MATH. SCAND. 102 (2008), 111-130

SUP-NORM ESTIMATES FOR BERGMAN-PROJECTIONS
ON REGULATED DOMAINS

PAULA ERKKILA and JARI TASKINEN

Abstract

We give sufficient and necessary conditions for the boundedness of generalized Bergman pro-
jections on the space L{°(2). The conditions depend on the geometry of the simply connected
domain Q C C.

1. Introduction

We continue the study of Bergman type projections P, 4, on Ly (2), where
Q C Cis a bounded, simply connected, so called regulated domain and v
is a weight on Q. In the papers [7] and [8] we found sufficient and neces-
sary conditions for the boundedness of P, , in terms of the geometry of €2.
Those results are generalizations of the earlier works by Solovyov, [5], [6],
and Békollé, [1]. However, only the cases 1 < p < oo were considered in [7]
and [8]. In this paper we deal with the case p = oo. For that we mention the
reference [2], where projections on L;°(D) were considered. However, these
results are not formulated in terms of the geometry of €.

We denote by L°(£2) and H°(£2) the spaces consisting of measurable,
respectively, analytic, functions on €2 for which the norm

(1.1) I fllv == ess Sup V(@] f(2)

is finite. The weight function v : 2 — R is assumed strictly positive and
continuous. If the weight is of the natural form, i.e. a power of the boundary
distance,

(1.2) v(z) := (dist(z, 02))°,

we also denote by L2°(€2) the space LJ°(€2), and similarly in the analytic case.
Since no bounded projection from L*°(D) onto H*°(D) exists, it only makes
sense to assume o > 0.
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Our main result, Theorem 4.1, contains sufficient and necessary conditions
for the boundedness of Bergman type projections P, o , on the space L °(2).
(See Section 3 for basic properties of these projections. In general, all of them
project onto subspaces of analytic functions.) The conditions involve several
parameters connected with the projections and the geometry of the domain,
and itis hard to find any simple characterization of boundedness of P, 4 . This
is true even in very special cases: for example, denote by Py 4 o2, @ > —1, the
orthogonal projection on L2(2) and consider the question of its boundedness
on L°(€2), and assume €2 has both inward and outward cusps. So we have
81 = m = —3§; in Theorem 4.1. Boundedness holds for example, if

do —2>a>20 >0:

then, in the assumptions of Theorem 4.1, we have  := «/2 and also 1 +
n — o > 1, hence (4.2) and the other assumptions are satisfied. For the same
2, the operator P, /2is bounded also in the case min(20,40 — 2) > o >
max (20 —2,0 — 1), since we thenhave 1 > 1+n—o0 > 0, see Theorem 4.1.

The starting point of the proof is to transfer the situation from 2 to D by
using the Riemann map. Section 2 contains preliminary considerations on D
which correspond, again via the Riemann map, to the simplified case that 2 is
a polyhedron.

We follow the notation and terminology of [7]. For properties of regulated
domains we also refer to [4]. Let us shortly recall the definition. The regulated
domain © C Cis simply connected and bounded and has a locally connected
boundary. In this case a Riemann conformal map ¢ : D — € has a continuous
extension to D (still denoted by ¥). We define the curve w(t) = ¥ (e'),
0 <t < 2m. A crucial assumption is that each point of 92 is attained only
finitely often by 1, and moreover,

(1.3) B(t) = lim+ arg(w(t) — w(t))

exists for all ¢ and defines a regulated function; the function g is by definition
regulated, if it can be approximated uniformly by step functions, i.e. for every

e > Othereexist0 =1ty <t <--- <t, =27 and constants y, ..., ¥, such
that
(1.4) 1B(t) —yil <e for i1 <t<ty, j=1,...,n.

Geometrically, g is the direction angle of the forward tangent of 92 at w (7).
For more details, see [4], Section 3.5.

Given a regulated domain 2 C C, we fix some Riemann conformal map
¥ : D — Q and denote its inverse by ¢.
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Recall that for @ = D the projection P, := Pig a2, @ > —1, has the
formula
(1.5) Pof(@) = (a+1) ﬂf@)dﬂz)-
D (1 _ Z{)2+Ot

2. Preliminaries

In this section we consider the boundedness of P, in the case D for some rather
simple, though non-radial weights v. They correspond, via the Riemann map,
the case where the weight is as in (1.2) and €2 is diffeomorphic to a polyhedron,
i.e., its boundary is C'-smooth except for a finite number of corners. However,
we only formulate the results for D in this section.

