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HÖLDER INEQUALITY FOR FUNCTIONS THAT
ARE INTEGRABLE WITH RESPECT TO

BILINEAR MAPS

O. BLASCO and J. M. CALABUIG∗

Abstract

Let (�,�,μ) be a finite measure space, 1 ≤ p < ∞,X be a Banach spaceX and u : X×Y → Z

be a bounded bilinear map. We say that an X-valued function f is p-integrable with respect to
u whenever sup‖y‖=1

∫
�

‖u(f (w), y)‖p dμ < ∞. We get an analogue to Hölder’s inequality in
this setting.

1. Introduction

Throughout the paper 1 ≤ p < ∞, (�,�,μ)will be a finite complete measure
space, X, Y and Z will stand for Banach spaces over K (R or C), and u :
X × Y → Z will denote a bounded bilinear map. We denote by L0(X) and
L0

weak(X) the spaces of strongly and weakly measurable functions with values
in X and by L0

weak∗(X∗) the space of weak∗-measurable functions with values
in X∗. We write Lp(X), Lpweak(X) and Lpweak∗(X∗) for the space of functions
in L0(X), L0

weak(X) and L0
weak∗(X∗) such that ‖f ‖ ∈ Lp, 〈f, x∗〉 ∈ Lp for

x∗ ∈ X∗ and 〈x, f 〉 ∈ Lp for x ∈ X respectively. Finally we use the notation
S (X) for the space ofX-valued simple functions and by Pp(X) for the space
of Pettis p-integrable functions Pp(X) = L

p

weak(X) ∩ L0(X).
Let us start mentioning the following basic examples of bilinear maps:

(1) BX : X × K → X, BX(x, λ) = λx,

(2) DX : X ×X∗ → K, DX(x, x
∗) = 〈x, x∗〉,

(3) (D1)X : X∗ ×X → K, (D1)X(x
∗, x) = 〈x, x∗〉,
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In this paper we shall consider some spaces of X-valued functions which
are p-integrable with respect to a bounded bilinear map u : X × Y → Z,
that is to say X-valued functions f satisfying the condition u(f, y) ∈ Lp(Z)
for all y ∈ Y . The cases Lp(X), Lpweak(X) and Lpweak∗(X∗) correspond to the
previous notion applied to the examples above.

Some other classes have been around for a long time for cases such us

(4) πY : X × Y → X ⊗̂ Y, πY (x, y) = x ⊗ y,

(5) ÕY : X × L (X, Y ) → Y, ÕY (x, T ) = T (x),

(6) OY,Z : L (Y, Z)× Y → Z, OY,Z(T , y) = T (y).

A systematic study of theses spaces for general bilinear maps has been initiated
in [6] and used to extend the results on boundedness from Lp(Y ) to Lp(Z) of
operator-valued kernels by M. Girardi and L. Weiss [10] corresponding to the
bilinear map OY,Z to the case where K : �×�′ → X is measurable and the
integral operators are defined by

TK(f )(w) =
∫
�′

u(K(w,w′), f (w′)) dμ′(w′).

The reader is also referred to [7] for an introduction of Fourier Analysis in
the bilinear context. This allows to extend the results in [2], [4], [5] regarding
convolution by means of bilinear maps and Fourier coefficients for functions
in these wider classes.

The aim of this paper is the consideration of Hölder inequality in this general
context. It is well known and easy to see the following analogues of Hölder’s
inequality in the vector-valued setting: Let 1 ≤ p1, p2, p3 ≤ ∞ and 1

p1
+ 1

p2
=

1
p3

.

(1) If f ∈ Lp1
weak(X) and g ∈ Lp2 then fg ∈ Lp3

weak(X).

(2) If f ∈ Pp1(X) and g ∈ Lp2 then fg ∈ Pp3(X).

(3) If f ∈ Lp1(X) and g ∈ Lp2 then fg ∈ Lp3(X).

(4) If f ∈ Lp1(X) and g ∈ Lp2(X∗) then 〈f, g〉 ∈ Lp3 .

(5) If f ∈ Lp1(L (X, Y )) and g ∈ Lp2(X) then f (·)(g(·)) ∈ Lp3(Y ).

