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WEAK LINEAR CONVEXITY AND A RELATED
NOTION OF CONCAVITY

LARS HÖRMANDER

1. Introduction

Linear convexity is a property of open sets in Cn which is stronger than pseudo-
convexity but weaker than convexity:

Definition 1.1. An open set � ⊂ Cn, n > 1, is called linearly convex if
every ζ ∈ �� is contained in an affine complex hyperplane �ζ ⊂ ��, and �
is called weakly linearly convex if this is true when ζ ∈ ∂�.

The notion was first studied by Behnke and Peschl [2] when n = 2, long
before the geometric conditions for pseudoconvexity were fully understood.
A renewed interest has been created by the study of analytic functionals.

Weak linear convexity implies pseudoconvexity. If R(z) denotes say the
euclidean distance from z ∈ � to ∂� then � is pseudoconvex if and only if
− logR is plurisubharmonic in �, or equivalently,

(1.1)
n∑

j,k=1

tj t̄k∂
2R(z)/∂zj ∂z̄k ≤

∣∣∣∣ n∑
1

tj ∂R(z)/∂zj

∣∣∣∣2

/R(z) in �, t ∈ Cn,

in the sense of distribution theory. Note that R is Lipschitz continuous with
Lipschitz constant 1. By Rademacher’s theorem ∂R/∂zj is defined almost
everywhere and bounded, so the right-hand side of (1.1) is a well defined func-
tion in L∞

loc(�). If ∂� ∈ C2, then R ∈ C2 in a neighborhood of ∂� if defined
with a negative sign outside�, and (1.1) implies that

∑
tj t̄k∂

2R(z)/∂zj ∂z̄k ≤ 0
when z ∈ ∂� and 〈R′

z(z), t〉 = 0. If � is a C2 defining function of �, thus
� < 0 in �, � = 0 and d� 	= 0 on ∂�, this means that
(1.2)

n∑
j,k=1

tj t̄k∂
2�(z)/∂zj ∂z̄k ≥ 0 if z ∈ ∂�, t ∈ Cn,

n∑
1

tj ∂�(z)/∂zj = 0.
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Conversely (1.2) implies (1.1) and thus pseudoconvexity.
The primary aim of this paper is to study similar conditions for weak lin-

ear convexity. Let us first recall two well-known basic results. (See e.g. [3,
Proposition 4.6.4 and Corollary 4.6.5].)

Proposition 1.2. Let � ⊂ Cn be a bounded connected open set with C1

boundary, and assume that� is locally weakly linearly convex in the sense that
every ζ ∈ ∂� has a neighborhood ω such that ω∩TC(ζ )∩� = ∅; here TC(ζ )

is the complex tangent plane of � at ζ , that is, the affine complex hyperplane
through ζ contained in the tangent plane. Then � is weakly linearly convex.

Proposition 1.3. Let � ⊂ Cn be a (locally) weakly linearly convex open
set with a C2 boundary, and choose a defining function � ∈ C2(Cn). Then it
follows that the second differential d2� of � is a positive semidefinite quadratic
form in the complex tangent plane TC(ζ ) at ζ ∈ ∂�. Conversely, if � is open,
bounded and connected, and d2� is positive definite in TC(ζ ) for every ζ ∈ ∂�,
then � is weakly linearly convex.

Proposition 1.3 is in fact a very easy corollary of Proposition 1.2. – In two
more recent papers [4], [5], Kiselman has proved that in the last statement
it suffices to assume that d2� is positive semidefinite, which gives a charac-
terization of bounded connected weakly linearly convex open sets with a C2

boundary in terms of a pointwise convexity condition on the boundary. How-
ever, since the localization principle in Proposition 1.2 is valid when ∂� is just
in C1, it is natural to ask if Kiselman’s result can be extended to this case. The
necessary “Behnke-Peschl condition” in Proposition 1.3 has a natural analogue

(1.3) lim
TC(ζ )w→ζ

�(w)/|w − ζ |2 ≥ 0,

where ζ ∈ ∂� and � is a C1 defining function for �. Since the ratio between
two C1 defining functions is bounded, this condition is independent of the
choice of defining function. If � ∈ C2 then (1.3) means precisely that d2� is
positive semidefinite in TC(ζ ), so (1.3) is an extension of the usual Behnke-
Peschl condition to the case where ∂� ∈ C1. The necessity of (1.3) is obvious
when ∂� ∈ C1 but we have only been able to prove the sufficiency under
stronger regularity conditions. Before stating the result we shall recall some
simple facts concerning open sets� ⊂ RN withC1 boundary. (It is convenient
to use real notation for a moment.)

