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Q-LINEAR FUNCTIONS, FUNCTIONS WITH DENSE
GRAPH, AND EVERYWHERE SURJECTIVITY
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Abstract

Let L, S and D denote, respectively, the set of Q-linear functions, the set of everywhere surjective
functions and the set of dense-graph functions on R. In this note, we show that the sets D \(S ∪L),
S \ L, S ∩ L and D ∩ L \ S are lineable. Moreover, all these sets contain (omitting zero) a vector
space of the biggest possible dimension, 2c .

1. Introduction and preliminaries

Examples of functions verifying some kind of pathological property have been
found and constructed in analysis (differentiable nowhere monotone functions,
continuous nowhere differentiable functions, linear discontinuous functions,
or everywhere surjective functions). Given such a special property, we say that
the subset M of functions which satisfies it is lineable if M ∪ {0} contains an
infinite dimensional vector space. At times, we will be more specific, referring
to the set M as μ-lineable if it contains a vector space of dimension μ. Also,
we let λ(M) be the maximum cardinality (if it exists) of such a vector space.
This terminology of lineable was first introduced in [1], [2], [4].

Some of these so called special properties are not isolated phenomena. In
[6], [7] Lebesgue constructed an everywhere surjective function, i.e. a func-
tion f : R → R such that f ((a, b)) = R for every nonvoid interval (a, b).
Clearly, these everywhere surjective functions have dense graph in R2. In [2]
it was shown that the set of all everywhere surjective functions is 2c-lineable
(c = card (R)). Moreover, in [3] it was proved that there exists an infinitely
generated algebra every nonzero element of which is an everywhere surjective
function on C. These results suggest that everywhere surjective functions seem
to appear more often that one could expect.

Also, in [5] it was shown that the set of Q-linear discontinuous functions
on R is lineable.

Let us denote by L, S and D, respectively, the set of Q-linear functions, the
set of everywhere surjective functions and the set of dense-graph functions on
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R. As mentioned, S ⊆ D. The motivation of this note is the following: The set
S ∩L is not empty, moreover we will see that it is lineable. We will also prove
that

λ (S ∩ L) = λ (D ∩ L \ S) = λ (S \ L) = λ(D \ (S ∪ L)) = 2c,

obtaining vector spaces of the biggest possible dimension, and improving some
results from [2] and [5] since we are adding extra pathologies to our functions.

2. A key vector space

In this section, we recall an infinite dimensional vector space which will be
frequently used in what follows.

Lemma 2.1. There exists a vector space V0 of dimension 2c whose nonzero
elements are discontinuous surjective functions.

Proof. Let ϕ : R −→ RN be a bijection mapping the whole interval (0, 1)

onto the set of sequences whose first term is 0. For every A ⊆ R, let us consider
the map HA defined as

RN −→ R

(y, x1, x2, . . .) �−→ y ·
∞∏

i=1

χA(xi).

In [2] it is proved that the vector space V0 = span {HA ◦ ϕ : A ⊆ R} has
dimension 2c and its nonzero elements are discontinuous surjective functions.

3. The lineability of D \ (S ∪ L)

In this section, we will construct an infinite dimensional vector space whose
nonzero elements are dense-graph functions that are neither everywhere sur-
jective nor Q-linear.

Theorem 3.1. The set D \ (S ∪ L) is lineable. Moreover, there exists a
vector space U ⊂ (D \ (S ∪ L)) ∪ {0} of the biggest possible dimension, i.e.
λ(D \ (S ∪ L)) = 2c.

Proof. Let W be a vector space satisfying dim W = 2c and W ⊆ S ∪ {0}
(an example was constructed in [2]). Let � : R → R \ {1} be a bijection.
Consider

U = {� ◦ g : g ∈ W },
clearly dim U = 2c and every nonzero element of U is a function which maps
every interval onto R\{1}; every such a function has dense graph and is neither
everywhere surjective nor Q-linear. Therefore U is the desired vector space.
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4. The lineability of S ∩ L

In this section, we construct an infinite dimensional vector space whose non-
zero elements are everywhere surjective Q-linear functions. We will start by
characterizing this kind of functions. Clearly, from the above definition, a
function f : R −→ R is everywhere surjective if and only if f −1(t) is dense
for every t ∈ R. It is well known too that every 1-dimensional Q-subspace of
R is dense, therefore also is every nonzero Q-subspace of R.

