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(Dedicated to the memory of Professor Douglas Northcott)

Abstract

We extendAuslander and Buchsbaum’s Euler characteristic from the category of finitely generated
modules of finite projective dimension to the category of modules of finite G-dimension using
Avramov and Martsinkovsky’s notion of relative Betti numbers. We prove analogues of some
properties of the classical invariant and provide examples showing that other properties do not
translate to the new context. One unexpected property is in the characterization of the extremal
behavior of this invariant: the vanishing of the Euler characteristic of a module M of finite G-
dimension implies the finiteness of the projective dimension of M . We include two applications
of the Euler characteristic as well as several explicit calculations.

Introduction

This paper is devoted to an extension of Auslander and Buchsbaum’s Euler
characteristic [3] from the category of modules of finite projective dimen-
sion to the category of modules of finite G-dimension. When M is a finitely
generated module over a local ring R, its projective dimension is denoted
pdimR(M), and its nth Betti number is denoted βn(M). If pdimR(M) is finite
and i is a nonnegative integer, the ith Euler characteristic of M is χi(M) =∑

n≥i (−1)n−iβn(M), and the Euler characteristic of M is χ(M) = χ0(M).
This paper grew from our efforts to extend the following basic facts about
χi(M); see 1.11 and [3, (6.2), (6.4)].

(1) χi(M) ≥ 0 for each i.

(2) χ(M) = 0 if and only if AnnR(M) contains an R-regular element.

(3) If χi(M) = 0 for some i > 0, then pdimR(M) < i.

Auslander and Bridger [1], [2] introduced the modules of finite G-dimension
as those modules admitting finite G-resolutions, that is, finite resolutions by
totally reflexive modules; see 1.1 and 1.2 for definitions. Finitely generated
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projective modules are totally reflexive, and G-dimension is a refinement of
projective dimension for finitely generated modules. For a finitely generated
module M of finite G-dimension over a local ring R, Avramov and Mart-
sinkovsky [6] define the nth relative Betti number βG

n (M) using techniques of
relative homological algebra; see 1.8. The key to this construction is restricting
to a class of G-resolutions with particularly nice homological properties – the
proper G-resolutions.

We generalize the Euler characteristic in Section 2, defining the ith G-
Euler characteristic for a finitely generated module M of finite G-dimension
as χG

i (M) = ∑
n≥i (−1)n−iβG

n (M). We set χG (M) = χG
0 (M) and refer to it

as the G-Euler characteristic of M . These agree with the previous definitions
when M has finite projective dimension.

Some of the analogues of properties (1)–(3) above are direct translations,
while others are surprisingly different. For instance, we verify the analogues of
properties (1) and (3) in Propositions 2.6(a) and 2.13(a) for i �= 1. However,
when i = 1, Examples 3.1 and 3.2 show that the corresponding properties
fail to hold. The version of Property (2) in this setting is stated next; see
Theorem 2.10.

Theorem 1. Let R be a local ring and M a finitely generated R-module of
finite G-dimension. The following conditions are equivalent.

(i) χG (M) = 0.

(ii) pdimR(M) is finite and AnnR(M) contains an R-regular element.

This result is a corollary to Theorem 2.9: If M has rank, then χG (M) ≥
rankR(M) with equality if and only if pdimR(M) is finite. These results were
unexpected, as they state that the G-Betti numbers have the ability (through
vanishing of χG ) to detect the finiteness of projective dimension. The following
application of this result shows that the class of finite proper resolutions is not
as stable as one might hope; see Corollary 2.11.

Theorem 2. Let R be local and M a finitely generated R-module of finite
G-dimension and infinite projective dimension. Let G be a bounded proper
G-resolution of M and x = x1, . . . , xc ∈ R an R-regular and M-regular
sequence with c ≥ 1. If K is the Koszul complex on x, then the complex
G ⊗R K is a G-resolution of M/xM , but it is not proper.

The remaining sections of this paper further explore properties of the G-
Euler characteristic. Section 3 consists of specific computations demonstrating
further ways in which the G-Euler characteristic does not parallel the Euler
characteristic. Motivated by the odd behavior documented in Theorems 1 and 2,
we devote Sections 4 and 5 to investigating how unpredictable χG (N) can be
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when N is an R-module of finite G-dimension and infinite projective dimen-
sion.

1. Background

Throughout this work (R, �, k) is a (commutative, noetherian) local ring.

1.1. Set (−)∗ = HomR(−, R). A finitely generated R-module G is totally
reflexive if the biduality map G → G∗∗ is bijective and ExtiR(G, R) = 0 =
ExtiR(G∗, R) for each i �= 0. One verifies readily that finite rank free modules
and direct summands of totally reflexive modules are totally reflexive. Also,
the localization S−1G of any totally reflexive R-module G is totally reflexive
over S−1R by [10, (1.3.1)].

1.2. An R-complex is a sequence of R-module homomorphisms

G = · · · ∂G
n+1−−−−→ Gn

∂G
n−−−−→ Gn−1

∂G
n−1−−−−→ · · ·

such that ∂G
n−1∂

G
n = 0 for each integer n; the nth homology module of G

is Hn(G) = Ker(∂G
n )/ Im(∂G

n+1). A morphism of complexes α: G → G′ in-
duces homomorphisms Hn(α): Hn(G) → Hn(G

′), and α is a quasiisomorph-
ism when each Hn(α) is bijective. The shift of G, denoted ΣG, is the complex
with (ΣG)n = Gn−1 and ∂ΣG

n = −∂G
n−1.

The complex G is bounded if Gn = 0 for |n| 	 0. When G−n = 0 =
Hn(G) for alln > 0, the natural mapG → H0(G) = M is a quasiisomorphism.
In this event, G is a G-resolution of M if each Gn is totally reflexive, and the
exact sequence

G+ = · · · ∂G
2−−−−→ G1

∂G
1−−−−→ G0 −−→ M −−→ 0

is the augmented G-resolution of M associated to G. The G-dimension of M

is

G-dimR(M) = inf{sup{n ≥ 0 | Gn �= 0} | G is a G-resolution of M}.
The modules of G-dimension 0 are exactly the nonzero totally reflexive mod-
ules. Every finitely generated R-module admits a resolution by finite rank free
modules, and hence admits a G-resolution. In particular, every finitely gener-
ated module of finite projective dimension has finite G-dimension. We denote
projective dimension by “pdim” instead of “proj dim” or “pd”.

1.3. Let M be a finitely generated R-module of finite G-dimension. Since
R is local, the “AB-formula” [10, (1.4.8)] states

G-dimR(M) = depth(R) − depthR(M).
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This implies that M� is totally reflexive over R� for each � ∈ Ass(R), as
the finiteness of G-dimension localizes by [10, (1.3.2)]. Furthermore, if R is
Gorenstein, then G-dimR(N) < ∞ for each finitely generated R-module N .