As above let R(x) be the distance from x ∈ � to ∂�, and let h = R2, thus

(1.4) R(x) = inf
y∈∂� |x − y|, h(x) = inf

y∈∂� |x − y|2, x ∈ �.
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The functions R and h are Gateau differentiable everywhere,

h(x + x̃) = h(x)+ h′(x; x̃)+ o(|x̃|), x̃ → 0;
h′(x; x̃) = sup{2〈x̃, x − y〉; y ∈ ∂�, |x − y|2 = h(x)}.

(See e.g. [3, Lemma 2.1.29].) Thus h is differentiable at x if and only if there is
only one y ∈ ∂�with minimum distance to x. SinceR is Lipschitz continuous
by the triangle inequality it follows from Rademacher’s theorem that R, hence
alsoh = R2, is differentiable for almost every x ∈ �. If�δ = {x ∈ �;R(x) <
δ} and ∂� ∈ C1, then R ∈ C1(�δ) if and only if every x ∈ �δ is contained in
an open ball ⊂ � with radius δ. If this is true for some δ > 0 we shall say that
� satisfies the interior ball condition. If ν(y) is the interior unit normal of ∂�
at y ∈ ∂�, then ∂�× (0, δ)  (y, t) �→ y+ tν(y) ∈ �δ is a homeomorphism.

We can now state an improvement of the results of Kiselman [5]:

Theorem 1.4. Assume that � ⊂ Cn is open, bounded and connected, that
∂� ∈ C1 and that the interior ball condition is fulfilled. Let � be aC1 defining
function of �. If (1.3) is valid for every ζ ∈ ∂�, and for some constant C

(1.5) �(w) ≥ −C|w − ζ |2, ζ ∈ ∂�, w ∈ TC(ζ ),

then � is weakly linearly convex.

The interior ball condition is fairly strong. In fact, ∂� is in C1,1 (that is,
there is a defining function with Lipschitz continuous first derivatives) if and
only if both the interior and the exterior ball condition are fulfilled. The exterior
ball condition is stronger than (1.5) but closely related.

The proof of Theorem 1.4 given at the end of Section 2 will be based on a
study of the function h in� defined by (1.4). As a preparation we rephrase the
conclusion and the hypotheses of Theorem 1.4 in terms of h:

Proposition 1.5. An open set� ⊂ Cn is weakly linearly convex if and only
if

(1.6) h(w) ≤ h(z)+ 2�〈w− z, h′
z(z)〉 + |〈w− z, h′

z(z)〉|2/h(z), w ∈ �,
when h is differentiable at z ∈ �.

We shall always use the notation 〈·, ·〉 for the bilinear scalar product in Cn

and (·, ·) for the sesquilinear one.
Proof. If� is weakly linearly convex and h is differentiable at z ∈ �, then

h′
z(z) = z̄ − ζ̄ where ζ is the point in ∂� where |z − ζ |2 = h(z). The plane
�ζ of Definition 1.1 must be the plane through ζ with normal z− ζ for it does
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not intersect the open ball with center z and ζ on the boundary. The right-hand
side of (1.6) is equal to

|z− ζ |2 + 2�〈w − z, z̄− ζ̄ 〉 + |〈w − z, z̄− ζ̄ 〉|2/|z− ζ |2
= |w − ζ |2 − (|w − z|2 − |(w − z, z− ζ )|2/|z− ζ |2).