We shall try to understand the situation when one considers integrability with
respect to general bilinear maps.
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Let us mention some notions that were relevant for developing the general
theory (see [6]). Givenx ∈ X andy ∈ Y we shall be denoting by ux ∈ L (Y, Z)

and uy ∈ L (X,Z) the linear operators ux(y) = u(x, y) and uy(x) = u(x, y).
A triple (Y, Z,u) is called admissible for X if the map x → ux is injective
from X → L (Y, Z) and X is said to be (Y, Z,u)-normed (or normed by u)
if there exists C > 0 such that ‖x‖ ≤ C‖ux‖ for all x ∈ X.

Given a bounded bilinear map u : X×Y → Z, we can define the “adjoint”
u∗ : X × Z∗ → Y ∗ by the formula

〈y,u∗(x, z∗)〉 = 〈u(x, y), z∗〉.
Note that for the just mentioned examples we have:

B∗
X = DX, (πY )

∗ = ÕY ∗ and (OY,Z)
∗(T , z∗) = OZ∗,Y ∗(T ∗, z∗).

Let us start with the following definitions:

Definition 1.1 (see [6]). We say that f : � → X belongs to L0
u(X) if

u(f, y) ∈ L0(Z) for any y ∈ Y . We write L
p
u (X) for the space of functions

f in L0
u(X) such that

‖f ‖L
p
u (X)

:= sup{‖u(f, y)‖Lp(Z) : ‖y‖ = 1} < ∞.

A function f ∈ L
p
u (X) is said to belong toLpu(X) if there exists a sequence

of simple functions (sn)n ∈ S (X) such that

sn → f a.e. and ‖sn − f ‖L
p
u (X)

→ 0.

For f ∈ L
p
u(X) we write ‖f ‖Lpu(X) instead of ‖f ‖L

p
u (X)

. Clearly one has
that

‖f ‖Lpu(X) = lim
n→∞ ‖sn‖Lpu(X).

In particular

L0
BX
(X) = L0(X), L0

DX
(X) = L0

weak(X) and L0
D1,X

(X∗) = L0
weak∗(X).

L
p

BX
(X) = Lp(X),L

p

DX
(X) = L

p

weak(X) and L
p

(D1)X
(X∗) = L

p

weak∗(X
∗).

L
p

BX
(X) = Lp(X) andLpDX

(X) = Pp(X) (see [11], p. 54 for the case p = 1).

Observe that Lp(X) ⊆ L
p
u(X) for any u and that, in general, Lpu(X) �

L
p
u (X) (see [8] page 53, for the case u = DX). It was shown in [6] that

L
p
u (X) ⊂ L

p

weak(X) if and only if X is u-normed.
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Clearly f ∈ L0
u(X) and g ∈ L0(Y ) implies that u(f, g) ∈ L0(Z). Hence a

natural question that arises is the following: let us take 1
p1

+ 1
p2

= 1
p3

.

Question 1. Does u(f, g) ∈ Lp3(Z) for any f ∈ L
p1
u (X) and g ∈

Lp2(Y )?
The answer is negative for infinite dimensional Banach spaces X.

Proof. Indeed, take p1 = p2 = 2 and p3 = 1, let X be an infinite dimen-
sional Banach space, Y = X∗ andZ = K and u = DX. Take (xn) ∈ �2

weak(X)\
�2(X). This allows to find (x∗

n) ∈ �2(X∗) such that
∑

n |〈xn, x∗
n〉| = ∞. Con-

sider now � = [0, 1] with the Lebesgue measure, Ik = (2−k, 2−k+1] and
define the functions f = ∑∞

k=1 2
k
2 xkχIk and g = ∑∞

k=1 2
k
2 x∗
k χIk . It is clear that

f ∈ L 2
DX
(X) with ‖f ‖2

L 2
DX
(X)

= sup
{∑∞

n=1 |〈xn, x∗〉|2 : ‖x∗‖ = 1
}

and g ∈
L2(X∗) with ‖g‖2

L2(X∗) = ∑∞
n=1 ‖x∗

n‖2 but u(f, g) = ∑∞
k=1 2k〈xk, x∗

k 〉χIk /∈
L1.

One might think that the difficulty comes from allowing the functions to
belong to L

p1
u (X) instead of Lp1

u (X). Let us then modify the question:

Question 2. Does u(f, g) ∈ Lp3(Z) for any f ∈ Lp1
u (X) and g ∈ Lp2(Y )?

