′)
ι(r)rn

.

Note that for r < c4 we have

L(r, u(r)) = {x ∈ Rn : h(|x|/r) > h(K ′)} = r{x ∈ Rn : h(|x|) > h(K ′)}



246 marcus carlsson

so |L(r, u(r))| ≤ K ′r . The fact that ρ(r) ∼ rιp/n(r) for small r and that ι is
a decreasing function implies that there exist c1 > 0 such that |L(r, u(r))| <

c1ρ(r) for r < c4.
Now fix s, r such that r < c4 and s < u(r). Put t = |L(r, s)|/r and note

that t ≥ K ′ and
L(r, s) ⊃ B(0, rt) \ B(0, rK).

Therefore |L(r, s)|n
λ(L(r, s))

≤ tn

Bn(tn − Kn)
≤ K ′n

Bn(K ′n − Kn)

so (2.2) holds with c1, c4 as above and c2 = K ′n
Bn(K ′n−Kn)

, c3 = 0.
The case when h has compact support follows with a similar argument. We

omit the details.

We will now show that Theorem 1.2 by Sjögren and Rönning follows dir-
ectly from Theorem 3.1. Let P1/2 be the normalized square root of the Poisson-
kernel, i.e. P1/2 : T × [0, 1) → R+ is defined via

P1/2(ξ, r) =
(
P(ξ, r)

)1/2

∥∥(
P(·, r))1/2∥∥

1

where P(ξ, r) = 1−r2

|ξ−r|2 denotes the Poisson-kernel.

Corollary 3.3. Let f ∈ Lp(T), 1 ≤ p < ∞, and set

f̂ (reit ) =
∫ 2π

0
P1/2(e

i(t−s), r)f (eis)
ds

2π
.

Also let a be arbitrary and set γ (r) = a(1− r)
(
log 1

1−r

)p
. Then, for a.e. θ ∈ T

we have that f̂ (z) → f (θ) when z → θ inside

z ∈ A (θ) = {reis : | arg θ − s| < γ (r)}.
Moreover these regions of convergence cannot be improved.

Proof. By standard arguments it is easily shown that

1 − r2

|eit − r|2 ∼ 1 − r

t2 + (1 − r)2

for t ∈ [−π, π ] and 0 < r < 1. Set h(t) = (1 + t2)
−1/2 and recall the

construction of P̃1/2 given before Proposition 2.4. It follows that P̃1/2 ∼ Ph,π

and that ι(r) ∼ log 1
r

for small r . The corollary is now an immediate application
of Propositions 2.3, 2.4 and Theorem 3.1.
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The above result is due to Sjögren [4] in the case p = 1 and due to Rönning
[2] for p > 1. A recently published article by Brundin [1] gives simpler proofs
of these results. All proofs are rather complicated and rely on estimates using
the actual shape of the kernel P1/2. As the above corollary shows, the result can
be proved without any knowledge of P1/2 except the estimate

∥∥P1/2(·, r)
∥∥p

q
∼(

(1 − r) log
(

1
1−r

)p)−1
for r → 1− and some basic observations.

Let 0 < α < 1. We may of course also consider the normalized αth root
of the Poisson-kernel, denoted Pα . If we carry out the above scheme in this
situation, the corresponding function h will be h(t) = (1 + t2)

−α . For α >

1/2, h ∈ L1 and hence ι(r) ∼ 1 for small r , which explains why we get
the “usual” non-tangential regions in this case. For α < 1/2 the function h

does not satisfy condition (3.7), that is, Pα are not approximate identities for
α < 1/2.

We will now construct an example related to condition (2.2). It can be shown
that the conclusion of Theorem 1.3 cannot hold for all approximate identities,
but an interesting question is wether (2.2) can be removed for the approximate
identities considered in this section. In other words, if h is such that Ph,R is an
approximate identity that does not satisfy condition (2.2), is the conclusion of
Theorem 1.3 still true?

We are not able to answer this question. However, the stronger form of
Theorem 2.1 that was indicated in the remark after its proof implies that for
each f ∈ L1 the equality

lim
r→0

(x,r)∈A (θ)

f̂ (x, r) = f (θ)

actually holds at all Lebesgue-points θ of f . This result does not hold for all
approximate identities of the form Ph,R .

To verify this claim, we shall construct a function h ∈ L1(R+) and a function
f ∈ L1(R) such that:

(i) 0 is a Lebesgue point for f and f (0) = 0.

(ii) h is such that Ph,∞ is an approximate identity.

(iii) f̂ (0, r) does not go to zero as r → 0.