The parenthesis is the square of the distance fromw to the complex line through
z and ζ , so the right-hand side of (1.6) is the square of the distance from
w to �ζ , which is ≥ h(w) since �ζ ⊂ ��. This proves (1.6); if h is not
differentiable at z then (1.6) remains valid with h′

z(z) replaced by z̄ − ζ̄ for
any ζ ∈ ∂� with |z− ζ |2 = h(z).

Now assume instead that (1.6) is valid. Since h(w) > 0 when w ∈ �

it follows from the interpretation of the right-hand side just given that �ζ =
{w; (w−ζ, z−ζ ) = 0} does not intersect�. For an arbitrary ζ ∈ ∂� and every
ε > 0 we can choose z ∈ �with |z−ζ | < ε so that h is differentiable at z. If ζ̃
is the point in ∂� with |ζ̃ − z|2 = h(z), then |ζ̃ − ζ | ≤ |ζ̃ − z|+ |z− ζ | < 2ε,
and we have a plane�ζ̃  ζ̃ with�ζ̃ ⊂ ��. When ε → 0 it follows that there
is such a plane through ζ , which completes the proof.

Using the first part of the proof we can easily convert the conditions (1.3)
and (1.5) to properties of h:

Proposition 1.6. If ∂� ∈ C1 and h is differentiable at z ∈ �, then

(1.7) lim
w→0

(
h(z+w)−h(z)−2�〈w, h′

z(z)〉−|〈w, h′
z(z)〉|2/h(z)

)
/|w|2 ≤ 0

if (1.3) is valid at the point ζ ∈ ∂� with h(z) = |z− ζ |2. If (1.5) is valid, then

(1.8) h(z+ w) ≤ h(z)+ 2�〈w, h′
z(z)〉 + C ′|w|2, z+ w ∈ �,

for some constant C ′ independent of z and w when z and w are bounded.

Proof. By the interpretation of the right-hand side of (1.6) given in the
proof of Proposition 1.5, the meaning of (1.7) is that

lim
w→0

(h(z+ w)− |z+ w − ζ − w′|2)/|w|2 ≤ 0,

where ζ +w′ is the orthogonal projection of z+w on TC(ζ ), thus |w′| ≤ |w|.
If ζ + w′ /∈ � then h(z+ w)− |z+ w − ζ − w′|2 ≤ 0 so there is nothing to
prove. If ζ + w′ ∈ �, it follows from (1.3) that R(ζ + w′) = o(|w′|2), hence

R(z+w) ≤ |z+w − ζ −w′| + R(ζ +w′) ≤ |z+w − ζ −w′| + o(|w′|2),
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and if we square it follows that

h(z+ w) ≤ |z+ w − ζ − w′|2 + o(|w|2)
as claimed in (1.7). Using (1.5) instead of (1.3) we obtain (1.8) in the same
way.

The condition (1.7) is evidently an infinitesimal version of the desired in-
equality (1.6). The proof of Theorem 1.4 will be achieved by bridging the gap
between them in Section 2. This is analogous to the characterisation of concave
functions as functions with second derivative ≤ 0, but the continuous differ-
entiability of h near ∂� assumed in Theorem 1.4 will be important then. The
proof of Theorem 1.4 is completed in Section 2, but in Section 3 we pursue
the study of Lipschitz continuous functions with the properties in Proposi-
tion 1.6 further as a possible step toward reducing the regularity assumptions
in Theorem 1.4. Just as the study of plurisubharmonic functions only relies
on subharmonic functions of one complex (i.e. two real variables), it would
suffice to discuss functions of two variables in Sections 2 and 3. However, we
shall take the opportunity to do so for functions ofN ≥ 2 real variables which
will require a substantial modification of the somewhat indirect proofs given
in [5] when N = 2.