1.4. A G-resolution G is G-proper (or simply proper) if the complex
HomR(H, G+) is exact for each totally reflexive R-module H . Proper G-
resolutions are unique up to homotopy equivalence by [17, (1.8)]. Accordingly,
when M admits a proper G-resolution G and N is an R-module, the nth relative
homology module and the nth relative cohomology module

TorG
n (M, N) = Hn(G⊗RN) and ExtnG (M, N) = H−n HomR(G, N)

are well-defined for each integer n.

1.5. Let M be a finitely generated R-module of finite G-dimension. A
bounded G-resolution G of M is G-strict (or simply strict) if Gn is project-
ive for each n ≥ 1. The module M admits a bounded strict G-resolution by
[6, (3.8)] and each bounded strict G-resolution of M is proper by [6, (4.1)].
Hence, M admits a proper G-resolution, and so the modules TorG

n (M, N) and
ExtnG (M, N) are well-defined. When G is a bounded strict G-resolution of M ,
the module K = Coker(∂G

2 ) has finite projective dimension, and the exact
sequence

0 −−→ K −−→ G0 −−→ M −−→ 0

is a G-approximation of M . One can also deduce the existence of G-approxim-
ations directly from Auslander and Buchweitz [4, (1.1)].

When M has finite projective dimension, any bounded resolution by finite
rank free modules is strict, hence proper, and so for each integer n there are
isomorphisms

TorG
n (M, N) ∼= TorR

n (M, N) and ExtnG (M, N) ∼= ExtnR(M, N).

1.6. Let M and N be finitely generated R-modules where M has finite G-
dimension. Fix a bounded strict G-resolution G of M . Since R is Noetherian,
the modules TorG

n (M, N) and ExtnG (M, N) are finitely generated for each in-
teger n. For every � ∈ Spec(R), the localized complex G� is a bounded strict
G-resolution of M� over R�. Using this it is straightforward to show that there
are R�-isomorphisms

TorG
n (M�, N�) ∼= TorG

n (M, N)� and ExtnG (M�, N�) ∼= ExtnG (M, N)�.

From this it follows that the supports of TorG
n (M, N) and ExtnG (M, N) are

contained in SuppR(M) ∩ SuppR(N) = SuppR(M ⊗R N), and the dimen-
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sions of TorG
n (M, N) and ExtnG (M, N) are at most dim(M ⊗R N). In partic-

ular, if M ⊗R N has finite length, then so do the modules TorG
n (M, N) and

ExtnG (M, N).

1.7. Avramov and Martsinkovsky [6, §1] extend the notion of minimality
for free resolutions of finitely generated modules over a local ring to more
general resolutions: A G-resolution G is minimal if each homotopy equivalence
G → G is an isomorphism. See [6, (8.5)] for the following facts. Let M be a
finitely generated R-module of finite G-dimension. Since R is local, a proper
G-resolution G of M is minimal if and only if the following conditions are
satisfied

(a) Gn is a finitely generated free module for n ≥ 1,

(b) ∂G
n (Gn) ⊆ �Gn−1 for n ≥ 2, and

(c) ∂G
1 (G1) contains no nonzero free direct summand of G0.

Further, the moduleM admits a minimal proper G-resolutionGwhich is unique
up to isomorphism of complexes and satisfies Gn = 0 for n > G-dimR(M).
In particular, a minimal proper G-resolution of M is bounded and strict.

A G-approximation 0 → K → G → M → 0 is minimal if every homotopy
equivalence from the complex 0 → K → G → 0 to itself is an isomorphism.
From [6, (8.6.2)] this is so if and only if K contains no nonzero free direct
summand of G.

Our Euler characteristic is based on Avramov and Martsinkovsky’s notion
of relative Betti numbers for modules of finite G-dimension [6, Section 9].

1.8. Assume that R is local and M is a a finitely generated R-module of
finite G-dimension. For each integer n, the nth relative Betti number of M is

βG
n (M) = rankk ExtnG (M, k) = rankk TorG

n (M, k)

and one has βG
n (M) = 0 for each n > G-dimR(M) and each n < 0. When

pdimR(M) < ∞, the isomorphisms in 1.5 yield βG
n (M) = βR

n (M) for each n.
When pdimR(M) is infinite, the situation is somewhat different. For in-

stance, not all of the relative Betti numbers can be found by inspecting a
minimal proper G-resolution. However, given a G-approximation 0 → K →
G → M → 0, one has

(∗) βG
n (M) =

⎧⎪⎪⎨
⎪⎪⎩

βR
0 (M) for n = 0

βR
0 (M) − βR

0 (G) + βR
0 (K) for n = 1

βR
n−1(K) for n ≥ 2
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by [6, (9.1)]. Thus, if G is a minimal proper G-resolution of M , then βG
n (M) =

rankR(Gn) for n ≥ 2.

The following example from [6, (9.2)] will be used repeatedly in this paper.

Example 1.9. If R is a nonregular Gorenstein local ring of dimension d,
then

βG
n (k) =

⎧⎪⎨
⎪⎩

0 for n < 0, n = 1, and n > d

1 for n = 0

βR
d−n(k) for 2 ≤ n ≤ d.

We conclude this section with a discussion of properties to be used in the
sequel. For the sake of completeness, we include sketches of proofs of items
for which we are unaware of proper references. Consult [3, Sec. 6], [18, Sec. 4-
3], [20, Ch. 19] and [21, Ch. 4] for further discussion. We denote the length of
M by �R(M).

1.10. If R is a local ring and X is a bounded complex of R-modules such
that each Xn has finite length, then there is an equality∑

n

(−1)n�R(Xn) =
∑

n

(−1)n�R(Hn(X)).

It is straightforward to prove this directly, or one can consult, e.g., [7, (1.5.19)].

1.11. Let M be a finitely generated module of finite projective dimension
over a local ring R. For each integer i ≥ 0, the ith Euler characteristic of M

is χi(M) = ∑
n≥i (−1)n−iβR

n (M). The Euler characteristic of M is χ(M) =
χ0(M). We write χR(M) and χi,R(M) in lieu of χ(M) and χi(M) when it is
important to do so.

If F
�−→ M is a finite free resolution, then χ(M) = ∑

n(−1)n rankR(Fn).
This follows from 1.10; see also [18, p. 139]. From the additivity of rank, it
follows that M has rank and χ(M) = rankR(M) ≥ 0. In particular, χ(−) is
additive on exact sequences, and χR�

(M�) = χR(M) for all � ∈ Spec(R).
For each integer i ≥ 1 and each � ∈ Spec(R), there are inequalities

(∗) χi,R(M) ≥ χi,R�
(M�) ≥ 0.

Indeed, if Syzi
R(M) denotes the ith syzygy of M in a minimal R-free resolution,

then there exists an integer t ≥ 0 such that Syzi
R(M)�

∼= Syzi
R�

(M�) ⊕ Rt
�.

