Q-LINEAR FUNCTIONS, FUNCTIONS WITH DENSE GRAPH, AND EVERYWHERE SURJECTIVITY

F. J. GARCÍA-PACHECO, F. RAMBLA-BARRENO, J. B. SEOANE-SEPÚLVEDA

Abstract

Let L, S and D denote, respectively, the set of Q-linear functions, the set of everywhere surjective functions and the set of dense-graph functions on R. In this note, we show that the sets $D \backslash(S \cup L)$, $S \backslash L, S \cap L$ and $D \cap L \backslash S$ are lineable. Moreover, all these sets contain (omitting zero) a vector space of the biggest possible dimension, 2^{c}.

1. Introduction and preliminaries

Examples of functions verifying some kind of pathological property have been found and constructed in analysis (differentiable nowhere monotone functions, continuous nowhere differentiable functions, linear discontinuous functions, or everywhere surjective functions). Given such a special property, we say that the subset M of functions which satisfies it is lineable if $M \cup\{0\}$ contains an infinite dimensional vector space. At times, we will be more specific, referring to the set M as μ-lineable if it contains a vector space of dimension μ. Also, we let $\lambda(M)$ be the maximum cardinality (if it exists) of such a vector space. This terminology of lineable was first introduced in [1], [2], [4].

Some of these so called special properties are not isolated phenomena. In [6], [7] Lebesgue constructed an everywhere surjective function, i.e. a function $f: \mathrm{R} \rightarrow \mathrm{R}$ such that $f((a, b))=\mathrm{R}$ for every nonvoid interval (a, b). Clearly, these everywhere surjective functions have dense graph in \mathbf{R}^{2}. In [2] it was shown that the set of all everywhere surjective functions is 2^{c}-lineable ($c=\operatorname{card}(\mathrm{R})$). Moreover, in [3] it was proved that there exists an infinitely generated algebra every nonzero element of which is an everywhere surjective function on \mathbf{C}. These results suggest that everywhere surjective functions seem to appear more often that one could expect.

Also, in [5] it was shown that the set of Q-linear discontinuous functions on R is lineable.

Let us denote by L, S and D, respectively, the set of Q-linear functions, the set of everywhere surjective functions and the set of dense-graph functions on
R. As mentioned, $S \subseteq D$. The motivation of this note is the following: The set $S \cap L$ is not empty, moreover we will see that it is lineable. We will also prove that

$$
\lambda(S \cap L)=\lambda(D \cap L \backslash S)=\lambda(S \backslash L)=\lambda(D \backslash(S \cup L))=2^{c},
$$

obtaining vector spaces of the biggest possible dimension, and improving some results from [2] and [5] since we are adding extra pathologies to our functions.

2. A key vector space

In this section, we recall an infinite dimensional vector space which will be frequently used in what follows.

Lemma 2.1. There exists a vector space V_{0} of dimension 2^{c} whose nonzero elements are discontinuous surjective functions.

Proof. Let $\varphi: R \longrightarrow R^{N}$ be a bijection mapping the whole interval $(0,1)$ onto the set of sequences whose first term is 0 . For every $A \subseteq R$, let us consider the map H_{A} defined as

$$
\begin{aligned}
\mathrm{R}^{\mathrm{N}} & \longrightarrow \mathrm{R} \\
\left(y, x_{1}, x_{2}, \ldots\right) & \longmapsto y \cdot \prod_{i=1}^{\infty} \chi_{A}\left(x_{i}\right) .
\end{aligned}
$$

In [2] it is proved that the vector space $V_{0}=\operatorname{span}\left\{H_{A} \circ \varphi: A \subseteq \mathrm{R}\right\}$ has dimension 2^{c} and its nonzero elements are discontinuous surjective functions.

3. The lineability of $D \backslash(S \cup L)$

In this section, we will construct an infinite dimensional vector space whose nonzero elements are dense-graph functions that are neither everywhere surjective nor Q-linear.