The answer is again negative.

Proof. Assume the contrary. Hence there exists M > 0 such that

(7) ‖u(s, t)‖L1(Z) ≤ M‖s‖L2
u(X)

‖t‖L2(Y )

for any s ∈ S (X) and t ∈ S (Y ).
SelectX = Y = �2, Z = �1 and u : �2 ×�2 → �1 given by u((λn)n, (βn)n)

= (λnβn)n. Let us now consider sN = tN = ∑N
k=1 2

k
2 ekχIk where ek is the

canonical basis and Ik are chosen as in the previous example. Hence u(sN , y) =∑N
k=1 2

k
2 βkekχIk for y = (βn)n ∈ �2. Therefore ‖sN‖L2

u(�
2) ≤ 1, ‖sN‖L2(�2) =√

N and ‖u(sN , sN)‖L1(�1) = N . This contradicts (7).

Modifying the previous argument with Z = K and u = DX one can
even show that there exist f ∈ L

p1
u (X) and g ∈ Lp2(Y ) such that u(f, g) /∈

L
p3
weak(Z).
The objective of this paper is to present an analogue to Hölder inequality

in the setting of vector-valued functions that are integrable with respect to
bilinear maps. We shall then study the following general problem:

The general problem. Let 1 ≤ p1, p2, p3 ≤ ∞ and 1
p1

+ 1
p2

= 1
p3

and
let u : X × Y → Z be a bounded bilinear map. If u1 : X × X1 → X2 and
u2 : Y × Y1 → Y2 are bounded bilinear maps, find u3 : Z × Z1 → Z2 such
that for any f ∈ L

p1
u1
(X) and g ∈ L

p2
u2
(Y ) one has u(f, g) ∈ L

p3
u3
(Z).
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2. A bilinear version of Hölder’s Inequality

The notion that will fit to our purposes is the following.

Definition 2.1. We say that (u,u1,u2) is a compatible triple if u : X ×
Y → Z, u1 : X × X1 → X2 and u2 : Y × Y1 → Y2 are bounded bilinear
maps and there exist a Banach space F and two bounded bilinear maps P :
X2 × Y2 → F and P̃ : Z × (X1 ⊗̂ Y1) → F such that

P̃(u(x, y), x1 ⊗ y1) = P(u1(x, x1),u2(y, y1))

for all x ∈ X, y ∈ Y , x1 ∈ X1 and y1 ∈ Y1.

A general procedure of construction of such compatible triples of bilinear
maps can be obtained as follows:

Proposition 2.2. Let U be a Banach space, u1 : X × X1 → U and
u2 : Y × Y1 → U ∗ be bounded bilinear maps . Define the bilinear map
uu1,u2 : X × Y → L (X1, Y

∗
1 ) by the formula

〈uu1,u2(x, y)(x1), y1〉 = 〈u1(x, x1),u2(y, y1)〉
for x ∈ X, y ∈ Y , x1 ∈ X1 and y1 ∈ Y1. Then (uu1,u2 ,u1,u2) is a compatible
triple.

Proof. Using that L (X1, Y
∗
1 ) = (X1 ⊗̂ Y1)

∗ we also can write

〈uu1,u2(x, y), x1 ⊗ y1〉 = 〈u1(x, x1),u2(y, y1)〉.
This shows that (uu1,u2 ,u1,u2) is compatible by selecting F = K, P =

DX : U × U ∗ → K and P̃ = (D1)X1⊗̂Y1
: L (X1, Y

∗
1 )× (X1 ⊗̂ Y1) → K.

Let us now give some more concrete examples of compatible triples:

Example 2.3. (u,BX,BY ) is a compatible triple for any u : X×Y → Z.
In particular, (DX,BX,BX∗) or (OX,Y ,BX,BY ) are compatible triples.

Indeed, if u : X×Y → Z, u1 = BX : X×K → X and u2 = BY : Y×K →
Y then select F = Z, P = u : X × Y → Z and P̃ = BZ : Z × K → Z.
Observe that P̃(u(x, y), λβ) = P(B(x, λ),B(y, β)).

Example 2.4. (u,u∗,BY ) is a compatible triple.