This justifies the following sequence

χR�
(Syzi

R(M)�) = χR�
(Syzi

R�
(M�)) + t ≥ χR�

(Syzi
R�

(M�))
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which yields the inequality in the next sequence

χi,R(M) = χR(Syzi
R(M)) = χR�

(Syzi
R(M)�)

≥ χR�
(Syzi

R�
(M�)) = χi,R�

(M�).

The first and last equalities are from the definition of χi(−) and the second
equality is from the previous paragraph. This provides the first inequality in (∗).
The second one also follows because χi,R�

(M�) = χR�
(Syzi

R�
(M�)) ≥ 0 where

the inequality is from the previous paragraph.

1.12. Let M is a finitely generated R-module with rank r where R is local.
There is an inequality βR

0 (M) ≥ r with equality if and only if M is free. Indeed,

for any � ∈ Ass(R) one has βR
0 (M) ≥ β

R�

0 (M�) = r , providing the desired
inequality. One direction of the biimplication is straightforward, so assume
βR

0 (M) = r and fix an exact sequence

0 −−→ N −−→ Rr ρ−−−→ M −−→ 0.

Setting U to be the set of nonzerodivisors on R, the localized sequence

0 −−→ U−1N −−→ U−1Rr U−1ρ−−−−→ U−1M −−→ 0

is exact. There is an isomorphism U−1Rr ∼= U−1M , as M has rank r . Since
ρ is a surjective homomorphism between isomorphic modules, it is bijective.
This translates to U−1N = 0 and so there exists u ∈ U such that uN = 0.
The element u is a nonzerodivisor on R and hence on the submodule N ⊆ Rr .
One concludes that N = 0 and so M is free.

2. The G-Euler characteristic

This section is devoted to basic properties of the Euler characteristic for mod-
ules of finite G-dimension.

Definition 2.1. Let R be a local ring and M a finitely generated R-module
of finite G-dimension. For each integer i ≥ 0, the ith G-Euler characteristic
of M is

χG
i (M) =

∑
n≥i

(−1)n−iβG
n (M).

The G-Euler characteristic of M is χG (M) = χG
0 (M). When it is important

to identify the ring R, we write χG
R (M) and χG

i,R(M) in lieu of χG (M) and
χG

i (M).

For ease of reference, we single out a few consequences of 1.8 and [6, (4.7)].
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Observation 2.2. Let R be a local ring, and let M and N be finitely
generated R-modules of finite G-dimension.

(a) If pdim(M) is finite, then χG
i (M) = χi(M) for each i ≥ 0 since

βG
n (M) = βR

n (M) for each n. In particular, if s is an R-regular ele-
ment, then one has χG (Rt/sRt ) = χ(Rt/sRt ) = 0 by fact (2) from the
introduction.

(b) If M is totally reflexive, then βG
n (M) = 0 for n ≥ 1 and βG

0 (M) =
βR

0 (M), so χG (M) = βR
0 (M) and χG

i (M) = 0 for each i > 0.

(c) One hasβG
n (M⊕N) = βG

n (M)+βG
n (N) for eachn, and soχG

i (M⊕N) =
χG

i (M) + χG
i (N) for each i ≥ 0.

(d) Given a G-approximation 0 → K → G → M → 0, there are equalities
χG (M) = βR

0 (G) − χ(K) and χG
i (M) = χi−1(K) when i ≥ 2.

As in the finite projective dimension setting, one can compute χG
i (M) from

an appropriate bounded proper G-resolution, provided i �= 1. Example 3.1
shows that the same need not hold when i = 1 or if the resolution is not
proper. For a discussion of minimality, see 1.7.

Proposition 2.3. Let R be a local ring and M a finitely generated R-
module of finite G-dimension If G is a bounded proper G-resolution of M ,
then

χG (M) =
∑
n≥0

(−1)nβR
0 (Gn).

In particular, when G is strict, one has

χG (M) = βR
0 (G0) +

∑
n≥1

(−1)n rankR(Gn).

If G is a minimal proper G-resolution of M , then for i ≥ 2, one has

χG
i (M) =

∑
n≥i

(−1)n−iβR
0 (Gn).

Proof. Let G be a bounded proper G-resolution of M . There are equalities

χG (M) =
∑
n≥0

(−1)nβG
n (M) =

∑
n≥0

(−1)n�R(H−n(HomR(G, k)))

=
∑
n≥0

(−1)n�R(HomR(Gn, k)) =
∑
n≥0

(−1)nβR
0 (Gn).

The first and second equalities hold by definition, the third is 1.10, and the
fourth is essentially Nakayama’s Lemma.
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If G is strict, then Gn is free for n ≥ 1 and so βR
0 (Gn) = rankR(Gn). For

the last equation, note that βG
n (M) = βR

0 (Gn) for i ≥ 2 by equation (∗) in 1.8.

Our first application of the G-Euler characteristic now follows.

Corollary 2.4. Let R be a nonregular Gorenstein local ring of depth d

and Kd the dth syzygy of k. Then βR
0 (HomR(Kd, R)) = βR

d−1(k) + 1.

Proof. If F is a minimal free resolution of k, the “soft truncation”

0 −−→ Kd −−→ Fd−1 −−→ · · · −−→ F1 −−→ F0 −−→ 0

is a G-resolution of k. Furthermore, the dualized complex

0 −−→ (F0)
∗ −−→ (F1)

∗ −−→ · · · −−→ (Fd−1)
∗ −−→ (Kd)

∗ −−→ 0

is a bounded strict G-resolution of k; see the discussion after [4, Theorem B].
Proposition 2.3 and the equality βR

d−n(k) = rankR((Fd−n)
∗) then imply

χG (k) = βR
0 ((Kd)

∗) +
d∑

n=1

(−1)nβR
d−n(k).

On the other hand, Example 1.9 provides

χG (k) = 1 +
d∑

n=2

(−1)nβR
d−n(k).

Combining the displayed equations yields the desired result.

Let R → S be a (not necessarily local) ring homomorphism of finite flat
dimension between local rings and M a finitely generated R-module of finite
G-dimension such that TorR

≥1(M, S) = 0. Then G-dimS(M ⊗R S) is finite
by [11, (1.3.2), (5.10)] and [16, (4.11)]. For example, the Tor-vanishing is
automatic if R → S is flat or if S = R/x where x is R-regular and M-regular.
Our next result compares the ith G-Euler characteristics of M ⊗R S and M ,
computed over S and R, respectively. Examples 3.1 and 3.2 show that the
inequalities can be strict and that they can fail when i = 1.

Proposition 2.5. Let ϕ: (R, �, k) → (S, �, l) be a (not necessarily local)
homomorphism of finite flat dimension between local rings. Fix a finitely gen-
erated R-module M of finite G-dimension and assume TorR

≥1(M, S) = 0.

(a) For each i �= 1, one has χG
i,S(M ⊗R S) ≤ χG

i,R(M).