Moreover, we will show that Ph,∞ fails condition (2.2) by very little, in the
sense that given any function σ that satisfies limr→0 σ(r) = ∞, h can be taken
such that the function

τ(r) = sup
s≥1

|L(r, s)|
λ(L(r, s))

satisfies τ(r) = O(σ(r)) as r → 0.
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We begin with the construction of f and h that satisfies (i)–(iii). Let Ak

denote the intervals [2−k − 4−k, 2−k] and set

f =
∞∑

k=1

2k

k
χ(Ak, ·).

It is easily seen that

lim sup
x→0+

∫ x

−x
|f (t)| dt

2x
≤ lim sup

m→∞
2m−1

∫ 2−m

0
f (t) dt ≤ lim sup

m→∞
1

m
= 0

so 0 is a Lebesgue point for f .
We turn to the construction of h. Note that for a positive h ∈ L1(R+), a

necessary and sufficient condition for Ph,∞ to be an approximate identity is

(3.10) lim
R→∞

sup
x≥R

Rh(x) = 0.

Let k(m) be numbers such that

k(m)∑
k=1

1

k
≥ m2,

let dm satisfy

(3.11) dm(2−k(m) − 4−k(m)) > dm−1,

and set

h(x) =
∞∑

m=1

1

dmm2

k(m)∑
k=1

2kχ

(
Ak,

x

dm

)

for x ≥ 0. Note that mth term of the first sum has support in the interval

[dm(2−k(m) − 4−k(m)), dm],

so by (3.11) the supports of the terms are disjoint. Moreover the L1-norm of
the mth term is less than 1/m2 so h ∈ L1(R+).

We thus get ι(r) = (2 ‖h‖1). The function
∑∞

k=1 2kχ(Ak, x) stays below the
curve 1/x which implies that the mth term stays below −1/(m2x). This in turn
implies that (3.10) is fulfilled so Ph,∞ = (2 ‖h‖1)

−1 1
r
h
( |x|

r

)
is an approximate

identity.
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It remains to verify (iii), which follows from the calculation

2 ‖h‖1 f̂

(
0,

1

dm

)
≥

∫
R
f (t)

1

m2

k(m)∑
k=1

2kχ(Ak, |−t |) dt = 1

m2

k(m)∑
k=1

1

k
≥ 1.

Thus not even the radial limit of f̂ exists at 0, and hence the approximate
identity Ph,∞ cannot satisfy condition (2.2). We now show that h can be chosen
such that

τ(r) = sup
s≥1

|L(r, s)|
λ(L(r, s))

satisfies τ(r) = O(σ(r)) when r → 0, where σ is any given function that
satisfies limr→0 σ(r) = ∞.

First note that τ is a decreasing function of r that depends on the choice
of h and thus on the constants dm. These can be chosen arbitrarily as long
as equation (3.11) is satisfied. Moreover ‖h‖1 is independent of the sequence
(dm), and a quite complicated calculation (which we omit) shows that

τ(r) ≤ 2k(m−1), ∀r > (m22 ‖h‖1 dm2−k(m))−1.

From this it follows that we can choose (dm) such that τ(r) < σ(r) for suffi-
ciently small r .

4. Products of approximate identities

Let P1(x, r) = 1
π

r
(x2+r2)

be the Poisson kernel for R and consider the function
on Rn defined by

P(x, r) = P1(x1, r1)P1(x2, r2) · · · P1(xn, rn),

where as usual it is implicitly understood that x = (x1, . . . , xn) etc. The
boundary behavior of convolutions of a function f with P was studied by
Zygmund (see [6], Ch. XVII). It follows from his results that if f ∈ Lp(Rn)

has compact support and p > 1, then for a.e. θ the extension

f̂ (x, r) =
∫

Rn

P (x − t, r)f (t) dλ(t)

has the limit f (θ) when (x, r) → (θ, 0) inside the set

A (θ) = {(x, r) : |xi − θi | < ari},
where a is any constant. If, however, f ∈ L1(Rn) then the above result is
in general false. This is well known and intimately connected with the fact
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that L1(Rn)-functions are not in general strongly differentiable. In fact, the
above statement can easily be proved using the result in [3] concerning strong
differentiability.

Note that the situation is quite different from the previous sections. First of
all the function P is not an approximate identity. It has too many variables and
moreover P(·, r) is not small outside a ball around 0 for small |r|. Another
difficulty is that the level sets of P do not satisfy a condition like (2.2), even
though the level sets of P1 are intervals.

We will now consider arbitrary functions P that arise in the above way as
products of approximate identities on R. At the end of this section we shall
give a generalization to Dn of Theorem 1.2 by Sjögren and Rönning, which
also can be considered as a complement to Theorem 2 in Brundin [1].

