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GRAND ORLICZ SPACES AND GLOBAL
INTEGRABILITY OF THE JACOBIAN

C. CAPONE, A. FIORENZA and G. E. KARADZHOV*

Abstract

We introduce and investigate the grand Orlicz spaces and the grand Lorentz-Orlicz spaces. An ap-
plication to the problem of global integrability of the Jacobian of orientation preserving mappings
is given.

1. Introduction

The goal of this paper is to introduce and investigate the grand Orlicz spaces and
the grand Lorentz-Orlicz spaces. The grand Lebesgue spaces were introduced
by Iwaniec and Sbordone [12] and they found many applications in Analysis,
see [12], [10]. The small Lebesgue spaces were introduced by A. Fiorenza [5]
as associate to grand spaces. They have applications to some boundary value
problems, see [17], [6]. Our investigation is closely related to [7], [4], where
the second and the third authors studied the grand and small Lebesgue spaces
and their analogs. The main difference with [7] is that now we do not use the
general interpolation-extrapolation theory, although the technique from [13]
is applied. The reason for this choice is that the real interpolation of the Orlicz
spaces requires too strong conditions on the Orlicz functions. On the other
hand, we use Lorentz-Orlicz classes, the quasinorm in which has the same
structure as that given by the K -functional in the real interpolation. Therefore
a direct approach is possible, which enable us to give characterizations of the
grand Lorentz-Orlicz spaces and the grand Orlicz spaces (Theorem 2.4 and
Proposition 2.6), similar to those for the grand Lebesgue spaces in [7].

In Section 3 we give some applications to the problem of global integrability
of the Jacobian of orientation preserving mappings in R". Our results (The-
orem 3.1 and Theorem 3.5) are analogs to the corresponding local estimates
by Miiller [15], Iwaniec and Sbordone [12], Greco [8], Iwaniec and Martin
[11], Koskela and Zhong [14]. Note also that our technique could be applied
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to the problem of local integrability, but the results obtained will not be more
general than those in Koskela and Zhong [14].
2. Grand Orlicz spaces

Let (X, ) be o-finite measure space. First we consider Orlicz classes
Lo (X, p), denoted simply by Lg, where @ is an Orlicz function, i.e. a pos-
itive, continuous, strictly increasing function on (0, co), such that ®(0) = 0,
d(1) =1, P(c0) = 0.

DEFINITION 2.1 (Orlicz classes Lg).
(2.1)

Lo = {f:p(f; ®) :=/X<I>(|f(X)I)du=/O (1) dt <oo}.

where f* denotes the decreasing rearrangement of f (see e.g. [3]).

The Orlicz class L is not a linear set in general. The Orlicz space, denoted
by L®, is defined as the set of all f such that

| fllre :==1inf{A > 0: p(f/A; D) < 1} < oc0.
This functional is a quasinorm if @ satisfies the following conditions:
2.2) (1 —a)s +at) < c[D(s)+ D(1)], O<s,t<00,0<ax<l,
for some constant ¢ > 1, and
(2.3) P(at) < c(a)d(1), 0<a<l,

where c(a) — Oasa — 0.

For instance, if ® is convex, or equivalent to a convex function, then the
conditions (2.2), (2.3) are satisfied. Other examples are the functions ® () =
t?(1+1log(1+1))4,p>0,qg>0.

It will be convenient to introduce more general classes, the Lorentz-Orlicz
classes Lj o, where & is a positive continuous weight on (0, 00).

DEFINITION 2.2 (Lorentz-Orlicz classes Ly, o).

(2.4) Lyo:= {f cp(fih, ®) :=/ h(OD(f (1)) dt < oo}.
0

The Lorentz-Orlicz space, denoted by L™®, is defined as the set of all f

such that
| fllpwe :=1inf{k > 0 : p(f/A; h, ®) < 1} < 0
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and this functional is a quasinorm if @ satisfies (2.2) and (2.3).

For example, if ®(¢) = t7, h(t) = t"/97'bP(¢),0 < p,q < oo, and b(t) is
slowly varying on (0, c0), then L"® is the Lorentz-Karamata space L}’ with
a quasinorm

00 1/p
||f||Lg~p=(f0 rp/‘f‘[ba)f*(z)]f’dz) .