(b) If � ⊂ R is a prime ideal, then χG
i,R�

(M�) ≤ χG
i,R(M) for each i �= 1.
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(c) If ϕ is local, then βG
n (M ⊗R S) = βG

n (M) and χG
i,S(M ⊗R S) = χG

i,R(M)

for all integers n and i.

Proof. We first prove parts (b) and (c).
(b) If G is a bounded strict G-resolution of M over R, then G� is a bounded

strict G-resolution of M� over R�. Since rankR�
((Gn)�) = rankR(Gn) for each

n ≥ 1 and β
R�

0 ((G0)�) ≤ βR
0 (G0), the inequality for i = 0 follows from

Proposition 2.3.
Now let i ≥ 2 and fix a G-approximation 0 → K → G → M → 0.

Observation 2.2(d) provides the two equalities in the following sequence

χG
i,R(M) = χi−1,R(K) ≥ χi−1,R�

(K�) = χG
i,R�

(M�)

while the inequality follows from 1.11.
(c) It suffices to prove the first statement. Let

0 −−→ Gt −−→ Gt−1 → · · · −−→ G1 −−→ G0 −−→ M −−→ 0

be an augmented strict G-resolution of M . By [16, (4.11)], the tensored se-
quence

(†) 0 −−→ Gt ⊗R S −−→ Gt−1 ⊗R S −−→ · · ·
−−→ G1 ⊗R S −−→ G0 ⊗R S −−→ M ⊗R S −−→ 0

is exact. Furthermore, the S-module G0 ⊗R S is totally reflexive by [11, (5.10)]
and [16, (4.11)] and, for each n ≥ 1, the S-module Gn ⊗R S is free of finite
rank. In particular, the sequence (†) is an augmented strict G-resolution of
M ⊗R S. Thus, the first and third equalities in the following sequence are by
definition

βG
n (M) = rankk(Hn(G ⊗R k)) = rankl(Hn(G ⊗R S) ⊗S l) = βG

n (M ⊗R S)

while the second equality follows from the flatness of the induced map k → l

which exists because ϕ is local.
(a) Setting � = ϕ−1(�), the localized homomorphism R� → S is local

and has finite flat dimension. Also, the factorization of ϕ as R → R� → S

provides the isomorphism Tor
R�

≥1(M�, S) ∼= TorR
≥1(M, S) = 0, and hence the

(in)equalities

χG
i,S(M ⊗R S) = χG

i,S(M� ⊗R�
S) = χG

i,R�
(M�) ≤ χG

i,R(M)

follow from parts (b) and (c).
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When M has finite projective dimension, its ith Euler characteristic is non-
negative. The same behavior is exhibited when M has finite G-dimension and
i �= 1. When i = 1 these two theories diverge, as χG

1 (M) can be negative; see
Example 3.2.

Proposition 2.6. Let R be local and M a finitely generated R-module of
finite G-dimension. Fix an integer i ≥ 0 and a G-approximation 0 → K →
G → M → 0.

(a) If i �= 1, there is an inequality χG
i (M) ≥ 0.

(b) There is an equality χG
1 (M) = βR

0 (M) − βR
0 (G) + χ(K). In particular,

χG
1 (M) ≥ βR

0 (M) − βR
0 (G).

(c) If M has rank r , then χG (M) ≥ r .

Proof. For parts (a) and (c), fix � ∈ Ass(R). By 1.3, the R�-module M� is
totally reflexive. Proposition 2.5(b) gives the inequality below

χG
i,R(M) ≥ χG

i,R�
(M�) =

{
0 if i ≥ 2

β
R�

0 (M�) if i = 0

while the equality comes from Observation 2.2(b). This establishes (a). For
part (c), assume that M has rank r . The inequality below is from the previous
display

χG
R (M) ≥ β

R�

0 (M�) = rankR(M) = r

while the first equality is standard.
(b) The first and third equalities below are by definition

χG
1 (M) = βG

1 (M) − χG
2 (M) = βR

0 (M) − βR
0 (G) + βR

0 (K) − χG
1 (K)

= βR
0 (M) − βR

0 (G) + χ(K) ≥ βR
0 (M) − βR

0 (G)

while the second equality is from equation (∗) in 1.8, and the inequality follows
from the nonnegativity of χ(K); see 1.11.

In contrast with the finite projective dimension situation [21, (4, Exer. 8)],
the G-Euler characteristic is subadditive on short exact sequences. Example 3.1
shows that additivity need not hold when the sequence is not proper.

Proposition 2.7. If R is a local ring and 0 → M ′ → M → M ′′ → 0
is an exact sequence of finitely generated modules of finite G-dimension, then
one has

χG (M) ≤ χG (M ′) + χG (M ′′)

with equality when the exact sequence is proper.



an euler characteristic for modules of finite g-dimension 217

Proof. Applying [15, (1.12.11)] to the given exact sequence yields a com-
mutative diagram with exact rows

(†)

0 −−−→ G′ −−−→ G −−−→ G′′ −−−→ 0

↓ ↓ ↓
0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

where each vertical map is a bounded strict G-resolution. Subadditivity follows
since βR

0 (G0) ≤ βR
0 (G′

0) + βR
0 (G′′

0) and βR
0 (Gn) = βR

0 (G′
n) + βR

0 (G′′
n) for

each n ≥ 1.
When the given exact sequence is proper, there exists a diagram (†) whose

top row is degreewise split in every degree by [6, (4.5)]. In this event, one
has βR

0 (Gn) = βR
0 (G′

n) + βR
0 (G′′

n) for each n ≥ 0 and the desired conclusion
follows.

To verify the following bound, apply the previous result to a composition
series of M . Example 3.1 shows that this bound can be strict.

Corollary 2.8. If R is a Gorenstein local ring and M is an R-modules of
finite length, then χG (M) ≤ �R(M)χG (k).

We now document the conditions under which χG (M) achieves the lower
bounds described in parts (a) and (c) of Proposition 2.6. Surprisingly, extremal
behavior of χG (M) implies that pdimR(M) is finite in both cases.

Theorem 2.9. Let R be a local ring and M a finitely generated R-module
of finite G-dimension. The following conditions are equivalent.

(i) M has rank and χG (M) = rankR(M).

(ii) pdimR(M) < ∞.

Proof. The implication (ii) ⇒ (i) is a consequence of 1.11 and Observa-
tion 2.2(a). For the other implication, assume that M has rank and χG (M) =
rankR(M). Consider a G-approximation

(†) 0 −−→ K −−→ G −−→ M −−→ 0

which is proper by [6, (4.7)]. Since K has finite projective dimension, 1.11
implies rankR(K) = χ(K). With the additivity of rank, this provides the first
of the equalities below, while the second holds by assumption, the third comes
from Proposition 2.7, and the fourth is in Observation 2.2(b).

rankR(G) = χ(K) + rankR(M) = χG (K) + χG (M) = χG (G) = βR
0 (G)

The desired conclusion now follows, as G is free by 1.12.
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The next extremal result is Theorem 1 from the introduction.