The results are also used in the proof of the main theorem in Section 4.

PROPOSITION 2.1. Let o > —1 and v(z) = (1 — |z])*|1 — z|%, where
a > max(0, —b). The Bergman projection P, : LS (D) — L (D) is bounded,
ifand only if ¢ > a + max(b, 1) — 2.

The case b = 0 follows from the usual Forelli-Rudin estimates, [9], Lem-
ma 4.2.2. Concerning for example the sufficiency of the condition, if f €
L (D) with | f(2)] < 1/v(z) = (1 — |z])7%, and @ > a — 1, then by Forelli-
Rudin,

2.1)
1= [eh*™

( C
|Paf(z)|§(a+1)/D |1—ZE|2+“ dA({)f(l_— for z eD.

|z[)@

So we assume in the following b # 0.

Since | f(z)| < 1/v(z) for every f belonging to the closed unit ball of
L (D), the “if”-statement of Proposition 2.1 follows from the next lemma,
taking A = 0.

LEmMA 2.2. Ifa > a +max(b, 1) — 2, a > max(0, —b) and A € [0, 2],
then there exists a constant C > 0 such that

(2.2) f S Ul | DA
p (1 =[ZD[1 —e g P |1 — zg >t
C
< :
T (1 =1z — e~irg|?

for z eD.

PrOOF OF LEMMA 2.2. By rotation symmetry, or a simple change of vari-
able, it is enough to consider the case A = 0.
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Consider first the case b > 0. Given z € D, we denote Q; := {¢ € D |
[1—z| >4|1 —¢|},and 2, :=D\ ;. If ¢ € Qy, then

- - 3
(2.3) |1—Z§|=|1—z+z(1—§)|le—zl—ll—flzle—zl-

We define 8 := min(b, 1 — &), where ¢ := 0,if b < 1,and 0 < ¢ < 1is
chosen so small thata > a+b—2+¢,if b > 1. As aconsequence, b — > 0,
0 < B < 1l,anda—a—b+pB > —1. Moreover, we write { = pe'’ and note that
the domain €2 is contained in the domain {ge’’ e D | r :=1—|1—z|/4 < 0,
[t] < |1 —z|/2 =: 8}. We thus can estimate

I —Jehe
- dA
/Q] =P 1= azp 949

C (I —1gp

<
11—z Jo, 11— ¢ /Pl —
_ (L= lepeettt
< s ©)
M=z Jo,— 11—¢]
C 1 p6 (1 _ Q)a—a—h-l-ﬁ
2.4 < dodt,
4 = |1—z|2+“/r /_9 (I+0? —20cos)p2?“®

We continue using the estimate 1 + ,Q2 —2pcost > (1 —cost)/4 > t2/16,
and obtain for (2.4) the bound

! b+B ’ B
25) — S [a—geettig t|7* dr
(2.5) T z|2“/r( 0) Q/9||

< c’ [(l )a—a—h+ﬁ+1]1 [t—ﬂ+1]9 < c”
- |1_Z|2+a e o=r =0 — |1_Z|a+b'

Moreover, by the Forelli-Rudin estimates, [9], Lemma 4.2.2,

1= c (1= g
- dA - dA
/Qzu—mb 1= oo A =T Jo T g 449
c [ a-lche
- dA
ST=ap Jo i 4@
C/

2.6 .
20 = W= el — 2P
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Ifb <0,wedefine R, :={¢ eD||1—z| <|1-¢|/2},and 2, := D\ Q.
On ©2; we use

_ S 1
2.7) |1—Z§|=|1—§+§(1—Z)|Z|1—§|—|1—Z|Z§|1—§'|-

Since & — a > —1 we can use the Forelli-Rudin estimates to get

/ 1 (d—=|cp* dA(C) < / (I—1¢p*— dA()
o | ~Ja

1 — §-|b |l _ ZE|2+0¢ ] |1 _ ZE|2+(a—a)+(a+b)