If ¢ = p we get the Lebesgue-Karamata space denoted by L. Recall the
definition of the slowly varying function (see [16], [7]): if s(¢) is a positive
continuous function on the interval [1, co), we say that s is slowly varying
on [1, 00) (in the sense of Karamata) if for all ¢ > 0 the function #°s(¢) is
equivalent to a non-decreasing function and the function ¢t ~*s(¢) is equivalent
to a non-increasing function. By symmetry, we say that a positive continuous
function s on the interval (0, 1] is slowly varying on (0, 1] if the function
t — s(1/t)isslowly varyingon[1, 0o). Finally, a positive continuous function
s on (0, 0o) is said to be slowly varying on (0, co) if it is slowly varying on
both (0, 1] and [1, 00).

Note that the space L,’;/(HU)”’ has the quasinorm ( [, 7 [b(t) f* ()17 d1)
0 < o < 1. Comparing with [7], this suggests the following definition.

1/p
b

DEFINITION 2.3 (N-grand Lorentz-Orlicz classes Ly ¢), ).

2.5) Li.aoyn:={f:p(f;h, ® N):= | Sup N(©)p(f; hy, @) < 00},
<0 <o)

where h,(¢) := t°h(t), 0 < o9 < 1/2, and N (o) is a positive continuous

and increasing weight on (0, 1), tempered in the sense that N(20) ~ N(o)

(see [9]). For simplicity we write L) y if # = 1. The corresponding N-grand

Lorentz-Orlicz space L™ ®-V is defined as the set of all f such that

I fllzmern :=inf{A > 0: p(f/A;h, ®,N) <1} <00

and this functional is a quasinorm if @ satisfies (2.2) and (2.3).

For example, if ®(¢) =, h(t) = 1, N(o) = 0, and u(X) = 1, then we
get the grand Lebesgue space L ([12], [7]). In this case (see Proposition 2.6
below)

feLP iff sup 0/ | £ )P/ dp < oo.
X

O<o<op

Now we introduce the grand Orlicz space. Its definition is suggested by the
applications below where we consider a weight Ng, generated by the function
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o:

(2.6) / [d(1)] 7=t~ P~ " dr, / d()t " dt = 0
2

N¢>( )

Since ®(¢) > 1 fort > 1, we see that No(0) — 0 as 0 — 0, decreasingly.
Suppose that Ng is tempered on (0, o). Then the space L® " is denoted
by L® and called grand Orlicz space. The corresponding class L is called
grand Orlicz class. For example, if ®(t) = #”, then Ny (o) ~ o and we get
the grand Lebesgue space L7 .

Our main result is the following characterization of the grand classes
Lpy,o).N-

THEOREM 2.4.

1
Lpy.oyn = {f 2q(fi h, @, wy) := sup wy(?) h(s)P(f*(s))ds
t

O<r<1
+ /Oos(’“h(s)fb(f*(s)) ds < oo},
1

where

2.7 wy () := sup N(o)t°.

O<o <oy

Moreover, if the condition (2.3) is satisfied, then p(f;h, ®,N) =
q(f; h, ®, wy) hence

(2.8) I fllmow 2 || fIl == 1nf{A > 0: g(f/A; h, @, wy) < 1}.

Note that wy is a slowly varying function on (0, 1) (cf. [7]).

ProoF. Using the identity

1 1 !
af t"‘/ h(s)®(f*(s)) ds dt :/ s“h(s)®(f"(s))ds,  a>0,
0 t 0

we can write

1
2.9 p(fih,® N)~ sup N(@)o / 1 g (1)dt
O<o <oy 0

+ sup N(o) | C“h)@(f*@)dt =1+1I,

O<o <oy

where g(1) := [ h(s)®(f*(s)) ds.
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To estimate I/, we change the variables 0 — 20:

1 1
I < sup N(a)a/ tz”*lg(t)dt < sup N(o)o sup t g(t) °dt,
0

O<o <oy O<o <oy O<r<1
whence
(2.10) I <q(f;h, ®, wy).
The estimate of II is as follows:
(2.11)

o0 o0
II < / sup N(o)th(@®)D(f* (1)) dt < / th@)P(f*()) dt.
1 O<o<op 1

The estimates (2.10), (2.11) and (2.9) give
(2.12) p(fih,®,N) <q(f;h, &, wy).