Indeed, if u : X × Y → Z, u1 = u∗ : X × Z∗ → Y ∗ given by

〈y,u1(x, z
∗)〉 = 〈u(x, y), z∗〉

and u2 = BY : Y × K → Y then we can select F = K, P = (D1)Y :
Y ∗ × Y → K and P̃ = DZ : Z × Z∗ → K.



106 o. blasco and j. m. calabuig

Example 2.5. (πY ,BX, ÕX∗) is a compatible triple.

Indeed, if u = πY : X × Y → X ⊗̂ Y , u1 = BX : X × K → X and u2 =
ÕX∗ : Y×L (Y,X∗) → X∗ then we can takeF = K, P = DX : X×X∗ → K
and P̃ = DX⊗̂Y : X ⊗̂ Y × L (Y,X∗) → K. The compatibility now follows
from

P̃(u(x, y), λT ) = 〈x ⊗ y, λT 〉 = 〈λx, T y〉 = P(u1(x, λ),u2(y, T )).

Example 2.6. Let C : L (X,Z) × L (Y, Z∗) → L (Y,X∗) be given by
(T , S) → T ∗S. Then (C ,OX,Z,OY,Z∗) is a compatible triple.

Indeed, if u1 = OX,Z : L (X,Z)×X → Z and u2 = OY,Z∗ : L (Y, Z∗)×
Y → Z∗ then we can take F = K, P = DZ : Z × Z∗ → K and P̃ =
(D1)X⊗̂Y : L (Y,X∗)×X ⊗̂ Y → K given by P̃(T , x ⊗ y) = 〈x, T y〉.

Observe that the compatibility follows from the formula

P̃(C (T , S), x ⊗ y) = 〈x, T ∗Sy〉 = 〈T x, Sy〉 = P(u1(T , x),u2(S, y)).

Theorem 2.7 (Hölder’s inequality I). Let 1 ≤ p1, p2, p3 < ∞ such that
1
p1

+ 1
p2

= 1
p3

. Assume that (u,u1,u2) is a compatible triple for some F , P

and P̃ .

(1) If f ∈ L
p1
u1
(X) and g ∈ L

p2
u2
(Y ) then u(f, g) ∈ L

p3

P̃
(Z).

(2) If f ∈ Lp1
u1
(X) and g ∈ Lp2

u2
(Y ) then u(f, g) ∈ Lp3

P̃
(Z).

Moreover ‖u(f, g)‖L
p3
P̃
(Z) ≤ ‖P‖‖f ‖L

p1
u1
(X)‖g‖L

p2
u2
(Y ).

Proof. (1) Let us first show that if f ∈ L0
u1
(X) and g ∈ L0

u2
(Y ) then

h = u(f, g) ∈ L0
P̃
(Z).

Indeed, if x1 ∈ X1 and y1 ∈ Y1 then P̃(h, x1 ⊗ y1) = P(u1(f, x1),

u2(g, y1)). Now since u1(f, x1) ∈ L0(X2), u2(g, y1) ∈ L0(Y2) and P is
continuous then P̃(h, x1 ⊗ y1) ∈ L0(F ). For general ϕ ∈ X1 ⊗̂ Y1, assume
ϕ = ∑

n x
n
1 ⊗ yn1 with

∑
n ‖xn1 ‖‖yn1 ‖ < ∞. Then, using the continuity of P

and P̃ , one has

P̃(h, ϕ) = lim
N→∞

N∑
k=1

P̃
(
u1(f, x

k
1 ),u2(g, y

k
1 )

) ∈ L0(F ).

Assume f ∈ L
p1
u1
(X) and g ∈ L

p2
u2
(Y ). Let us show that h ∈ L

p3

P̃
(Z).
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If x1 ∈ X1 and y1 ∈ Y1 then

(∫
�

‖P̃(h, x1 ⊗ y1)‖p3 dμ

) 1
p3

=
(∫

�

‖P(u1(f, x1),u2(g, y1))‖p3 dμ

) 1
p3

≤ ‖P‖
(∫

�

(‖u1(f, x1)‖‖u2(g, y1)‖
)p3
dμ

) 1
p3

≤ ‖P‖
(∫

�

‖u1(f, x1)‖p1 dμ

) 1
p1

(∫
�

‖u2(g, y1)‖p2 dμ

) 1
p2

≤ ‖P‖‖f ‖L
p1
u1
(X)‖g‖L

p2
u2
(Y )‖x1‖‖y1‖.