C C

2. .
28 S U= = A jaell—zp

On Q> we have |1 —z|™ > C|1 — ¢|7®, so (2.6) can again be used for sz'

PROOF OF PROPOSITION 2.1. We need to consider the “only if”’-statement.
We prove the following fact, which is more than enough for our purposes:
given z € D and M > 4, there exists a function f € L°(D) with || fl, =1
such that

(2.9) |Paf(Z)| > CaM—a-O-a—&-max(b,l)—Z’

ifoe <a+max(b,1)—2,and |P, f(z)| = CylogM,ifa = a+max(b, 1)—2.
Indeed, fixing a z, let us define

. 1
2.10)  fom(@) =0 — e = ¢, it | =1--0

where A(z, ¢) := arg((1—2z¢)>*®), and fz.m (&) := Ootherwise. Then || £, s1l+
= 1. Moreover, defining Dy, :={¢ e D | |¢| <1 —1/M},

(L= fgP)e e
P.f. -C > dA
Jom(2) /D (== (0 —jepen —¢p 4@
, (I—=1Jeh= 1
> C — dA
=C L, T e AW
(2.11) > C” wdA(;).

oy 1—¢l

In the polar coordinates { = pe'’ this can be estimated from below by a
constant times

2w 1-1/M (1 _Q)a—a
(2.12) / f 3 " dodt.
o Jip (14 0% —20cost)?/
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If b < 1, we bound this from below by

3n/2 pl—1/M 1-1/M
2.13) / f (1) “dodi = C’ / (1 - 0)*“ do,
12

and this clearly has the lower bound (2.9).

If b > 1, we estimate (2.12) from below by restricting ¢ to the interval
|t| < 1 — o. Then, by the Taylor series, cost > 1 —2/2 > 1 — (1 — 0)?/2
and thus

(2.14) 14+ 0% —20cost < (1 —0)* +o(l —0)? <2(1 — o),

and for (2.12) we get the lower bound

1=1/M pl—o 1 — a—a
/ / =0
o (1+0*—=20cost)/

1-1/M pl—p
f f (1—0)**"dodt
0

1-1/M
(2.15) < / (1 — )"+ dp.
1/2

Again this has the lower bound (2.9).

We want to generalize the above proposition. To that end we need another
estimate.

LEMMA 2.3. Let A € [0,27],0 <8 < 1, > —1,a > 0, B € Rand
a > a +max(l, B) — 2. Define Qs :={¢ € D | |arg(¢) — A| < &} Then

L St [
2.16 . ! A e
( ) ‘/QS |1—e*l)»§|/3 |1_Z§|2+°‘ (f)_ S

Sfor all z with |argz — A| > 24.

ProoF. By rotation symmetry we can assume A = 0. Moreover, by as-
sumptions, |arg(z¢)| > §, hence, |1 — z¢| > sind > 0. Hence, (2.16) is
bounded by a §-dependent constant times

1 — a—a—max(l,B)+1—¢
(I —1¢1) dA(C)

(1= |¢pye—e
2.17 dA <C
( )/Q,S T—gp AO=C| T
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where ¢ > 0 is so small that « — a — max(1, 8) + 2 > 2¢. Hence, (2.17) is
bounded by a constant times

i (=)L = g7 dA©)

1 27
< cf (1- m‘“/ 1= e drdg < C.
0 0

CoROLLARY 2.4. Letn € N and letthe real numbersa andb;, j =1, ..., n,

satisfy a > max (0, —b;). Let the n different numbers 6; € [0, 2] be given,
j=1,...,
and let v be the weight

(2.18) v(z) = (1 —z)* l_[ 11— e "iz|".

j=1

The Bergman projection P, : L(D) — L3°(D) is bounded, if and only if
a >a+maxj—;  ,(1,b;)—2

REMARK 2.5. If the projection is bounded, we actually can find a constant
C > 0 such that

(1~ lepy
19 [ e I s A .

= n i0; b
(1 -1z Hj:] [T — e "iz|%

for all z € D.