To prove the reverse, we split the integral

@13)  p(fihe, ®) = / STh()D(F*(5)) ds = (o) +11(0),
0
1
I(o) = / S h(s)D(F*(s)) ds,
0

(o) = /Oos”h(s)CI)(f*(s)) ds.
1

Then |
I(o) > t”/; h()P(f*(s))ds, 0 <t < 1,
whence
(2.14) . sup N(o)I(o) > 0sup1 wy (1) 1 h(s)D(f*(s))ds.
<o <0y <t< '
On the other hand,

t
1l(o) > t""“/ sPh(s)DP(f*(s))ds, l<t<00,0<o0 <oy,
1

hence

(2.15) sup N(o)ll(o) > N(oo) sOh(s)P(f*(s)) ds, t>1.

O<o <oy
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Therefore (2.13), (2.14), (2.15) give
Finally, to prove (2.8), first we use (2.16) and get

(2.17) I fllmes =11 fII.

For the reverse, let g(f/X; h, ®, wy) < 1. Then (2.12) gives p(f/1; @, h, N)
< ¢ for some constant ¢ > 1. Using the property (2.3), we obtain

pf/r;h, ®,N) < cl@)p(f/r;h, &, N) < cc(a) < 1,
choosing « > 0 so that cc(«) < 1. Therefore,

I fllzmoy < I fIl/e.

The theorem is proved.

REMARK 2.5. If the condition (2.3) is not satisfied, we still have the in-
equalities (2.16), (2.17).

As a particular case, let us consider the N-grand Lorentz-Karamata spaces

LZ,)}\I? 0 < g, p < 00, and b - slowly varying on (0, co). By definition, LZ?}&’ =

L-®N where ®(t) = t7, h(t) = t?/97'b?(¢). Hence

(2.18) 110 = sup IN@IPI £l gors

O<o <oy

and Theorem 2.4 gives

1
IIfIIIL’W ~ sup wy () | PN b() fH(0)] dt

O<r<l1 t

+ / 1O0TPI= () £ (1)) dit.
1

In particular, if ¢ = p we get the N-grand Lebesgue-Karamata space L,f? N

1

117, =~ sup wy(t) | [b()f ()7 dt + / t[b(t) f* ()] dt.
1

Lg-)N O<t<l1 t
In the case u(X) = 1 these formulae simplify.
ProrosITION 2.6. If u(X) = 1 then

1 1/p
219 Ifllgy~ sup (wN(t) / sf’/‘f—l[b(s)f*u)]f’ds) :

O<t<l1
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where
wy(t) = sup N(o)t?, 0<t<l.

O<o <oy

Moreover, if ¢ = p then we get the N-grand Lebesgue-Karamata space L} )N
with a quasinorm

”f“Lff,)N ~ sup [N(a)]l/”||f||L£/(|+0)

O<o <oy

(2.20) 1 Up
A sup (wzv(t)/ [b(s)f*(s)]Pds) :

O<t<1

Proofr. It is sufficient to prove the first part of (2.20). To this end we start
with the embedding

@21y LYY < L/ P uniformly with respect to 0 < o < 0.

To see thislet g = p/(1 + o). Then
1 t
/ b(s) F* ()17 ds = [F*O1 / b(s)? ds.
0 0

Since b is slowly varying, s °b(s) > cst ~°b(t) for some small § > 0, therefore
I fllzg > t9b() f* ).