Let Pi , i = 1, . . . , n, be approximate identities on R, let ρi be the cor-
responding functions given by ρi(r) = ‖Pi(·, r)‖−p/n

q , and assume that (2.2)
holds for each Pi . Let the function P be given by

P(x, r) = P1(x1, r1)P2(x2, r2) · · · Pn(xn, rn).

The main result is the following.

Theorem 4.1. Let 1 ≤ p < ∞ be given and let P be defined as above. Let
ε > 0, let f ∈ Lp+ε(Rn) be a function with compact support and set

A (θ) = {(x, r) : |xi − θi | < aρi(ri)}
where a is any fixed constant. Then for a.e. θ ∈ Rn the function

f̂ (x, r) = (P (·, r) ∗ f )(x) =
∫

Rn

P (x − t, r)f (t) dλ(t)

has the limit f (θ) when (x, r) → (θ, 0) inside the region A (θ).

Remark. As noted above, the theorem is false for functions f ∈ L1(Rn).
Thus we may not in general allow ε = 0.

Proof. Assume first that (2.2) holds for each Pi under the additional as-
sumption that c3 = 0 and c4 = ∞. If f is a measurable function on Rn we
set

f i
HL(x) = sup

r>0

1

2r

∫ xi+r

xi−r

f (x1, . . . , xi−1, t, xi+1, . . . , xn) dt

and define the (sublinear) operators M1, . . . , Mn on Lp+ε(Rn) via

Mi(f )(x) = (
f i

HL(x) + (
(|f |p)iHL(x)

)1/p)
.
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Since the Hardy-Littlewood maximal operator is bounded on both spaces
Lp(R) and L1+ε/p(R), it follows that Mi is a bounded operator on Lp+ε(Rn).
By Theorem 2.2 there exists a constant C such that whenever |xi−θi | < aρi(ri)

we have∣∣∣∣
∫

R
Pi(xi − t, ri)f (θ1, . . . , θi−1, t, θi+1, . . . , θn) dt

∣∣∣∣ ≤ CMi(f )(θ).

By repeated use of the above formula and Fubini’s Theorem we conclude that
for (x, r) ∈ A (θ) we have

|f̂ (x, r)| =
∣∣∣∣
∫

Rn

P (x − t, r)f (t) dλ(t)

∣∣∣∣ ≤ CnM1
(
M2(. . . Mn(f ))

)
(θ).

Let C1 be such that ‖Mi‖ ≤ C1 and as in section 2 let f ∗ denote the maximal
function of f with respect to the regions A (·). Then

∥∥f ∗∥∥
p+ε

≤ CnCn
1 ‖f ‖p+ε .

The desired conclusion now follows as in the proof of Theorem 2.1. Finally,
the assumptions that c3 = 0 and c4 = ∞ may be removed by similar methods
as in the proof of Theorem 2.1, we omit the details.

As an application of the above theorem we will generalize Corollary 3.3.
Consider the function P : Tn × [0, 1)n → R+ given by

P(ξ, r) = P1/2(ξ1, r1)P1/2(ξ2, r2) . . . P1/2(ξn, rn)

and the corresponding extension to Dn of a function f ∈ Lp(Tn) given by

f̂
(
(r1e

it1 , . . . , rne
itn )

) =
∫

[−π,π]n
P (ei(t−s), r)f (eis)

dλ(s)

(2π)n
.

Corollary 4.2. Let 1 ≤ p < ∞, ε > 0 be given and f ∈ Lp+ε(Tn).
Let a be arbitrary and set ρ(r) = a(1 − r)

(
log 1

1−r

)p
. Then, for a.e. ξ ∈ Tn,

f̂ (z) → f (ξ) when z → ξ and

z ∈ A (ξ) = {(r1e
it1 , . . . , rne

itn ) ∈ Dn : | arg ξk − tk| < ρ(rk)}.

Proof. This follows immediately from Theorem 4.1 by using the same
techniques as in the proof of Corollary 3.3 and the appropriate versions of
Propositions 2.3 and 2.4.

Remark. By considering Pα for α > 1/2 we get the above corollary but
with ρ(r) = a(1 − r).
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Corollary 4.2 seems to be new and should be compared with Theorem 2 of
[1], where the same result is proved under the assumption that f ∈ L∞(Tn)

and with ρ such that ρ(r) = O((1 − r)α) for all α < 1. Note that this holds
for the functions a(1 − r)

(
log 1

1−r

)p
. See also [2] for a related result.
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