PRrROOF OF COROLLARY 2.4 ANDREMARK 2.5. Letusdefined := —m1n(|9
Or]). Forevery j =1, ..., n define 7%

={¢ e D |arg(¢) —0;| <§/2},
={¢,eD]|arg(¢)—6;| <8} and
(2.20) Q== {¢ €D | |arg(¢) — ;| < 28}

and set Qo := D\ U/_,Q;. We have |1 — ¢'%¢| > C5 > 0,if ¢ ¢ Q;. The
following thus holds:

/ 1 1 a—1zpe dA(C)
p (L= 15D [Tizy 11 — 7% g1 |1 — zz >+
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11—
C = dA
= /Q A —che 11— ¢|2+a ©

(I —1gh*
2.21 +C : "
- Z/ (1 - |§|)a|1 e |1 — 77 P )
The integral
: (1= gD
2.22 . : "
o ‘/Qj (1 =gl — e |bi |1 — zg |2+ @)

is bounded by a constant (by Lemma 2.3), if z ¢ Q;r, and using Lemma 2.2,
it has the bound
C

2.23 : forall ze QF.
(2-23) (1 — 1zl — e~ biz|b /

Moreover, the integral over €29 is bounded on every €2 and has the bound
C/(1 —|z])* on Q, := D\ Ui_182; . Altogether, (2.21) is bounded by a
constant times

1 1

(2.24) . B
(1= 12D [T}, [T — ez b

As for the “only if”’-part of Corollary 2.4, there are two cases. If max; (b;) <
1, we pick up a A € [0, 27 such that |A — 6;| > 2§ for some § > 0, for all j,
and we define, for all M > 4, for some fixed z € D,
(2.25)

. 1
fom(@) =00 — g™, i ¢l <1 - i and |args —A[ <4

where A(z, ¢) := arg((1 — z¢)*t*), and Jfz.m (&) := 0 otherwise. Deducing as
in (2.11)—(2.13) with b = 0, we obtain for | P, f; y(z)| the lower bound as in
(2.9) (with 1 replacing max (b, 1)).

In the case max(b;) > 1 we take the j corresponding the maximal b; and
work as around (2.15). Instead of the z-interval |f| < 1 — ¢ we work with the
interval |t — 6;| < min(1 — g, §), but the idea of the proof is the same.
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3. Remarks on generalized Bergman projections

Let a simply connected 2 and a Riemann map ¢ : 2 — D be given. In this
section we recall the basic properties of the following Bergman type projec-
tions:
(3.1)

pr,a,nf(z) = (x+ 1)/
Q

@' ()1 — p)H)* (w’(z)
(1 — @(2)@(g))>+ ¢'(¢)

where f : Q@ - C, z € Q,« > —1 and n > 0. These projections were
introduced in [7], (4.7) (in the case n € Z), where it was observed that they
reproduce analytic functions. We call P, o /> (= P, in the case Q = D) the
orthogonal projection — maybe here is some small abuse of language. Given a
weight v on © we denote by L2(2) the space with the norm ([, | f|*vd A)"/?
and the inner product (f|g) := fQ fgvdA. The following is true:

n
) F(©)dAD),

LEMMA 3.1. The projection P, 4 42 is the orthogonal projection from L2 (S2)
onto its subspace of analytic functions. Here

(3.2) (@) = (1 = lp@) )¢ ().
Notice that by the Koebe distortion theorem, [4], Corollary 1.4, we have
1
(3.3) EU(Z) < dist(z, Q)% < Cv(z) forall ze Q.

Hence P, 442 is also a bounded projection from L2 (2) := Lﬁist(z,Q)"‘ (£2) onto
its subspace of analytic functions, though not necessarily the orthogonal one
in this space.

For the convenience of the reader we give the straightforward proof for
Lemma 3.1, since we do not know a good reference. It suffices to show
(81 Ppaasrf) = (Ppaapglf) forall f, g € L2(2). We have

(3.4) f 2@ Pyaan f@V() dAG)
Q
@' )1 = @) (@) \**
—( +1)/ ()(f‘” DA (_) ()dA())
D O T e \oy) TO9AC
(= lp@P) ¢ @) dAR)

mw/(g)(l _ |(p(z)|2)a g0/(4.) a/2
. ) Q\J/Q (1 - @(Z)QD(())Z"'O‘ ©'(2) g(z) (2)
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FOA = o@D e (O dAE)

= /(Ptp,a,a/zg)fv dA.
Q

Another straightforward fact is the following:

LEmMMA 3.2. The projection P, ., is bounded on LY (S2) if and only if P,
is bounded on L (D), where w(z) = (1 — |z|)?|¥'(z)|°~'7" for z € D.