Theorem 3.1. The set $D \backslash(S \cup L)$ is lineable. Moreover, there exists a vector space $U \subset(D \backslash(S \cup L)) \cup\{0\}$ of the biggest possible dimension, i.e. $\lambda(D \backslash(S \cup L))=2^{c}$.

Proof. Let W be a vector space satisfying $\operatorname{dim} W=2^{c}$ and $W \subseteq S \cup\{0\}$ (an example was constructed in [2]). Let $\Phi: \mathbf{R} \rightarrow \mathbf{R} \backslash\{1\}$ be a bijection. Consider

$$
U=\{\Phi \circ g: g \in W\}
$$

clearly $\operatorname{dim} U=2^{c}$ and every nonzero element of U is a function which maps every interval onto $R \backslash\{1\}$; every such a function has dense graph and is neither everywhere surjective nor Q -linear. Therefore U is the desired vector space.

4. The lineability of $S \cap L$

In this section, we construct an infinite dimensional vector space whose nonzero elements are everywhere surjective Q -linear functions. We will start by characterizing this kind of functions. Clearly, from the above definition, a function $f: \mathbf{R} \longrightarrow \mathbf{R}$ is everywhere surjective if and only if $f^{-1}(t)$ is dense for every $t \in \mathrm{R}$. It is well known too that every 1 -dimensional Q -subspace of R is dense, therefore also is every nonzero Q-subspace of R.

Theorem 4.1. Let $f: \mathrm{R} \longrightarrow \mathrm{R}$ be a Q -linear function. The following conditions are equivalent:
(1) f is everywhere surjective.
(2) f is surjective and not injective.

Proof. If f is everywhere surjective, then f is surjective and not injective. Assume then that f is surjective but not injective. We only need to check whether $f^{-1}(t)$ is dense for every $t \in \mathrm{R}$. Now, f is not injective, therefore $\operatorname{ker}(f)$ is not zero, so it is dense. Next, f is surjective, that is, $f^{-1}(t)$ is nonempty for every $t \in \mathrm{R}$. As a consequence, this last fact along the density of the kernel of f gives the density of every bundle $f^{-1}(t)$.

Theorem 4.2. The set $S \cap L$ is lineable. Moreover, there exists a vector space $U \subset(S \cap L) \cup\{0\}$ of the biggest possible dimension, i.e. $\lambda(S \cap L)=2^{c}$.

Proof. Let I be a Q-basis of R. Let $\Phi: I \rightarrow \mathrm{R}$ be a bijection. Consider

$$
W=\left\{g \circ \Phi: g \in V_{0}\right\}
$$

clearly $\operatorname{dim} W=2^{c}$ and every nonzero element of W is a surjective function $f: I \rightarrow \mathbf{R}$ that can be uniquely extended to a \mathbf{Q}-linear function $\bar{f}: \mathbf{R} \rightarrow \mathbf{R}$, which must be surjective and not injective. Therefore

$$
U=\{\bar{f}: f \in W\}
$$

is the desired vector space.

5. The lineability of $S \backslash L$

In this section, we will construct an infinite dimensional vector space whose nonzero elements are everywhere surjective functions that are not Q-linear.

Lemma 5.1. Every element of V_{0} is not a Q -linear function.
Proof. Every $f \in V_{0}$ is a surjective function satisfying $f((0,1))=\{0\}$, therefore f is neither injective nor everywhere surjective. According to theorem 4.1, f cannot be Q -linear.

Theorem 5.2. The set $S \backslash L$ is lineable. Moreover, there exists a vector space $W \subset(S \backslash L) \cup\{0\}$ of the biggest possible dimension, i.e. $\lambda(S \backslash L)=2^{c}$.

Proof. Take any everywhere surjective \mathbf{Q}-linear function f and consider $W=\left\{g \circ f: g \in V_{0}\right\}$. We have that W is a vector space isomorphic to V_{0} whose nonzero elements are everywhere surjective functions. In particular, it has dimension 2^{c}. Let $g \in V_{0} \backslash\{0\}$. Since g is not Q-linear, there must exist $x, y \in \mathrm{R}$ so that $g(x+y) \neq g(x)+g(y)$. Now, there are $a, b \in \mathrm{R}$ such that $f(a)=x$ and $f(b)=y$. Now,

$$
\begin{aligned}
(g \circ f)(a+b) & =g(f(a)+f(b)) \\
& =g(x+y) \\
& \neq g(x)+g(y) \\
& =(g \circ f)(a)+(g \circ f)(b)
\end{aligned}
$$

Therefore, $g \circ f$ is not Q-linear.