Using this estimate, we get

1 1
/ 219 b () fH ()17 di = / I () £ £ (1P di
0 0

1
<1155 [ wosora,

hence (2.21) follows. Thus (2.20) is proved in one direction. To prove the
reverse let

1 (140)
[:= sup [N(o)]"/? (/ t“[b(t)f*(t)]p/(”")dt) .
0

O<o <o

Changing the variables o — 20 and applying Holder’s inequality we get

1 (1+20)/p
[:= sup [N(o)]"? (/ 175 [b(t) f*(0)]P/ 02 7 dt)
0

O<o <oy

1 1/p 1 20/p
< sup [N(o)]V? (/ t"[b(t)f*(t)]”dt) (/ t‘l/zdt> .
0<o <o 0 0
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Hence

(2.22) I < sup [N(o)]V7| Fllprasors.

0<o <oy

Now the other direction of (2.20) follows from (2.22).
The proposition is proved.

In general, we have the following theorem of equivalence.

THEOREM 2.7 (Equivalence). If u(X) = 1 then

(2.23) feLon iff  sup N(©@)p(fi ®F7) < oo.

O<o<op

Proor. Step 1. First we prove

1 I 1420 ] 140
(2.24) [Ep(f; dwh)} < p(fiho, ®) < [p(f; d>1Tv)] ,

where h,(t) =t°,0 <o <09 < 1/2.
Indeed, we have

1 . 1 e i
p(f; <I>1+20)=/0 [d>(f*(t))]'+2"dt=/0 [17@(f*(1)] ™t 7% dt

1 o 1 Eers
5(/ z“@(f*(t))dz) (/ t‘l/zdt)
0 0

_1
~< 2[,0(]0; hy, CD)] B
whence the left part of (2.24) follows. To see the right part, we write
1 ! 1 1
p(fi0m) = [ o0 6)] ™ ds = ol @n] ™,
0

thus lto

O(f* (1) <17 [o(f; D7)

Therefore,
1 1 , N

/0 1 D(fH (1) di = /0 @] [T @n] T dr

1

0

= [o(f:0m)]""".

= / [‘1>(f*(t))]ﬁ di[p(f; ®7)]"
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Step 2. Let
I'= sup I(o), I(0) = N(o)p(f; ho, D),
O<o <oy
J= sup J(o), J(@) = N@)p(f; ®7).
O<o <oy

If J < o0, then

sup [J(()‘)]1+<7 = max( sup J(o‘)’ sup [J(O.)]l+<70> < max(J, Jl+(70)’

O<o <oy J(o)<1 J(o)>1

hence (2.24) implies / < max(J, J!*?) < oo. Thus (2.23) is proved in one
direction. The proof of the reverse is analogous.

3. Global integrability of the Jacobian

Let Q be an open subsetin R*, n > 2, and let f = (f1,..., fu) : 2 = R*, be
in the Sobolev class WIL’CI. Then the differential matrix Df (x) is defined a.e.
in Q. Let J = J(f; x) = det Df (x) be the Jacobian determinant and suppose
that J(f, x) > 0. Let g(x) := |Df (x)| be the operator norm of the differential
matrix Df (x). In the theory of mappings of finite distortion, which has various
applications in Analysis, in PDE, the problem of finding optimal conditions
on the function g such that J € L] , is important. This problem was studied
in various papers. Let us recall some results. First, by Hadamard’s inequality,
[J(f;x)| < g(x)", hence we have a condition for global integrability:

(3.1 A IJ(f; 0)ldx < llglya-

Further, we have the following results for local integrability. S. Miiller [15]
proved that
geL"=J € LiloglL.

T. Iwaniec and C. Sbordone [12] sharpened (3.1) (in the case of local integ-
rability) as follows |
gel” = JelL.
L. Greco [8] showed that

gel®=JelLy,

for some Orlicz functions ® and W, generalizing the result of S. Miiller.
P. Koskela and X. Zhong [14] proved that

P 1
geGL” = JelL,,



140 C. CAPONE, A. FIORENZA AND G. E. KARADZHOV

where GL?® is some kind of grand Orlicz class, defined as follows

1
lim sup =~ P(g(x))dx < oo.
N—oo (D(N) g(x)<N

Here the Orlicz function & satisfies the conditions:

(3.2) d ( D (1)

E l»n——l—l—8>20’ forsomeO<3<1,8=()ifn>2,

and

~ Y o)
(I)(N)::/l proe) dt — oo as N — oo.
In this section we give global estimates, when 2 = R"” and g € L®. We shall
use the conclusion in Remark 2.5 and define the grand space L® without the
conditions (2.2) and (2.3). Moreover, the conditions on ®(¢) below are stated
explicitly only for # > 1, supposing that on the interval (0, 1) the function &
is defined in such a way that it is an Orlicz function.