ProOF. Denote v(z) := dist(z, 92)° for z € Q and let f € L°().
Assuming P, bounded on the disc we get

sup |P<p,a,nf(z)|v(z)
72€Q

<cC / (I —1le@)P*  ¢'(©)
= Csu —
elJao (1 — (p(Z)QD({))ZJr“ @)

(1= lp@ )7 l¢ ()7

/ (I—=1g»% ')
b (1 — p@)O** ¥/(¢)

(1= le@ P 1¢ @)

f(()dA(s“)‘

= Csup
7eQ

f(xp(o)lw’(cnsz(;)‘

1— 2\a
_ Csup /D ﬁf(w(f))w’(i)””df\(c)'

zeplJo (1 —zg)>He

. (1 _ |Z|2)U|w/(z)|g_1_n
= CIP((f o )Y ™)l < C'lICf o)y ],
= C'sup | £ (Y )] ¥ @10 = 2Dy @)

zeD

(3.5) <c" Suglf(Z)lv(Z),

where on the first and last rows we used the Koebe distortion theorem, see
(3.3).
The other direction is proven in the same way.
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4. Main result

Let 2 be a bounded, regulated domain and let the projection P, o , (see (3.1))
be given. Recall that our indices satisfy « > —1, 0 > 0 and n > 0. Moreover,
we define

T > §) = sup li%l Bt+t)—Bt—1)) =0 and
t T +

(4.1)
—m <& = inf lim (B(r +7) — B =) < 0.

Since f is the direction angle of the forward tangent of €2, the number = — §;
is, roughly, the angle of the sharpest outward pointing corner of €2. The number
7 + &, has an analogous interpretation for inward pointing corners. See [7] for
more details on this definition.

THEOREM 4.1. (i) Assume that 1 +n—o > Oanda(l—l—li—”) > (1 +17)|‘;—2|.

The Bergman projection Py, , is a bounded projection from L (2) onto
HZ2 (), if

d1
4.2) oa>0+maxy(l+n—0o)—,1; —2.

g

Conversely, if

8
4.3) o < 0 + max (l—i—n—a)—l,l - 2.
T

then P, , is not bounded on L (2).
(ii) Assume that 1 + 1 — o <0and o (1 +2) > (1 + ).
Then the result of (i) holds with §; > 0 replaced by §, < 0.

In the case (i) (respectively, (ii)) the condition (4.2) means a restriction for
outward (resp. inward) pointing corners and cusps in the boundary of 2.

Proor orF TEOREM 4.1. By Lemma 3.2, the boundedness properties of
P, o, on L2°(S2) are the same as those of P, on L (D), where w : D — R*
is the weight

(4.4) w(z) == [¥'@17 (1 = [z])°.

Let us consider the case (i) and assume that (4.2) holds. Following [7] we
derive a representation for ||° !~ which reveals its essential factors.

Let & be so small that at least 0 < ¢ < 1(1)—0 min(1, o) and

4.5) oz>(1+20£)(a+max{(l+n—o)i—l,1})—2
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and

1) 1)
(4.6) O'(l—f-M) >(1+n)ﬂ+8.

T T

According to Section 2 of [7], the function || ~!~" has the representation

1 _ 2 it
(4.7) |x/f’|"—1—"=Cexp<—"2#Im/ ‘ +Z(ﬂ(t)—t)dt>,
0

11 elt —z

where § : [0, 27] — Ris aregulated function. There exist finitely many points
0=6y <6, <--- <6, =2 such that

(4.8) Bty —t—yl <&

for 0;_; <t < 6;, for some real constants y;, j = 1, ..., n. We denote by B,
and B, the 2 -periodic extensions to R of the functions