In general, for each ϕ = ∑
n x

n
1 ⊗ yn1 ∈ X1 ⊗̂ Y1, one has P̃(h,

∑
n x

n
1 ⊗

yn1 ) = ∑
n P̃(h, xn1 ⊗ yn1 ). Therefore

(∫
�

∥∥∥∥P̃

(
h,

∑
n

xn1 ⊗ yn1

)∥∥∥∥p3

dμ

) 1
p3

≤
∑
n

(∫
�

∥∥P(u1(f, x
n
1 ),u2(g, y

n
1 ))

∥∥p3
dμ

) 1
p3

≤ ‖P‖
(∑

n

‖xn1 ‖‖yn1 ‖
)

‖f ‖L
p1
u1
(X)‖g‖L

p2
u2
(Y ).

This gives ‖u(f, g)‖L
p3
P̃
(Z) ≤ ‖P‖‖f ‖L

p1
u1
(X)‖g‖L

p2
u2
(Y ).

(2) Assume that f and g are simple functions. If f = ∑
k xkχEk ∈ S (X)

and g = ∑
p ypχFp ∈ S (Y ) then

h = u(f, g) =
∑
k,p

u(xk, yp)χEk∩Fp ∈ S (Z).

Now, if we takef ∈ Lp1
u1
(X) andg ∈ Lp2

u2
(Y ) then there exist (fn)n ⊆ S (X)

and (gn)n ⊆ S (Y ) such that fn → f a.e., gn → g a.e., ‖fn − f ‖Lp1
u1
(X) → 0

and ‖gn − g‖Lp2
u2
(Y ) → 0. Clearly u(fn, gn) are simple functions and converge

to u(f, g) a.e.
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Due to the previous result

‖u(fn, gn)− u(f, g)‖L
p3
P̃
(Z)

≤ ‖u(fn − f, gn)‖L
p3
P̃
(Z) + ‖u(f, gn − g)‖L

p3
P̃
(Z)

≤ ‖P‖‖fn − f ‖L
p1
u1
(X)‖gn‖L

p2
u2
(Y ) + ‖P‖‖f ‖L

p1
u1
(X)‖gn − g‖L

p2
u2
(Y )

Taking limits the proof is completed.

Let us point out a little improvement that can be achieved for the compatible
triples in Proposition 2.2. Let us recall the following fact that will be used in
the proof.

Lemma 2.8. Let X be a Banach space, 1 ≤ p < ∞ and (x∗
n)n ⊆ X∗. Then

sup

{(∑
n

|〈x∗
n, x

∗∗〉|p
) 1

p

: ‖x∗∗‖ = 1

}
= sup

{(∑
n

|〈x, x∗
n〉|p

) 1
p

: ‖x‖ = 1

}

Corollary 2.9 (Hölder’s inequality II). LetX,X1, Y, Y1 andU be Banach
spaces and 1 ≤ p1, p2, p3 < ∞ such that 1

p1
+ 1
p2

= 1
p3

. Let u1 : X×X1 → U ,

u2 : Y × Y1 → U ∗ be bounded bilinear maps and let uu1,u2 = ũ : X × Y →
L (X1, Y

∗
1 ) be defined by the formula

〈ũ(x, y)(x1), y1〉 = 〈u1(x, x1),u2(y, y1)〉.
If f ∈ Lp1

u1
(X) and g ∈ Lp2

u2
(Y ) then ũ(f, g) ∈ Pp3(L (X1, Y

∗
1 )). Moreover

‖ũ(f, g)‖Lp3
weak(L (X1,Y

∗
1 ))

≤ ‖f ‖Lp1
u1
(X)‖g‖Lp2

u2
(Y ).