2. Quadratically concave functions

Proposition 1.5 is an explicit version of the fact that if � is weakly linearly
convex, then the minimum h(z) of the squared distance from z ∈ � to ∂� is the
infimum of the squared distance to the planes �ζ , ζ ∈ ∂�, in Definition 1.1.
Restricted to a complex line the distance to a complex hyperplane � is either
a constant or else a multiple of the distance to the intersection of � with the
line. We take this as motivation for the following definition:

Definition 2.1. A positive function h defined in an open set � ⊂ RN

will be called quadratically concave in � if for some set M ⊂ R+ × RN ,
R+ = {t ∈ R; t ≥ 0},
(2.1) h(x) = inf

(a,b)∈M
|ax + b|2, x ∈ �.

The term is new and tentative but it will be convenient here to have a name
for this property. The following theorem confirms the close connection with
weak linear convexity as expressed in Proposition 1.5.

Theorem 2.2. If h is a positive quadratically concave function in an open
set � ⊂ RN , then h is locally Lipschitz continuous in �, thus differentiable
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almost everywhere with derivatives in L∞
loc(�), and for every point x ∈ �

where h is differentiable

(2.2) h(y) ≤ h(x)+ 〈y − x, h′(x)〉 + 1
4 |y − x|2|h′(x)|2/h(x), x, y ∈ �,

(2.3)
√
h(y)

√
h(x) ≤

∣∣∣∣ h′(x)
|h′(x)|h(x)+ 1

2 (y − x)|h′(x)|
∣∣∣∣, x, y ∈ �,

where |h′(x)|/|h′(x)| should be read as 1 if h′(x) = 0. Conversely, these
equivalent conditions imply that h is quadratically concave. A bound C for h
at one point x ∈ � implies a uniform bound and uniform Lipschitz continuity
in terms of x and C on every compact subset of �. For every compact set
K ⊂ �×� there is a constant CK such that when h is differentiable at x then

(2.4) h(y)− h(x)− 〈y − x, h′(x)〉 ≤ CK |y − x|2, (x, y) ∈ K,
(2.5) lim

y→x

(
h(y)−h(x)−〈y−x, h′(x)〉)/|y−x|2 ≤ 1

4 |h′(x)|2/h(x), x ∈ �.

From (2.4) and (2.5) it follows that the second derivatives of h are measures
and that

(2.6) 〈h′′t, t〉 ≤ 1
2 |t |2|h′|2/h in �, t ∈ RN.

Proof. Assume that (2.1) is fulfilled and fix x ∈ �. Given ε > 0 we can
choose (aε, bε) ∈ M so that |aεx+bε|2 < h(x)+ε. If� contains the ball with
radius δ and center at x, then |aεx+bε| ≥ aεδ since aεy+bε 	= 0 when y ∈ �,
so we have a bound for aε, hence for bε. Letting ε → 0 we can select a limit
(a, b) ∈ R+ × RN and obtain |ay+ b|2 ≥ h(y), y ∈ �, and |ax+ b|2 = h(x).
We have uniform bounds for a and b when x is in a compact subset of �, so
the bound

h(y)− h(x) ≤ |ay + b|2 − |ax + b|2 = a〈y − x, a(y + x)+ 2b〉
= 2a〈y − x, ax + b〉 + a2|y − x|2

together with the analogue obtained by interchanging x and y proves that h is
locally Lipschitz continuous. If h is differentiable at x, then

〈y − x, h′(x)〉 ≤ 2a〈y − x, ax + b〉,
hence h′(x) = 2a(ax + b) and h(x) = |ax + b|2,

which gives 4a2 = |h′(x)|2/h(x) and proves (2.2). Taking the square root of
(2.2) after multiplication by h(x) proves the equivalence with (2.3), and (2.4),
(2.5) are immediate consequences. It is also obvious that (2.2) implies (2.1)
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for some M , so what remains is to prove that (2.6) follows from (2.4), (2.5).
Let 0 ≤ χ ∈ C∞

0 (�) and note that when t ∈ RN∫
h(x)〈χ ′′(x)t, t〉 dx = lim

ε→0

∫
h(x)2(χ(x−εt)−χ(x)+ε〈χ ′(x), t〉)/ε2 dx.