Theorem 2.10. Let R be a local ring and M a finitely generated R-module
of finite G-dimension. The following conditions are equivalent.

(i) χG (M) = 0.

(ii) pdimR(M) is finite and AnnR(M) contains an R-regular element.

Proof. (ii) ⇒ (i) If pdimR(M) < ∞ and AnnR(M) contains an R-regular
element, then the first equality in the following sequence is in [3, (6.2)]

0 = χ(M) = χG (M)

and the second one is in Observation 2.2(a).
(i) ⇒ (ii) Assume χG (M) = 0. For each � ∈ Ass(R), the R�-module M� is

totally reflexive by 1.3. Thus, Observation 2.2(b) yields the first (in)equality
below

β
R�

0 (M�) = χG
R�

(M�) ≤ χG
R (M) = 0

while the second follows from Proposition 2.5(b) and the last is by hypothesis.
Thus, one has M� = 0 and hence rankR(M) = 0, that is, AnnR(M) contains
an R-regular element. Since χG (M) = 0 = rankR(M), Theorem 2.9 implies
pdimR(M) < ∞.

Theorem 2 from the introduction now follows.

Corollary 2.11. Let R be a local ring and M a finitely generated R-
module of finite G-dimension and infinite projective dimension. Let G be a
bounded proper G-resolution of M and x = x1, . . . , xc ∈ R an R-regular and
M-regular sequence with c ≥ 1. If K is the Koszul complex on x, then the
complex G ⊗R K is a G-resolution of M/xM , but it is not proper.

Proof. The complex G⊗R K consists of totally reflexive modules, and the
augmented complex G ⊗R K → M/xM → 0 is exact since x is M-regular.
Thus, G⊗R K is a G-resolution of M/xM over R. If K ′ is the Koszul complex
on the sequence x1, . . . , xc−1, then there is a degree-wise split exact sequence
of complexes

0 −−→ G ⊗R K ′ −−→ G ⊗R K −−→ ΣG ⊗R K ′ −−→ 0.

In particular, this provides equalities∑
n≥0

(−1)nβR
0 ((G ⊗ K)n)

=
∑
n≥0

(−1)nβR
0 ((G ⊗ K ′)n) −

∑
n≥0

(−1)nβR
0 ((G ⊗ K ′)n) = 0.
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Suppose that the resolution G⊗R K were proper. Proposition 2.3 provides the
first equality in the next sequence and the second equality is from the previous
display

χG
R (M/xM) =

∑
n≥0

(−1)nβR
0 ((G ⊗R K)n) = 0.

Hence, Theorem 2.10 implies pdimR(M/xM) < ∞. However, since x is R-
regular and M-regular, one has pdimR(M) = pdimR(M/xM) − c < ∞, a
contradiction. Thus, the complex G ⊗R K is not proper.

In light of 1.11, there is an inequality χ(M) ≤ βR
0 (M) when pdimR(M) <

∞. We verify the analogous inequality for χG next when G-dimR(M) = 1. In
Examples 3.1 and 3.2 that the inequality can fail when G-dimR(M) > 1 and
that it can be strict when M is not cyclic.

Proposition 2.12. Let R be a local ring and M a finitely generated R-
module such that G-dimR(M) = 1 and pdimR(M) = ∞. There is an inequal-
ity χG (M) ≤ βR

0 (M) with equality when M is cyclic.

Proof. Let 0 → Rn → G → M → 0 be a strict G-resolution. Proposi-
tion 2.7 provides the first equality below and Observation 2.2(b) provides the
second.

χG (M) = χG (G)−χG (Rn) = βR
0 (G)−βR

0 (Rn) ≤ n+βR
0 (M)−n = βR

0 (M)

The inequality is standard and the last equality is trivial. When M is cyclic,
Theorem 2.10 implies 1 ≤ χG (M) ≤ βR

0 (M) = 1, providing the desired
equality.

The next result addresses the extremal behavior of χG
i (M) for i ≥ 1. Ex-

ample 3.1 shows that the implication (iv) ⇒ (i) in part (b) fails in general, as
does one implication of part (a) when i = 1.

Proposition 2.13. Let R be a local ring and M a finitely generated R-
module of finite G-dimension. Fix an integer i and G-approximation 0 →
K → G → M → 0.

(a) For i ≥ 2, one has χG
i (M) = 0 if and only if G-dim(M) < i.

(b) The following conditions are equivalent

(i) χG
1 (M) = βR

0 (M) − βR
0 (G).

(ii) G-dimR(M) = 0 and the given G-approximation is minimal.

(iii) K = 0.

and they imply the following

(iv) χG
1 (M) = 0.
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Proof. (a) One implication is immediate from the vanishing statement
in 1.8. For the other implication, assume χG

i (M) = 0. Observation 2.2(d)
yields 0 = χG

i (M) = χi−1(K). Since pdimR(K) is finite, one has pdimR(K) <

i − 1 by [3, (6.4)], and hence G-dimR(M) < i.
(b) The implication (iii) ⇒ (ii) is straightforward, while (ii) ⇒ (iii) follows

from 1.7. For (iii) ⇒ (iv) and (iii) ⇒ (i), use equation (∗) from 1.8. To prove
(i) ⇒ (iii), assume χG

1 (M) = βR
0 (M) − βR

0 (G), and suppose K �= 0. Propos-
ition 2.6(b) shows χ(K) = 0, so [3, (6.2)] implies that AnnR(K) contains
an R-regular element. However, since K is a submodule of a totally reflexive
module, it is torsion-free by [10, (1.1.6)] and therefore AnnR(K) does not
contain an R-regular element, a contradiction.

We conclude this section with a discussion of a possible generalization of
Serre’s intersection multiplicity [24].

Remark 2.14. Let R be a local ring and let M and N be finitely generated
R-modules such that pdimR(M) < ∞ and �R(M⊗RN) < ∞. The assumption
pdimR(M) < ∞ yields TorR

n (M, N) = 0 for n 	 0, while �R(M⊗R N) < ∞
implies �R(TorR

n (M, N)) < ∞ for all n. It follows that Serre’s intersection
multiplicity

χ(M, N) =
∑

n

(−1)n�R(TorR
n (M, N))

is a well-defined integer. Serre considered the following properties.

Dimension Inequality: dimR(M) + dimR(N) ≤ dim(R).

Nonnegativity: χ(M, N) ≥ 0.

Vanishing: If dimR(M) + dimR(N) < dim(R),

then χ(M, N) = 0.

Positivity: If dimR(M) + dimR(N) = dim(R),

then χ(M, N) > 0.

Serre established the Dimension Inequality when R is any regular local ring
and the others when R is regular and either equicharacteristic or unramified.
For arbitrary regular local rings, Gillet and Soulé [14] and Roberts [22] verified
the Vanishing Conjecture, and Gabber1 took care of Nonegativity. Positivity
is still open.