6. The lineability of $D \cap L \backslash S$

Now we construct an infinite dimensional vector space whose nonzero elements are dense-graph, Q-linear functions that are not surjective (and, in particular, not everywhere surjective).

Theorem 6.1. The set $D \cap L \backslash S$ is lineable. Moreover, there exists a vector space $U \subset(D \cap L \backslash S) \cup\{0\}$ of the biggest possible dimension, i.e. $\lambda(D \cap L \backslash S)=2^{c}$.

Proof. Let I be a Q-basis of R. Choose any $i \in I$ and take a bijection $\phi: I \rightarrow I \backslash\{i\}$, which can be uniquely extended to a Q-linear injection $\Phi: R \rightarrow R$. It is not difficult to verify that $\Phi(R)$ is a dense proper subset of R.

Let W be a vector space with $\operatorname{dim} W=2^{c}$ and $W \subseteq(S \cap L) \cup\{0\}$. Consider

$$
U=\{\Phi \circ g: g \in W\}
$$

clearly $\operatorname{dim} U=2^{c}$ and every nonzero element of U is a nonsurjective, Qlinear function $f: \mathbf{R} \rightarrow \mathbf{R}$. In addition, f maps every interval onto $\Phi(\mathbf{R})$. Therefore U is the desired vector space.

7. What about $L \backslash D$?

The reader may have guessed, or perhaps already knew, what happens with $L \backslash D$. We believe that the following result is known but, for the sake of completeness, we include a short proof here. This result will settle the question.

Proposition 7.1. Every Q-linear function is discontinuous if and only if it has dense graph.

Proof. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is \mathbf{Q}-linear and discontinuous. Then f is not linear, i.e., there exist nonzero $x, y \in \mathrm{R}$ satisfying $\frac{f(x)}{x} \neq \frac{f(y)}{y}$. This implies

$$
\begin{aligned}
&\left.\overline{\operatorname{Gr} f} \supseteq \overline{\left\{q_{1}(x, f(x))+\right.} q_{2}(y, f(y)): q_{1}, q_{2} \in \mathrm{Q}\right\} \\
&=\left\{r_{1}(x, f(x))+r_{2}(y, f(y)): r_{1}, r_{2} \in \mathrm{R}\right\}=\mathrm{R}^{2}
\end{aligned}
$$

Corollary 7.2. $\lambda(L \backslash D)=1$.

REFERENCES

1. Aron, R. M., García, D., Maestre, M., Linearity in non-linear problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001), 7-12.
2. Aron, R. M., Gurariy, V. I., Seoane-Sepúlveda, J. B., Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc. 1333 (2005), 795-803.
3. Aron, R. M., Seoane-Sepúlveda, J. B., Algebrability of the set of everywhere surjective functions on C, Bull. Belg. Math. Soc. Simon Stevin 14 n. 1 (2007), 25-31.
4. Enflo, P., Gurariy, V. I., On lineability and spaceability of sets in functions spaces, preprint.
5. García-Pacheco, F. J., Palmberg, N., Seoane-Sepúlveda, J. B. Lineability and Algebrability of pathological phenomena in analysis, J. Math. Anal. Appl. 326 n. 2 (2007), 929-939.
6. Gelbaum, B. R., Olmsted, J. M. H., Counterexamples in Analysis, Dover Publications, New York, 2003.
7. Lebesgue, H., Leçons sur l'intégration, Gauthier-Willars, 1904.

DEPARTAMENTO DE MATEMÁTICAS
UNIVERSIDAD DE CÁDIZ
11510, PUERTO REAL
SPAIN
E-mail: fjavier.garcia@uca.es, fernando.rambla@uca.es, jseoane@mat.ucm.es