Since ∂h/∂x ∈ L∞
loc defines ∂h/∂x in the sense of distribution theory, we have∫
(h(x)χ ′(x)+ h′(x)χ(x)) dx = 0, hence∫

h(x)〈χ ′′(x)t, t〉 dx = lim
ε→0

∫
χ(x)2(h(x+εt)−h(x)−ε〈h′(x), t〉)/ε2 dx.

By (2.5) the upper limit as ε→0 of the integrand is ≤ χ(x)|t |2|h′(x)|2/(2h(x))
almost everywhere, and (2.4) gives an upper bound C|t |2χ(x) for some con-
stant C. Hence it follows from Fatou’s lemma that∫

h(x)〈χ ′′(x)t, t〉 dx ≤ |t |2
∫
χ(x)|h′(x)|2/(2h(x)) dx,

which proves (2.6). Taking t along a coordinate axis gives ∂2h/∂x2
j ≤ |h′|2/2h,

j = 1, . . . , N , so ∂2h/∂x2
j is a measure, and since ∂2h/∂x2

j + ∂2h/∂x2
k +

2∂2h/∂xj∂xk ≤ 2|h′|2/h, all second derivatives are measures and the proof is
complete.

Remark. Note that (2.2) is valid with equality if h(x) = |ax + b|2, the
fundamental functions in (2.1), and for no other functions. The inequality (2.2)
is inherited from this fact and (2.1). A non-constant quadratic polynomial
h(x) = a|x|2 + 2〈b, x〉 + c in RN is quadratically concave in � = {x ∈
RN ;h(x) > 0} unless� = RN , for h(y)− h(x)− 〈y − x, h′(x)〉 = a|y − x|2
so (2.2) means that ah(x) ≤ |ax + b|2 when x ∈ �. This is true unless a > 0
and ac > |b|2, and then we have h ≥ c − |b|2/a > 0.

Our next goal is to prove that conversely (2.6) implies (2.2) when 0 < h ∈
C1(�) and� is the open unit ballB in RN . At first we assume that h ∈ C2(B),
that h > 0 in B, and that

(2.7) 〈x, h′(x)〉 < h(x), x ∈ ∂B.
This is a consequence of the inequality (2.3) which we wish to prove, for when
h > 0 in B it follows from (2.3) that∣∣∣∣ h′(x)

|h′(x)|h(x)− 1
2x|h′(x)|

∣∣∣∣ ≥ 1
2 |h′(x)| + inf

B
h > 1

2 |h′(x)|,



80 lars hörmander

and if we square it follows that h(x)2 −h(x)〈x, h′(x)〉 > 0 when |x| ≤ 1. The
following lemma is based on an idea in the proof of Proposition 1.2.

Lemma 2.3. Let 0 < h ∈ C2(B) and assume that h satisfies (2.7) in ∂B
and (2.6) with strict inequality for t 	= 0 at every point in B. Then the open
subset of B defined by

(2.8) �a,b = {x ∈ B;h(x) > |ax + b|2}
is connected for arbitrary (a, b) ∈ R+ × RN .

Proof. Since �0,0 = B we may assume that (a, b) 	= (0, 0). Set g(x) =
h(x)−f (x)where f (x) = |ax+b|2. If x ∈ B and g(x) = 0, g′(x) = 0, then

(2.9) f (y) = f (x)+ 〈y − x, f ′(x)〉 + 1
4 |f ′(x)|2|y − x|2/f (x)

= h(x)+ 〈y − x, h′(x)〉 + 1
4 |h′(x)|2|y − x|2/h(x).

However, since (2.6) is valid with strict inequality for t 	= 0 it follows from
Taylor’s formula that the right-hand side is ≥ h(y) in a neighborhood of
x, hence g(y) ≤ 0 there, so x cannot belong to the closure of �a,b. Thus
B ∩ ∂�a,b is a C2 surface. Suppose now that x ∈ ∂B and that g(x) = 0,
but g′(x) 	= 0. If g′(x) is not proportional to x then the zeros of g are a
C2 surface intersecting ∂B transversally, and �a,b is in a neighborhood of x
in B the connected subset on one side of this surface. The situation is more
complicated if g′(x) is proportional to x, thus

g′(x) = h′(x)− f ′(x) = 2Cx, where C 	= 0.