Serre’s intersection multiplicity is a generalization of the classical Euler
characteristic since χ(M) = χ(M, k). Hence, it is natural to ask if the G-
Euler characteristic can be extended to a G-intersection multiplicity. We next

1 As of the writing of this article, Gabber has not published this result; see [8], [23].
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show how this can be done and demonstrate the limitations of the resulting
invariant.

Let M and N be finitely generated R-modules such that G-dimR(M) < ∞
and �R(M ⊗R N) < ∞. Using 1.5 and 1.6, one sees that the quantity

χG (M, N) =
∑

n

(−1)n�R(TorG
n (M, N))

is a well-defined integer. When pdimR(M) < ∞, the displayed isomorphisms
in 1.5 provide an equality χG (M, N) = χ(M, N).

A construction of Dutta, Hochster, and McLaughlin [13] shows that the
analogues of the properties listed above fail. Indeed, let k be a field and set
R = k[[X, Y, Z, W ]]/(XY − ZW). This ring is Gorenstein of dimension
3, so each finitely generated R-module has finite G-dimension. The ideals
� = (X, Z)R and � = (Y, W)R are prime with dim(R/�) = 2 = dim(R/�)

and R/� ⊗R R/� ∼= k. In particular, the dimension inequality fails over R.
The construction in [13] provides a module M of finite length and finite pro-
jective dimension with χ(M, R/�) = −1. Since pdimR(M) is finite, there are
equalities χG (M, R/�) = χ(M, R/�) = −1, so nonnegativity fails, as does
vanishing since dimR(M) + dimR(R/�) < dim(R). Furthermore, positivity
fails by [12, p. 667, Theorem].

3. Computations over nonregular Gorenstein rings

This section consists of explicit computations demonstrating that the results
of Section 2 are, in a sense, optimal.

Example 3.1. Let (R, �, k) be a nonregular Gorenstein local ring of di-
mension 1. For each integer t ≥ 0 the ideal �t is nonzero since dim(R) = 1,
and so a result of Levin and Vasconcelos [19, (1.1)] implies that pdimR(R/�t )

is infinite. The AB-formula 1.3 gives G-dimR(R/�t ) = 1 and so the first
syzygy of R/�t , namely �t , is totally reflexive by [10, (1.2.7)].

Proposition 2.12 implies χG (R/�t ) = 1; in particular, χG (k) = 1. Ex-
ample 1.9 provides χG

i (k) = 0 for each i ≥ 1. This shows that the hypothesis
i ≥ 2 is necessary in Proposition 2.13(a). Observation 2.2(b) and the fact that
R is nonregular yield χG (�) = βR

0 (�) ≥ 2 and χG
i (�) = 0 for each i ≥ 1.

Also, the following exact sequence is an augmented G-resolution

H+ = 0 −−→ � −−→ R −−→ k −−→ 0

and, as in the proof of Corollary 2.4, the dual G = H ∗ is a bounded strict
G-resolution whose associated augmented strict G-resolution is

G+ = 0 −−→ R −−→ HomR(�, R) −−→ k −−→ 0.
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Since R is indecomposable, the resolution G is minimal by [6, (8.5.3)].
Using the resolution H the following sequence shows that one cannot com-

pute χG (M) from an arbitrary bounded G-resolution

∑
n≥0

(−1)nβR
0 (Hn) = 1 − βR

0 (�) < 0 < 1 = χG (k).

Thus, in Proposition 2.3 it is necessary to assume that the resolution G is
proper. This also shows that the inequality in Proposition 2.7 can be strict, and
it follows that the exact sequence of resolutions from [15, (1.12.11)] used in
the proof of Proposition 2.7 is in general not split exact in degree 0. Also, one
cannot compute χG

1 (M) as in Proposition 2.3, even from a minimal proper
G-resolution, as ∑

n≥1

(−1)n−1βR
0 (Gn) = 1 > 0 = χG

1 (k).

Next we note that the inequality χG
R�

(M�) ≤ χG
R (M) from Proposition 2.5(b)

can be strict. If � � � is a prime ideal, then there is an isomorphism ��
∼= R�

and thus
χG

R�
(��) = 1 < βR

0 (�) = χG
R (�).

Similarly, the inequality in Corollary 2.8 can be strict: if t ≥ 2, then

χG (R/�t ) = 1 < �R(R/�t ) = �R(R/�t )χG (k).

When G-dimR(M) ≤ 1, one has χG (M) ≤ βR
0 (M) by Proposition 2.12 and

Observation 2.2(b). With 1.12 in mind, one may ask whether the equality
χG (M) = βR

0 (M) forces M to be totally reflexive. It does not, as G-dimR(k) =
1 even though χG (k) = 1 = βR

0 (k). By the same token, the vanishing of χG
1 (k)

shows that the implication (iv) ⇒ (iii) in Proposition 2.13(b) need not hold.
To see that the inequality in Proposition 2.12 can be strict if M is not cyclic,

fix an R-regular element x and consider the exact sequence

0 −−→ x2R −−→ � −−→ �/x2R −−→ 0.

Since x2 annihilates �/x2R, we have depthR(�/x2R) = 0 and so the AB-
formula 1.3 yields G-dimR(�/x2R) = 1. The isomorphism x2R ∼= R implies
that the displayed sequence is an augmented strict resolution of �/x2R. Thus,
Proposition 2.3 implies

χG (�/x2R) = βR
0 (�) − 1 < βR

0 (�) = βR
0 (�/x2R).
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Finally, when I is a nonzero ideal of finite projective dimension, one has
χ(I) = 1 by [21, Ch. 4, Exer. 9]. The analogous formula need not hold when
G-dimR(I ) is finite, as χG (�) = βR

0 (�) > 1.

Example 3.2. Let (S, �, l) be a nonregular Gorenstein local ring of di-
mension d ≥ 2. Using Example 1.9, one has βG

0 (l) = 1 and βG
1 (l) = 0.

Furthermore, Propositions 2.6(a) and 2.13(a) show that χG
2 (l) > 0. It follows

that the inequality in Proposition 2.6(a) need not hold when i = 1 as

χG
1 (l) = −χG

2 (l) < 0

Also, the inequality in Proposition 2.5(b) can fail when i = 1. Indeed, if � � �
is a prime ideal, then one has

χG
1,S�

(l�) = 0 > χG
1,S(l).

Lastly, if G-dimR(M) > 1, then the inequality in Proposition 2.12 need not
hold as

χG (l) = 1 + χG
2 (l) > 1 = βS

0 (l).

4. Behavior with respect to regular sequences

Motivated by Theorem 2.10, we investigate in this section the behavior of
χG (M) for particular classes of modules of finite G-dimension and infinite
projective dimension. More specifically, we consider the following two ques-
tions for finitely generated modules M and N over a local ring R.