THEOREM 3.1. Let ® be an Orlicz function such that f loo O dt =
00. Moreover, let

1 o0
3.3) —— = / [CID(t)]H%ff"*1 dt be tempered on (0, 0y), o9 < 1/2,
Ng (o) 2

and let the function H, (t) := o v ()t' 727" be increasing in (1, 00) for some
small § > 0 and for 0 < o < 01 < 0¢. (We can take § = 0 ifn > 2.) Let

lim,_ o t‘"CDH%(t) < o0 if0 < o < op. Finally, if g € L"¢ for some small
e >0, then

(34) / J(fix)ydx < lgle.
Moreover, the following estimates are also valid
3.5 / J(f;x)dx < limsup No(0) QDH%(g(x)) dx,

R o—0 {g(x)>2}

He(2)

(3.6) / J(f;x)dx < sup we(t) D(g"(s)) ds,

n O<t<pg(2) t
where
3.7 we(t) :== sup Ne(o)t’®

O<o <oy

and g (t) = w{x : g(x) > t} is the distribution function of g.
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PRrROOF. Since g € L"~° we can apply the argument from [18] (see formula
(2.3)) and derive the estimate

(3.8) / J(f;x)dx < t/ Ig()c)l"_l dx, t >0,
{M(x)<t}

{M(x)>1}

where M (x) is the Hardy-Littlwood maximal function of g. Using M (x) >
g(x) and an argument from [14], we can replace the set {M (x) > t} in (3.8)
by {2g(x) > t} and get the estimate

(3.9) / J(f; x)dx < z”/ lg() "1 dx.
{M(x)<21) {g(x)>1}
Here § > 0 is needed only if n = 2. Introduce the function
t
Yo (1) := / 5T dH, (s).
2

Multiplying (3.9) by ¢~!*3 %Hg (1), integrating and using Fubini, we get

o o
[ oo [~ avwax< [T [ jgwrt a0,
R" P(x) 2 {g(x)>1}
where P (x) := max(2, M (x)/2). Using again Fubini, we rewrite this as

f J(f3 1) (00) — Yo (P dx < f O (g(x)) dx.

{g(x)>2}

Further, integrating by parts, we see that (since lim,_, o, P Tiv (t) < 00)

Yo (oo) = ~— 0 _
7 No (o) '
hence
(3.10)
"= [ J(f;x)[l - M]dx <Nolo) [ @ (g,
R Vs (00) {g(x)>2)

for 0 < 0 < o7 and small o;. From here we derive (3.5) taking the limit as
o — 0. To prove (3.6), we are going to estimate appropriately the right-hand
side of (3.10), using the same technique as in the proof of Theorem 2.4. Let

1(0) = / T (g(x)) dx.
{g(x)>2}
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Then 1o ()
1) = / O (¢%(1)) d
0

and by Holder’s inequality,

15 (2) = .
1(20) < (/ t"d)(g*(t))dt) [ (2)]7% .
0

If the integral 7 (0) is divergent, we get the estimate
(3.11)

. 114(2)

oo (g (2)]7 27 < Nq;(O’)/ t°®d(g" (1)) dt, 0 <o <o, <0p/2.
0

On the other hand, if the integral I (0) is convergent, then

20
1+20

2 va(z)
(3.12)  Jaolmg(2)] 70 ([ 17 ®(g" (1) dl)
0

He(2)
< N¢>(O’)/ t°d(g" (1)) dt, 0 <o <o0p/2.
0

In (3.11), (3.12) we replace again o by 2¢ and use the estimate

Nvg(2> Mg(z) Nvg(2>
/ 12 O (g* (1)) dt :20—/ tz"_l/ D (g*(s)) ds dt
0 0 t

He(2)
< sup 17 / D (g"(5) dslug(2)1°.
O<t<pg(2) t

Thus

Mg (2)
(3.13) J4SA§< sup Ng(o) sup t”/ D(g"(s)) ds
t

0<o <oy O<t<pug(2)

forall 0 < ¢ < g4, where A, is a positive functional, depending on g. Taking
the limit as ¢ — 0, we obtain (3.6), (3.7). In order to prove (3.4), we start with

¢(2)
/J(f;x)dx< sup Ne(o) sup t"/u ®(g*(s)) ds.