By (2.6) and Taylor’s formula

g(x + y) ≤ 〈y, 2Cx〉 + 1
4 |y|2(|h′(x)|2/h(x)− |f ′(x)|2/f (x))

when x + y ∈ B and |y| is small. When x + y ∈ B then |y|2 + 2〈y, x〉 ≤ 0,
and if C > 0 it follows that

g(x + y) ≤ |y|2(−C + 1
4 〈h′(x)− f ′(x), h′(x)+ f ′(x)〉/h(x))

= |y|2(−C + 1
4 〈2Cx, 2h′(x)− 2Cx〉/h(x))

= C|y|2(〈x, h′(x)〉/h(x)− 1 − C/h(x)
)

for small |y| when x + y ∈ B. Hence, by (2.7), x is not in the closure of�a,b.
Finally, if C < 0 then the derivative of g at x in the direction of the interior
unit normal −x is positive, and then it is obvious that�a,b is locally connected
at x; we have tx ∈ �a,b if 1 − t is positive and small enough.
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It is now easy to conclude that �a,b is connected. Indeed, if x, y ∈ �a,b
it is clear that x and y are in the same component of �εa,εb if ε is positive
and small enough, for h has a positive lower bound on a connecting curve in
B. The set E of ε ∈ [0, 1] such that x and y are in the same component of
�εa,εb is an open subset. If 1 /∈ E then there is some ε ∈ (0, 1] such that
[0, ε) ⊂ E but ε /∈ E. Let �x and �y be the components of �εa,εb containing
x and y. The closures �

x
, �

y
are disjoint for �εa,εb is locally connected at

each boundary point, and they have neighborhoods �̃x, �̃y containing no other
points z with h(z) ≥ |εaz + εb|2. If we choose them compact and disjoint, it
follows that h(z) < |δaz + δb|2 when z ∈ ∂�̃x ∪ ∂�̃y if δ < ε and ε − δ is
sufficiently small. Hence �̃x (resp. �̃y) contains the component of x (resp. y)
in�δa,δb then which contradicts that x and y are in the same component. Thus
E = [0, 1] and �a,b is connected.

Theorem 2.4. Let h be a positive function in C1(B) where B ⊂ RN is an
open ball, and assume that (2.6) is valid for � = B. Then (2.2) follows with
� = B, so h is quadratically concave in B.

Proof. We may assume that B is the open unit ball. The proof proceeds in
three steps.

a) Assume at first that 0 < h ∈ C2(B), that (2.6) is fulfilled with strict
inequality when t 	= 0, and that (2.7) holds. Given x ∈ B we define a and b
by

|ay + b|2 = h(x)+ 〈y − x, h′(x)〉 + 1
4 |h′(x)|2|y − x|2/h(x),

that is, a = 1
2 |h′(x)|/√h(x), b = √

h(x)h′(x)/|h′(x)| − 1
2x|h′(x)|/√h(x)

(cf. (2.3)). (If h′(x) = 0 we interpret h′(x)/|h′(x)| as any unit vector.) By
Lemma 2.3 the set �(1−ε)a,(1−ε)b = {y ∈ B;h(y) > (1 − ε)2|ay + b|2} is
connected if 0 < ε < 1. Since the inequality in (2.6) is assumed strict for
t 	= 0, it follows from Taylor’s formula that it has one component which
shrinks to {x} when ε → 0. Hence it cannot have another component for small
ε > 0 which proves that �a,b = ∅, that is, that (2.2) is valid.