1. Assume that G-dimR(N) < ∞ = pdimR(N). If s ∈ R is R-regular and
sN = 0, do any inequalities between χG (M) and χG (M/sM) always
hold?

2. Assume that G-dimR(M) < ∞ = pdimR(M). If s ∈ R is R-regular and
M-regular, do any inequalities between χG (M) and χG (M/sM) always
hold?

Before demonstrating the negative answers to these questions, we provide one
instance of an affirmative answer to Question 2. In this result f-rankR(M)

denotes the maximal rank of a free direct summand of M .

Theorem 4.1. Let R be a local ring and M a finitely generated R-module.
If M is a totally reflexive R-module and s ∈ R is R-regular (and hence M-
regular) then

χG
R (M/sM) = χG

R (M) − f-rankR(M) ≤ χG
R (M).
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Thus, if M admits no nonzero free direct summand, then χG
R (M/sM) =

χG
R (M).

Proof. First note that the assumption that M is totally reflexive implies
that M is a submodule of a free R-module of finite rank. Hence, the element
s is M-regular.

We next show that it suffices to prove the final statement. Set t =
f-rankR(M) and write M ∼= M ′ ⊕ Rt where M ′ admits no nonzero free direct
summand. Note that M ′ is totally reflexive. Once the equality χG

R (M ′/sM ′) =
χG

R (M ′) is verified, it provides the second equality in the following sequence

χG
R (M) = χG

R (M ′) + χG
R (Rt)

= χG
R (M ′/sM ′) + t

= χG
R (M ′/sM ′) + χG

R (Rt/sRt ) + t

= χG
R (M/sM) + f-rankR(M)

while the first and fourth follow from Observation 2.2(c) and the third is from
Observation 2.2(a).

Assume now that M admits no nonzero free direct summand. Let T be a
complete resolution of M; that is, T is a complex of finitely generated free
modules

T = · · · ∂T
2−−−−→ T1

∂T
1−−−−→ T0

∂T
0−−−−→ T−1

∂T−1−−−−→ · · ·
such that Coker(∂T

1 ) ∼= M , and both T and HomR(T , R) are exact. Further-
more, assume T is minimal, so that ∂T

i (Ti) ⊆ �Ti−1; see [6, (8.4)]. The hard
truncation

T≥0 = · · · ∂T
2−−−−→ T1

∂T
1−−−−→ T0 −−−→ 0

is a minimal free resolution of M . Consider the mapping cones

T ′ = Cone(T s−−→ T )

= · · · −−→ T2 ⊕ T1 −−→ T1 ⊕ T0 −−→ T0 ⊕ T−1 −−→ · · ·
(T≥0)

′ = Cone(T≥0
s−−→ T≥0)

= · · · −−→ T2 ⊕ T1 −−→ T1 ⊕ T0 −−→ T0 −−→ 0.

Since T≥0 is a free resolution of M and s is M-regular, the complex (T≥0)
′ is a

free resolution of M/sM ∼= Coker(∂(T≥0)
′

1 ). Since T is a complete resolution by
finitely generated free modules, the complex T ′ is also a complete resolution
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by finitely generated free modules and so Coker(∂T ′
1 ) is totally reflexive by

[10, (4.1.3)].
Consider the exact sequence of complexes, written vertically

0 0 0 0

↓ ↓ ↓ ↓
T−1 · · · −−−→ 0 −−−→ 0 −−−→ T−1 −−−→ 0

↓ ↓ ↓ ↓
(T ′)≥0 · · · −−−→ T2 ⊕ T1 −−−→ T1 ⊕ T0 −−−→ T0 ⊕ T−1 −−−→ 0

↓ ↓ ↓ ↓
(T≥0)

′ · · · −−−→ T2 ⊕ T1 −−−→ T1 ⊕ T0 −−−→ T0 −−−→ 0

↓ ↓ ↓ ↓
0 0 0 0

whose associated long exact sequence has the form

0 −−→ T−1 −−→ Coker(∂T ′
1 ) −−→ M/sM −−→ 0.

The arguments of the previous paragraph show that this sequence is an aug-
mented strict G-resolution of M/sM . Minimality of T provides equalities

βR
0 (Coker(∂T ′

1 )) = βR
0 (T0 ⊕ T−1) and βR

0 (M) = βR
0 (T0)

so that Proposition 2.3 and Observation 2.2(b) yield

χG
R (M/sM) = βR

0 (T0 ⊕ T−1) − βR
0 (T−1) = βR

0 (T0) = βR
0 (M) = χG

R (M)

and hence the desired conclusion.

The negative answers to Questions 1 and 2 follow from the next result.
Similar behavior occurs in codimensions 3 through 6, though we omit those
calculations. Recall that the codimension of a local ring R is codim(R) =
βR

0 (�) − dim(R).

Proposition 4.2. Let R be a nonregular local complete intersection ring
of dimension d > 0.

(a) If codim(R) = 1, then χG (k) = 2d−1.

(b) If codim(R) = 2, then χG (k) = (d − 1)2d−2 + 1.
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Proof. (a) From Example 1.9, one has χG (k) = 1 + ∑d
n=2(−1)nβd−n(k).

The assumption codim(R) = 1 implies thatR is a hypersurface, so the Poincaré
series of k is given in [5, (3.3.5.2)] by P R

k (t) = (1+ t)d+1/(1− t2). Hence, the
Betti numbers of k are given by βn(k) = ∑

j≥0

(
d+1
n−2j

)
. Substituting these into

the above formula for χG (k) and applying the identity
(
a

b

) = (
a−2
b−2

)+ 2
(
a−2
b−1

)+(
a−2
b

)
yields

χG (k) = 1 +
d−1∑
m=1

(
d − 1

m

)
= 2d−1.

(b) An analysis similar to part (a) using the formula P R
k (t) = (1 + t)d+2/(1 −

t2)2 from [5, (3.3.5.2)] yields the desired formula.

In the following two examples, we use Proposition 4.2 to compute χG (k)

and address Questions 1 and 2.

Example 4.3. Let R be a nonregular local hypersurface ring of dimension
d ≥ 1 and s ∈ �2 an R-regular element. Set R = R/sR.

• If d = 1, then χG
R (k) = 1 = βR

0 (k) = χG
R

(k).

• If d = 2, then χG
R (k) = 2 > 1 = χG

R
(k).

• If d = 6, then χG
R (k) = 32 < 33 = χG

R
(k).

Example 4.4. Let R be a nonregular local hypersurface ring of dimen-
sion d ≥ 1 and s ∈ R an R-regular element. Assume that R admits a fi-
nitely generated module M such that s is M-regular and M/sM ∼= k. (For
instance, the ring R = k[[X0, . . . , Xd ]]/(X0X1) satisfies these conditions
with M = R/(X1, . . . , Xd)R and s equal to the residue of X0 + X1.) With
R = R/sR, Proposition 2.5(c) implies χG

R (M) = χG
R

(M/sM), and so the next
computations come from Example 4.3.