O<o <oy O<t<pug(2)

If g (2) < 1 then

1
(3.14) / J(f;x)dx < sup wy(t) D(g"(s)) ds.

O<t<l1 t
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If pg(2) > 1, then

/J(f;x)dx

R 1 o)

< sup Ng(o) sup (t"/ <I>(g*(s))ds—|—/ s“@(g*(s))ds)
t 1

0<o <oy O<t<l1

o0
+ sup sup Nq>(o)t""0/ sOD(g*(s)) ds
t

t>1 0<o <oy

1 00
< sup wy(t) D(g"(s)) ds+f sOD(g*(s)) ds.
1

O<r<l1 t

From here and (3.14) we get
(3.15)

1 [ele)
/ J(fix)dx < sup wy(t) CD(g*(s))ds—I—/ sOD(g*(s)) ds.
" 1

O<t<l1 t

Using Theorem 2.4 and Remark 2.5, we see that (3.15) means

(3.16) / J(f;x)dx < p(g; 1, D, Ng).

Finally, using homogeneity we get (3.4).
The theorem is proved.

REMARK 3.2. Starting with the estimate

/ J(f;x)dx < sup No(o) ® 77 (g(x)) dx,

O<o <oy {g(x)>2}

and taking the supremum under the sign of the integral, we get the estimate
[ o< [ oaweleends
. {g(x)>2}

if g € L"~¢ for some small ¢ > 0, where

vo(t) = sup No(o)[@(1)] 7.

O<o <oy

In particular, if ®(t) = t", then No(c) ~ o and ve(t) ~ (logt)~! fort > 2.
Hence if g € L"~° for some small ¢ > 0, then

/ J(fs ) dx < / (g())" (log g(x)) " dx.
" {g(x)>2}
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Another corollary is the estimate

/J(f;x)dx</ de,
Ri re 10g(2 + g(x))

which is an improvement of (3.1) and an analog of the local estimate (0.7) in
[12].

Note that (3.8) is true for g € L". Hence,

/ J(f;x)dx</ |Mx)|" dx
M(x)<t M(x)>t

and taking the limit as t — o0, we obtain J(f; x) = 0. In particular, this
means that inequality (3.1) is trivial if J(f; x) > 0. (see also Theorem 7.82
and Corollary 7.2.1 [11]) We can generalize this result replacing L" by the
Orlicz class L.

REMARK 3.3. Let the conditions of Theorem 3.1 be satisfied. If g € Lg
then J(f; x) = 0.

Prookr. In (3.10) we can replace de by @ and take the limit as 0 — 0.
Hence [, J(f; x)dx =0.

If in Theorem 3.1 we choose ®(¢) = ", then we get

COROLLARY 3.4.
(3.17) / (i dx < llgl.

Moreover, if g € L"™° for some small ¢ > 0, then

l/—g(l)

(3.18) f](f;x)dx< sup  w(?) [g* ()] ds,

O<t<pg(1) t
where

(3.19  wn ~A-logtH)y ' if0<r<1, w@) =" ift> 1.

Theorem 3.1 can be applied also to the case ®(¢) := t"b"(¢), where b
is slowly varying on (0, co). Moreover, we shall show that in this case the
corresponding grand Orlicz space L® can be replaced by the grand Lebesgue-
Karamata space LZ), where

gl = sup [Ny(@)1/" gy

O<o <oy
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and

1 > -2 1y > n -1
= 1T T b (1) dt, b" (1)t~ dt = oo.
Nj(o) 2 2

THEOREM 3.5. Let b be slowly varying on (0, 00), decreasing and such that
tb(t) is increasing, b(t) — Qast — oo, b(t) = b(t*), a real number, and let
Ny, be tempered on (0, 0y), o9 < 1/2. If g € L"~* for some small ¢ > 0, then

(3.20) / J(fix)dx < IIgII'zZ)-

Moreover, the following characterization of the grand Lebesgue-Karamata
space is also valid

1 1/n
gl m = sup (wb(t)/ [b(s)g" ()" dS)

O<r<l1
oo 1/n
+</ s"%b(s)g*(s)]"ds) ,
1

(3.21) wp(t) ;= sup Np(o)t°.