Theorem 4.1. Let f : R −→ R be a Q-linear function. The following
conditions are equivalent:

(1) f is everywhere surjective.

(2) f is surjective and not injective.

Proof. If f is everywhere surjective, then f is surjective and not injective.
Assume then that f is surjective but not injective. We only need to check
whether f −1(t) is dense for every t ∈ R. Now, f is not injective, therefore
ker (f ) is not zero, so it is dense. Next, f is surjective, that is, f −1(t) is
nonempty for every t ∈ R. As a consequence, this last fact along the density
of the kernel of f gives the density of every bundle f −1(t).

Theorem 4.2. The set S∩L is lineable. Moreover, there exists a vector space
U ⊂ (S ∩ L) ∪ {0} of the biggest possible dimension, i.e. λ (S ∩ L) = 2c.

Proof. Let I be a Q-basis of R. Let � : I → R be a bijection. Consider

W = {g ◦ � : g ∈ V0},
clearly dim W = 2c and every nonzero element of W is a surjective function
f : I → R that can be uniquely extended to a Q-linear function f̄ : R → R,
which must be surjective and not injective. Therefore

U = {f̄ : f ∈ W }
is the desired vector space.

5. The lineability of S \ L

In this section, we will construct an infinite dimensional vector space whose
nonzero elements are everywhere surjective functions that are not Q-linear.

Lemma 5.1. Every element of V0 is not a Q-linear function.

Proof. Every f ∈ V0 is a surjective function satisfying f ((0, 1)) = {0},
therefore f is neither injective nor everywhere surjective. According to the-
orem 4.1, f cannot be Q-linear.
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Theorem 5.2. The set S \ L is lineable. Moreover, there exists a vector
space W ⊂ (S \L)∪{0} of the biggest possible dimension, i.e. λ(S \L) = 2c.

Proof. Take any everywhere surjective Q-linear function f and consider
W = {g ◦ f : g ∈ V0}. We have that W is a vector space isomorphic to V0

whose nonzero elements are everywhere surjective functions. In particular, it
has dimension 2c. Let g ∈ V0 \ {0}. Since g is not Q-linear, there must exist
x, y ∈ R so that g(x + y) �= g(x) + g(y). Now, there are a, b ∈ R such that
f (a) = x and f (b) = y. Now,

(g ◦ f )(a + b) = g(f (a) + f (b))

= g(x + y)

�= g(x) + g(y)

= (g ◦ f )(a) + (g ◦ f )(b).

Therefore, g ◦ f is not Q-linear.

6. The lineability of D ∩ L \ S

Now we construct an infinite dimensional vector space whose nonzero ele-
ments are dense-graph, Q-linear functions that are not surjective (and, in par-
ticular, not everywhere surjective).

Theorem 6.1. The set D ∩ L \ S is lineable. Moreover, there exists a
vector space U ⊂ (D ∩ L \ S) ∪ {0} of the biggest possible dimension, i.e.
λ(D ∩ L \ S) = 2c.

Proof. Let I be a Q-basis of R. Choose any i ∈ I and take a bijection
φ : I → I \ {i}, which can be uniquely extended to a Q-linear injection
� : R → R. It is not difficult to verify that �(R) is a dense proper subset of R.

Let W be a vector space with dim W = 2c and W ⊆ (S∩L)∪{0}. Consider

U = {� ◦ g : g ∈ W },
clearly dim U = 2c and every nonzero element of U is a nonsurjective, Q-
linear function f : R → R. In addition, f maps every interval onto �(R).
Therefore U is the desired vector space.

7. What about L \ D?

The reader may have guessed, or perhaps already knew, what happens with
L \ D. We believe that the following result is known but, for the sake of
completeness, we include a short proof here. This result will settle the question.
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Proposition 7.1. Every Q-linear function is discontinuous if and only if it
has dense graph.

Proof. Suppose f : R → R is Q-linear and discontinuous. Then f is not
linear, i.e., there exist nonzero x, y ∈ R satisfying f (x)

x
�= f (y)

y
. This implies

Gr f ⊇ {q1(x, f (x)) + q2(y, f (y)) : q1, q2 ∈ Q}
= {r1(x, f (x)) + r2(y, f (y)) : r1, r2 ∈ R} = R2

Corollary 7.2. λ(L \ D) = 1.
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