(4.9) Bi=> vixi, B=B—t—p,
j=1

where x;(t) = 1for 6,y <t < 0; and zero elsewhere. Clearly, the mod-
ulus of B, is bounded by &3 (by possibly redefining the function 8 on the
set {0y, ..., 6,} of measure 0). By the choice of the points 6; we have (with
Y0 1= Vu)

=J

(4.10) 181 — max (vj+1 = y)| <267 and |& — min (541 —)| < 26,

Let us define for j = 1,2

1 2m it
4.11) Bi(2) = exp(—g—lnlm/ ¢ +Z,Bj(t)dt>;
0

2 eit —z

we thus have [/|~177 = C¥19, and w = C(1 — |z])° D Ds. We still define
p:=¢/(10 —¢) (hence 1 4+ 1/p = 10/¢ ) and define the weights

(4.12) v = ((1 - |Z|)U_82171)1+p, v = ((1— |Z|)821~)2)1+1/’0.

(Notice that we shall prove V,(z) < C(1 — |Z|)—c53, see Lemma 4.2, hence,
possibly by diminishing ¢, we still have

(4.13) n(@ =Cd —1zD% )
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We want to prove that

1
4.14 K,(z,0)dA <
4.14) fD K DA =

forboth j = 1and j = 2. Here K|, is the modulus of the integral kernel of Py,
ie. Ky(z,0) := C(1 — [¢1)%|1 — zZ|~27%. Our theorem follows from this,
since the Holder inequality then implies

f Ko(z,¢) dA )
D

w()
C ' ]
- Ko(z, )™ 57 dA
/Du T NS TATS R ©

Ko (z,¢) )li,]
C dA
) (/o = eh—mey 4
K(X(Za{) )H—l]/p
’ dA
(fo (A= 1en= i) 448
Koz(Z, C) ﬁ / Ka(Z, é.) >|+11/p
=\h o =2l dA
(56 ao) ([ e e

Gis) ()"
(4.15) <C - )
v1(z) V2(2) w(z)

For v; one has the representation

n—1

(4.16) 71(2) = D1(2) 1_[ 11 — zemifi |~ =1=n =17
j=0

where 7 is a bounded function on D which is also bounded away from zero.
One obtains (4.16) easily by taking the convolution of (4.9) times —(c — 1 —
n)/(2m) with the conjugate Poisson kernel —Q(z, z), see [3], p. 102. (The
product stems from the principal part 2r(8 — t)/((1 — r)?> 4+ r(@ — t)?) of
—QO(t,2); here z = re’. Use

b —2r(@ — 1) 1=0;
@10 jo;—l (I =r)24r@ —1)? vidt = [yj log((1 _r)2 +r@ _t)z)]t=9f—1
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and

@.18) (1=r)? 470 —0)* = (1 —r)> + (0 — 6))> = dist(e"”, re'”)?

=~ dist(re'?, e'%)? = |z — "> = |1 — ze 7192,

A more careful calculation actually shows that (4.16) holds with {; = 1.)
The inequality (4.14) is now obtained for j = 1 from Remark 2.5, putting
a=+p)o—¢e>)andb;, == —(1+p)(c—1— m(y; — ¥j—1)/m. That these

numbers satisfy the required assumptions, follows from (4.5), (4.8), (4.10)
and (4.12); the requirement a > max (0, —b;) follows from (4.6), possibly by
diminishing ¢.

The proof of the boundedness of the projection is completed by the first
statement of the following lemma:

LEMMA 4.2. The inequality (4.14) holds for v,, and ifr <s < 1,0 <6 <
27, then

1 /1=5\ e (1—r\
(4.19) — <"~ <c(—) .
C'\1-—r Dy (sei?) 1—s

This implies (4.13), since we obtain

(4.20) () < C(1 — |z)~¢¢

for all z € D.