Proof. Assume first that f and g are simple functions. If f = ∑
k xkχEk ∈

S (X) and g = ∑
p ypχFp ∈ S (Y ) then h = ũ(f, g) = ∑

k,p ũ(xk, yp)χEk∩Fp
∈ S (L (X1, Y

∗
1 )).Note that L (X1, Y

∗
1 ) = (X1⊗̂Y1)

∗. Hence from Lemma 2.8

‖h‖Lp3
weak((X1⊗̂Y1)∗)

= sup

{(∑
k,p

|〈ũ(xk, yp), ψ〉|p3μ(Ek ∩ Fp)
) 1

p3

: ‖ψ‖(X1⊗̂Y1)∗∗ = 1

}

= sup

{( ∑
k,p

|〈ϕ, ũ(xk, yp)〉|p3μ(Ek ∩ Fp)
) 1

p3

: ‖ϕ‖X1⊗̂Y1
= 1

}

= ‖h‖Lp3
weak∗((X1⊗̂Y1)∗).
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We conclude, using Theorem 2.7, that

‖h‖Lp3
weak(L (X1,Y

∗
1 ))

≤ ‖f ‖Lp1
u1
(X)‖g‖Lp2

u2
(Y ).

Now, if we takef ∈ Lp1
u1
(X) andg ∈ Lp2

u2
(Y ) then there exist (fn)n ⊆ S (X)

and (gn)n ⊆ S (Y ) such that fn → f a.e., gn → g a.e., ‖fn − f ‖Lp1
u1
(X) → 0

and ‖gn − g‖Lp2
u2
(Y ) → 0. Clearly ũ(fn, gn) → ũ(f, g) a.e. and therefore

ũ(f, g) is strongly measurable and

|〈ũ(fn, gn), ψ〉|p3 → |〈ũ(f, g), ψ〉|p3 a.e.

for all ψ ∈ (X1⊗̂Y1)
∗∗.

To see that ũ(f, g) ∈ Pp3(L (X1, Y
∗
1 )) it suffices to show that ũ(f, g) ∈

L
p3
weak(L (X1, Y

∗
1 )).

Then using (X1 ⊗̂ Y1)
∗ = L (X1, Y

∗
1 ), Fatou’s Lemma and the inequality

for simple functions we have that

‖ũ(f, g)‖p3

L
p3
weak((X1⊗̂Y1)∗)

= sup

{∫
�

|〈ũ(f, g), ψ〉|p3dμ : ‖ψ‖(X1⊗̂Y1)∗∗ = 1

}

= sup

{∫
�

lim
n

|〈ũ(fn, gn), ψ〉|p3dμ : ‖ψ‖(X1⊗̂Y1)∗∗ = 1

}

≤ sup

{
lim inf

n

∫
�

|〈ũ(fn, gn), ψ〉|p3dμ : ‖ψ‖(X1⊗̂Y1)∗∗ = 1

}

≤ lim inf
n

‖ũ(fn, gn)‖p3

L
p3
weak((X1⊗̂Y1)∗∗)

≤ lim inf
n

‖fn‖p3

L
p1
u1
(X)

‖gn‖p3

L
p2
u2
(Y )

= ‖f ‖p3

L
p1
u1
(X)

‖g‖p3

L
p2
u2
(Y )
.

Applying Theorem 2.7 to the examples given above one obtains the follow-
ing applications.

Corollary 2.10. Let 1 ≤ p1, p2, p3 < ∞ such that 1
p3

= 1
p1

+ 1
p2

.
Let u : X × Y → Z be a bounded bilinear map.

(1) If f ∈ Lp1(X) and g ∈ Lp2(X∗) then 〈f, g〉 ∈ Lp3 .

(2) If f ∈ Lp1(X) and g ∈ L
p2

ũ∗(Y ) then u(f, g) ∈ L
p3
weak(Z), where ũ∗ :

Y × Z∗ → X∗ is given by 〈x, ũ∗(y, z∗)〉 = 〈u(x, y), z∗〉.
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(3) If f ∈ L
p1
u (X) and g ∈ Lp2(Z∗) then u∗(f, g) ∈ L

p3
weak∗(Y ∗), where

u∗ : X × Z∗ → Y ∗ is given by 〈y,u∗(x, z∗)〉 = 〈u(x, y), z∗〉.
(4) If f ∈ Lp1

ÕY∗ (X) and g ∈ Lp2(Y ) then f ⊗ g ∈ Lp3
weak(X ⊗̂ Y ).

(5) Iff ∈ Lp1

OX,Z
(L (X,Z))andg ∈ Lp2

OY,Z∗ (L (Y, Z∗))and if we putf ∗(t) =
f (t)∗ ∈ L (Z∗, X∗) then f ∗g ∈ Lp3

weak∗(L (Y,X∗)).
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