b) Now we just assume that 0 < h ∈ C2(B) and that there is strict inequality
in (2.6) when t 	= 0, but we no longer assume that (2.7) is fulfilled. As in [4,
p. 93] the proof is then obtained by a standard continuity argument sometimes
referred to as “continuous induction”. For 0 < r ≤ 1 let hr(x) = h(rx),
x ∈ B. For small r the condition (2.7) is satisfied if h is replaced by hr , and
so is (2.6) with strict inequality when t 	= 0. Hence, by a), (2.2) is valid with
h replaced by hr . The set M of all r ∈ (0, 1] such that (2.2) is valid with h
replaced by hr is closed. To prove that it is open we note that if r ∈ M then
the condition (2.7) is fulfilled with h replaced by hr , as we saw just after the
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statement of (2.7). For reasons of continuity it follows that (2.7) is also satisfied
by h� if |r − �| is sufficiently small and � ≤ 1, so M is open, hence equal to
(0, 1]. Thus (2.2) is valid for h = h1.

c) To prove that (2.6) implies (2.2) when h is just in C1(B) we first assume
that h ∈ C1 and that h is positive in a neighborhood of B. Writing hε(x) =
h(x)− ε(|x|2 + 1) and gε(x) = ε(|x|2 + 1) with a small ε > 0, we have

〈h′′
ε t, t〉 ≤ (

1
2 |h′|2/h− 2ε

)|t |2 ≤ (
1
2 |h′

ε|2/hε + 1
2 |g′

ε|2/gε − 2ε
)|t |2

= (
1
2 |h′

ε|2/hε − 2ε/(|x|2 + 1)
)|t |2,

for (t, t0) �→ |t |2/t0 is a convex and homogeneous, hence subadditive, function
of (t, t0) when t ∈ RN and t0 > 0. If 0 ≤ ψ ∈ C∞

0 (R
N) and ψ has support

sufficiently close to the origin,
∫
ψ dx = 1, it follows that H = hε ∗ ψ ∈

C∞(B), that H > 0 in B if ε is small, and that (2.6) is valid in B with strict
inequality when |t | = 1 when h is replaced by H . Hence (2.2) is valid with
h replaced by H , and (2.2) follows for h itself when suppψ → {0}. If h just
satisfies the hypotheses in the theorem we conclude that (2.2) is valid with h
replaced by hr when 0 < r < 1, if hr is defined as in part b) above. When
r → 1 the statement follows for h itself.

Remark. The proof of Theorem 2.4 for N = 2 given in [4] relied on ap-
proximating a Hartogs domains in C2 defined by h with domains for which
Proposition 1.3 can be applied. This approximation also depended on the con-
dition (2.7) but in a more technical and less geometrically motivated way than
in Lemma 2.3 here. (See also [1], Section 2.5.)

Kiselman [4, Section 8] proved when N = 2 that if the conclusion of
Theorem 2.4 is valid for an open bounded bounded set � ⊂ R2 then � is
a disk. We shall simplify his proof and generalize the result at the end of
Section 3. However, the approximation in part c) of the proof can be applied
quite generally:

Theorem 2.5. If h is a positive quadratically concave function in C1(�)

where � is an open set in RN , and if ω � � is another open set, then there
exists a sequence hj ∈ C∞(ω) of positive quadratically concave functions
converging to h in C1(ω).

Proof. With the notation in part c) of the proof of Theorem 2.4 we have
hε > 0 in a neighborhood of ω̄ for small ε > 0. If ε is sufficiently small and
suppψ is sufficiently close to the origin then H = hε ∗ ψ is in C∞(ω) and
〈H ′′t, t〉 < 1

2 |t |2|H ′|2/H when t 	= 0, in a neighborhood of ω, as in the proof
of Theorem 2.4. By Theorem 2.4 this implies that (2.2) is valid with h replaced
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by H if x, y ∈ ω̄ and |x − y| < r , say. Now

hε(y)− hε(x)− 〈y − x, h′
ε(x)〉 − 1

4 |h′
ε(x)|2|y − x|2/hε(x)

= ε(|x|2 − |y|2)+ h(y)− h(x)

− 〈y − x, h′(x)− 2εx〉 − 1
4 |h′

ε(x)|2|y − x|2/hε(x)
≤ −ε|x − y|2 + 1

4 (|h′(x)|2/h(x)− |h′
ε(x)|2/hε(x))|y − x|2

≤ −ε|y − x|2/(1 + |x|2),
as in the proof of Theorem 2.4. Hence H satisfies (2.2) when x, y ∈ ω and
|x−y| ≥ r , provided that ε is sufficiently small and |z| < δε when z ∈ suppψ .
This proves the statement.