• If d = 1, then χG
R (M/sM) = χG

R (k) = 1 = χG
R (M).

• If d = 2, then χG
R (M/sM) = χG

R (k) = 2 > 1 = χG
R (M).

• If d = 6, then χG
R (M/sM) = χG

R (k) = 32 < 33 = χG
R (M).

5. Global invariants

In this section we investigate how small χG (M) can be when it is guaranteed
to be positive. Specifically, we consider the following invariants of a local ring
R

εi(R) = inf{χG (M) | G-dimR(M) ≤ i and pdimR(M) = ∞}
τi(R) = inf{χG (M) − rankR(M) | G-dimR(M) ≤ i and pdimR(M) = ∞}



an euler characteristic for modules of finite g-dimension 227

each of which is positive by Proposition 2.6 and Theorems 2.9 and 2.10. Note
that the second infimum is taken over a possibly smaller set than the first. We
begin by documenting elementary relations.

Lemma 5.1. If R is a local ring, then there are inequalities

εi+1(R) ≤ εi(R) and τi+1(R) ≤ τi(R)

with equality when i ≥ depth(R).

Proof. The inequalities are straightforward. For the equalities, the AB-
formula 1.3 implies that G-dimR(M) < ∞ if and only if G-dimR(M) ≤
depth(R). In particular, if i ≥ depth(R), then G-dimR(M) ≤ i if and only
G-dimR(M) ≤ i + 1. Hence, εi+1(R) and εi(R) are the infima of the same set
and thus are equal. The other inequality is proved similarly.

The next result shows that the quantities εi(R) and τj (R) are often equal.

Proposition 5.2. Let R be a local ring. There are equalities τi+1(R) =
τi(R) for each i ≥ 0. If, in addition, each module of finite G-dimension has
rank, e.g., if R is a domain, then there are equalities εi+1(R) = εi(R) = τi(R)

for each integer i ≥ 1.

Proof. Assume without loss of generality that R admits a module M with
rank such that G-dimR(M) < ∞ = pdimR(M), and set n = depth(R).

First consider the τi(R). Using Lemma 5.1, it suffices to verify τ0(R) ≤
τn(R). Assume τn(R) = χG (M)−rankR(M) and let 0 → K → G → M → 0
be a G-approximation. Additivity of χG (−) and rankR(−) along (proper) exact
sequences yields the first and third of the following equalities

χG (M) = χG (G) − χG (K) = χG (G) − rankR(K)

rankR(M) = rankR(G) − rankR(K)

while the second follows from the finiteness of pdimR(K) using 1.11 and
Observation 2.2(a). These give the second equality in the following sequence

τn(R) = χG (M) − rankR(M) = χG (G) − rankR(G) ≥ τ0(R)

where the first equality is by hypothesis and the inequality is by definition.
Hence, one has τi+1(R) = τi(R) for each i ≥ 0.

Now assume that every module of finite G-dimension over R has rank. For
the desired equalities, it suffices to verify the inequalities

(∗) ε1(R) ≤ τ0(R) and τn(R) ≤ εn(R)
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For the first of these, fix a totally reflexive module G such that τ0 = χG (G) −
rankR(G). Let F ⊆ G be a free module with rankR(F ) = rankR(G); see,
e.g., [9, (1.4.3)]. The exact sequence 0 → F → G → G/F → 0 is a G-
approximation, and so it is proper. Thus, Proposition 2.7 provides the first
equality in the next sequence

ε1(R) ≤ χG (G/F) = χG (G) − χG (F ) = χG (G) − rankR(G) = τ0(R).

The inequality is by definition since G-dimR(G/F) ≤ 1, the second equality
is in 1.11, and the last is by the choice of G. This justifies the first inequality
in (∗).

For the second inequality in (∗), fix a module N with finite G-dimension
and infinite projective dimension such that εn(R) = χG (N). One then has

εn(R) = χG (N) ≥ χG (N) − rank(N) ≥ τn(R).

When R is a domain, the one inequality from Lemma 5.1 that is not con-
sidered in Proposition 5.2 can be strict.

Proposition 5.3. Let R be a nonregular Gorenstein local domain of di-
mension 1. One has ε0(R) = 2 and εj+1(R) = τj (R) = 1 for each j ≥ 0.

Proof. Using Proposition 5.2, it suffices to show that ε1(R) = 1 and
ε0(R) = 2. Since εi(R) is positive, the first equality follows from Example 1.9,
which provides the equality χG (k) = 1. For the inequality ε0(R) ≤ 2 use Co-
rollary 2.4 to conclude that χG (HomR(�, R)) = 2. For the reverse inequality,
note that R does not admit a non-free totally reflexive cyclic module. In-
deed, for a fixed nonzero ideal I , one has depthR(R/I) = 0 and therefore
G-dimR(R/I) = 1 by the AB-formula 1.3.

When R is not a domain, one can have εi(R) = τj (R) for all i, j .

Example 5.4. Fix an odd positive integer n and an algebraically closed
field k with char(k) �= 2. The ring R = k[[X, Y ]]/(X2 + Yn+1) admits pre-
cisely two cyclic non-free totally reflexive modules, namely R± = R/(X ±
iY (n+1)/2); see Yoshino [25, (9.9)]. In particular, one has χG (R+) = 1 and so
εj (R) = 1 for each integer j . The module M = R+ ⊕ R− is a non-free totally
reflexive module of rank 1 with χG (M) − rankR(M) = 1. Thus, one also has
τj (R) = 1 for each integer j .

Finally, we demonstrate that the difference ε0(R)−ε1(R) can be arbitrarily
large. Computations of these invariants for the other rings listed in [25] mirror
this one. We are unaware if there is a ring R with εi(R) = τj (R) for each i, j

and τ0(R) 	 0.
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Example 5.5. Fix positive integers m and n with n even and let k be an
algebraically closed field of characteristic 0. The ring

R = k[[X, Y, U1, . . . , U2m]]/(X2 + Yn+1 + U 2
1 + . . . + U 2

2m)

is a Gorenstein domain of dimension 2m + 1. We sketch a verification of
the equalities ε0(R) = 2m+1 and εj+1(R) = τj (R) = 2m for each j ≥ 0.
Using Proposition 5.2, it suffices to show that τ0(R) = 2m and ε0(R) = 2m+1.
Since R is a domain, one need only consider indecomposable modules in the
computations of these invariants. From [25, Chapter 12] one knows that each
indecomposable totally reflexive module (that is, maximal Cohen-Macaulay
module) is described as Coker(C) for some 2m+1 × 2m+1 matrix C of rank 2m

with entries in the maximal ideal. In particular, one has χG (Coker(C)) = 2m+1

and rankR(Coker(C)) = 2m. The desired conclusions are now immediate.
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