We skip the proof of Lemma 4.2 for a moment, and instead we prove the
unboundedness statement for the operator P, ,; we again consider P, on
L3 (D). So assume (4.3) holds. Denote by k = max(1,C, (1 +n —o0)/m)
where C is the constant C of (4.19) and choose 0 < ¢ < ﬁ min(1/k, o) so
small that

3
4.21) 3ke+a<a+max{(1+n—o)—‘,1}—2,
T
and form the functions f; and weights V;, j = 1,2, as in (4.8)—(4.1) using the

¢ of (4.21). (Notice that the statements of Lemma 4.2 still hold.) Let m € N
be such that y,,41 — ¥, = max;(y;j11 — y;) =: y. Then (4.10) implies

5
(4.22) max(l, (47— o)—‘) < max(l, (147 — o)Z) + ke,
T T

From now on we proceed as in the proof of Proposition 2.1. We fixaz € D
and let M > 4 be arbitrary. If (1 +n — o)y /m < 1, we choose 0 < A < 27
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such that |[A — 6| > 26 for all j, where § := %minj;ﬁ; |0; — 6;] and define
eik(z,{)
(I =127 02(2)’

if [¢] < 1—1/M and |arg¢ — A| < 6, and f; y(¢) = O otherwise. Here
Az, ) := arg((1 — z¢)***), and the choice of A implies that fom € LY (D)
with || f;mllw < C (see (4.16) to get convinced that the factor v; of w is
essentially constant on the support of f; ).

If(d+n—o)y/m =1, we define

(4.23) fam(§) =

PRACHY

(4.24) fom (@) = A =12 |1 = Ce | 0T1-07 775y (2)

if& €Dys:={¢ ¢ =1—1/Mand|argl — 6, <8}, and f; y(£) =0
otherwise. See above for the choice of the index m. In this case we get (since
2(5) < C(1 = [¢)* by (4.20))

| Po fz.m(2)]
(1 —¢)h”
C = dA
- /DM.a (I =g [1 = e in|Mtn=0) /Ty (£)|1 — 2 |2+ ©
, (1 _ |§-|)a+k£—o
@425 =C /DW T et e A©):

But here we have, by (4.21) and (4.22),

8
(4.26) « <o+max(1,(1+n—a)—‘) — 2 3ke
g
<o—ke+(U+n-—ol -2,
T

hence, using the same reasoning as in (2.11)—(2.15), we get for (4.25) the lower
bound

4.27) | Po fo(2)] > CM—oto—ke+(4n—o)y /=2

Since M > 0 is arbitrary, this proves the unboundedness of the projection
operator. The case (4.23) is treated in the same way.

It remains to prove Lemma 4.2. The proof is based on Lemma 1 of Section 3
of [2]. To obtain the inequality (4.14) one has to go through the proofs of [2];
the inequality is proven there, see (27) of [2].

First we remark that v, is found bounded, once (4.20) is proven, see (4.13);
notice that in [2] the weights are assumed bounded.
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We first prove the bound (4.19) as follows.

~ i0
va(re”) < |log ﬁz(reie) — log ﬁz(seig)l

4.28) 1 :
(4.28) 08 5 (seit) =

2

lo —1—nl| [*" 0 0
_ —‘ / 0. ré)Bydi — [ 0, ¢ pat) dr
27'[ 0 0

27 —
<C O(t, re')p, (1) dt +/ cot(—e [)ﬂz(t)dt
0 |0—t|>1—r 2
+C / —cot<—9 _ t)ﬂz(t)dt +/ cot(—e _ t)ﬁg(t) dt
0—t]>1—r 2 0—t]>1—s 2
0 —t 2 "
+C / —Cot(—)ﬂz(t) dt — O(t,se')Byr(t) dt|.
[0—t|>1—s 2 0

Denoting by M f the Hardy-Littlewood maximal function of a function f :
[0, 2] — R, we get by [3], Section III, 1.2,

2 _
/ —0(t, ré')Bo(t) dt — / cot<u>,32(t) dt
0 6—t|>1—r 2

< C(MB2)(6) < C'l|p2llo < C"&°.

(4.29)

The last row has the same bound. On the second but last row we use |cot((6 —
t)/2) —2/(0 —t)] < C and make a change of variable t — 6 — t, and so
obtain for (4.28) the bound

(430) C&+ C||,B2”oo/

l—s<t<l—r

1 |-
~dr = Cé3 —|—C/83log<1 r).