O<o <oy

where

ProoF. We start with the following estimate that can be proved analogously
to (3.11), (3.12):

o0
Jar A < Nb((f)/ 718" ()b(g" ()" dt = Np(o)( +1I),
0
forall 0 < o < o,, where A, is a positive functional, depending on g and
is the part of the integral over (0, 1). Our goal is to replace b(g*(¢)) by b(¢),
using the fact that b is slowly varying.

To estimate I, we represent (0, 1) as aunion AU B, such that g*(¢) > t~1/?"
on A and g*(¢) < t~/?" on B. Then

1< / Cle b O di+ I, = / °Lg* (Ob(g* ()" d.
A B

Since b is slowly varying and b(t%) =~ b(t), a real number, we see that g*(¢) <
t=1/27 implies {[g*]° (£)b(g* (1)} < c5t~°/?b"(¢t) for all § > 0. Hence

I < c5/ °1g* (O D 792p" (1) dit
B



146 C. CAPONE, A. FIORENZA AND G. E. KARADZHOV

and using Holder’s inequality, we get

1 1-6 1 8
I < ( f r"[g*(t)b(t)]"dr) ( / t"‘/z[ba)]"dr) ,
0 0

n(1-4)

or
§
I < ”g”;n/(lm),n + csc ”g”Ln/<1+o).n .
b b

Analogously we estimate the integral II, representing (1, oo) as the union
AU B, where g*(t) > t~2/" on A and g*(¢t) < t~2/" on B. Thus

B 1-5
<1181 asorn + s N8I
Hence
5 1-5
JZO'A(; < Np(o) |:||g||2n/(l+a),n + csc ||g||25/<1+3),n] .
b b
To get rid of §, we first replace f by Af, whence
5y =9 1-6
JZUAZ < Nb(a) |:||g||22/<1+a).n + CsC A n||g||2§:/(l+3),n] )
and choosing A such that Aes =1, we get
5 1-5
D2 A < Np(@) [1812y0:0n + ¢ lg 510 ]
b b
for all § > 0. Taking the limit as § — 0, we obtain
Joc A7 < Np (@) gN 1000+
g L

From here we get the estimate (3.20) using the same arguments as at the end
of the proof of Theorem 3.1. The theorem is proved.

ExAmPLE 3.6. Letb(¢) := (1 +|logt|)™,0 <o < 1/n. Since

1 %0 0
::/ [—O'n—l(l +1Ogt)—om(l—a) dt %/ e—ounu—om(l—a) du
Np(o) 1 1
~ /OO e—vn(g)—an(l—a) dv/a ~ O_mx—l /OO e—unv—an(l—a) dv
g o (o2
1
~ " (1 +/ v 1= gyy x gl a < 1/n,
o
we have

Ny(o) =~ o7, if a<1/n
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and
Ny(o) ~ |logo |}, if a=1/n.

Therefore in this case for0 <t < 1,
wy (1) ~ (1 —logt)"~! if 0<a<1/n,

and
wy (1) &~ (log(l —logt))™  if a=1/n.

Note that, in general, the class GL?® introduced by Koskela and Zhong [14]
and used to obtain local integrability of the Jacobian, is larger than L¢,). For
example, suppose that ®(¢) = t"(1 +|log?])™*,0 < a < 1/n. Then for large
M, -

O(M) ~ (log M) ="

and Ng(0) ~ o'~ for small 0. Let 0 = (log M)~'. Then

i Plglx))dx <N @ w5 dx.
d(M) /gmw (g(x) dx < No(o) /Q [D(g(x))]™ dx

Since the volume of  is finite, the assertion follows from here and The-
orem 2.7.
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