-

The second inequality of (4.19) follows. The first one can be proven in the
same way.
Next we prove

1 ( 7| )“3 |
4.31) ___<C .
Dy (eitz) 1 —|z| 12(2)

forz € D, |t| = (1 —|z|)/2. Assuming first T > 0 and using the same method
as above we obtain

(4.32) |logi(z) — log ha(e'"2)|
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2 2

O(t, 2)Ba(t) dt — O(t, e 2)Bo(t) dt
0

60—t
/ —cot(—)ﬂg(t) dt
|0—t|>1—r 2

O +7—1
+/ cot(L)Bz(t)dt
|0+t —t|>1—r 2

1 1
SCN83+C// ——ﬁz(t—e)dt-i—/ Bo(t — 0)dt
f=1-r 1 +el=1—r L+ T

In the case 0 < 7 < 1 — r the sum of the two integrals reads as

=C
0

<Ce+C

1—r 1
(4.33) /1 e OO

T 1 1 bid 1
+/1_,<t+t — ;)ﬁz(f —Q)dt-l-/ﬂ_r —;,82(1‘ —0)dt

Estimating |8,| by Ce? all integrals can be seen to have the bound

1 —
(4.34) Ced + Cé3 1og(++f).
—r
The other cases are treated by same methods. The condition (4.2) follows.
We now turn to the Lemma 1, Section 3, of [2]. Given n € N we denote
M, :={1,2,3,...,2" and A, ,, := (1—-2"")e* ™" forn e Nandm € M,,.
We fix N € N, denote M = 2V € My, and prove the following estimates:

C
39 pRPRE—

n<N meM, nm) VZ()\'N,M)’

C
(4.36) L pemmete o &
r;m;N 2()»n m) V2 (AN, m)
and
1 1 C
4.37) < .
Z Z m2+a VZ()\n,m) VZ()"N,M)

nZN 271—N5m§2n

This is the special case of the assumption of Lemma 1, [2], where the points
An.ym are assumed to be on the real axis. It is enough to consider this case,
since the general case can be obtained from this by a rotation.
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‘We have

(4.38) DKM eIy e
‘72()"n,m) -

Here the first factor 2€€* V=71 follows from (4.19), and the second from (4.2).
Raising this to the power 1 4+ 1/0 = 10/¢ and taking into account the factor

(4.39) a-— |)"n,m|)82(10/€) — —10en

of va(Ap ) we obtain (4.35):

1 1
(440) Z Z m‘)2()"n,m)

n<N meM,
c 1 21()511
<
- Z Z mto f)z()L )10/8
n<N meM, m,m

1 2108n+C1082|N—n| )
<=cy > T N U (notice 2 + o — C10e? > 1)

n<N meM,
1
< Vol 2108/\72(10876‘]082)(}171\/) _
Z;V Uy (An,m)'0/e
10e N 1
< C.= 2 < Ce
Do (AN, )8 T vy(An.m)
As for (4.36),

Z Z ! 9 (=n+N)(2+a)
1% ()\n,m)

n>N m<2"-N

21081’1

<C 2 (=n+N)(2+a)
<€) 2 S

n>N m<2n-N

2

Ce
m 2
C§ : § : _ 2108H+C108 |IN=n|+(—n+N)(2+«a)
Uy (A, m)107¢

n>N m<2n-N

A

1
< ' -
- Z Dy (An,m)'0/%

n>N

(14+C10&%) (n—N)+10en+C10&>|N —n|+(—n+N) (2+a)



C’ B —
Z Dy (A, m) 10/

n>N
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2lOsN
(—=n+N)(24+a—1-C202—10¢)

210£N C/

4.41) <C.= £

< )
Va(An. i)' T va(hy M)

Finally, for (4.37) we estimate

(4.42)

1 1
Z Z W VZ()‘n,m)

n=N 2n-N <y <2n

1 21081’[
= ¢ Z Z m2ta f)z()m,m)lO/s

n>N 2n=N < <2n

10en4+C10&%|N —n|
2

1
=C Z Z m2+e—C10e? ﬁZO‘N,M)]O/S

n=N 2n=N < <2n

2108n+C10£2\N—n|
D

<C 5 (=n+N)(2+a—C10e? _
Z Dy (1) 10/

n>N

2(—n+N)(l+ot—20C82—108)
S C Z 210€N _
Uy (An, m)'0/e

n>N

10e N i
2 c

<C < .
T T 00w T v Govm)
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