Using just Theorem 2.4 we can now prove Theorem 1.4.

Proof of Theorem 1.4. Choose δ > 0 so that h ∈ C1(�δ) where �δ =
{z ∈ �;h(z) < δ2}. If ζ ∈ ∂� then�δ contains the open ball Bζ of radius δ/2
with ζ ∈ ∂Bζ and the same interior normal as � at ζ , and h ∈ C1(Bζ ). The
restriction of h to the intersection of Bζ and a complex line is quadratically
concave, for it follows from Proposition 1.6 and the second part of Theorem 2.2
that the hypotheses of Theorem 2.4 are fulfilled. Thus
(2.10)
h(w) ≤ h(z)+ 2�〈w − z, h′

z(z)〉 + |〈w − z, h′
z(z)〉|2/h(z), w, z ∈ Bζ .

If we choose z as the center of Bζ , it follows that h(w) is at most equal
to the squared distance from w to TC(ζ ), by the interpretation made in the
proof of Proposition 1.5. If w′ ∈ TC(ζ ) ∩ � and |w′ − ζ | is small, then the
direction of the normal of ∂� at the point ζ ′ ∈ ∂� closest to w′ is close to
that at ζ , and |ζ ′ − ζ | ≤ 2|w′ − ζ | is also small. Hence the normal at ζ ′
will contain points w ∈ Bζ . The boundary distance |w − ζ ′| = √

h(w) is
|w−w′| + |w′ − ζ ′| > |w−w′|, and since the distance from w to TC(ζ ) is at
most equal to |w−w′|, this contradicts (2.10). Hence ω∩ TC(ζ )∩� = ∅ if ω
is a sufficiently small neighborhood of ζ , and it follows from Proposition 1.2
that � is weakly linearly convex.

Remark. The preceding proof used the interior ball condition in two ways.
Without it we could still use Proposition 1.6 and the second part of Theorem 2.2
to conclude that (2.6) is valid for the restriction of h to a complex line,

t �→ h(at + b), t ∈ C, at + b ∈ �,
provided thath is differentiable at at+b for almost all t . The differentiability of
h in�δ allowed us to apply Theorem 2.4 to obtain (2.10). Secondly it allowed
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us to conclude that ζ ′ was the boundary point closest to w, which was equally
important.

3. Weakly quadratically concave functions

In Theorem 2.4 it is not possible to replace the hypothesis that h ∈ C1 by
Lipschitz continuity. This is shown by the following example, adapted from
[4, Example 3.1]. Let B be the open unit ball and

h0(x) = |x|2 + 4 − 4|x ′|, x ′ = (x1, . . . , xN−1), x ∈ B,
which is quadratically concave in B since h0(x) = min |x+ b|2 when bN = 0
and |b| = 2. The maximum of h0 inB, equal to 5, is achieved when x ′ = 0 and
xN = ±1. Also ht = min(h0, t), t > 0, is quadratically concave. If 4 < t < 5
then

h(x) =
{
ht (x), if xN ≥ 0,

h0(x), if xN ≤ 0

satisfies (2.6) for the two definitions agree when |xN | is sufficiently small since
t > 4. However, (2.2) is not valid if x ′ = y ′ = 0 and xN is close to 1 and yN
is close to −1 since t < 5.

If one tries to remove the interior ball condition from the hypotheses of
Theorem 1.4 one will encounter functions h satisfying (2.6) which are just
Lipschitz continuous. We shall therefore study their properties in this section
although, as remarked at the end of Section 2, this is not very likely to lead to
any improvement of Theorem 1.4.

If h is Lipschitz continuous and satisfies (2.6), then the right-hand side
of (2.6) is bounded by 2C|t |2 for some constant C, and then it follows that
C|x|2 −h(x) is a convex function. We exploit this in the proof of the following
theorem.

Theorem 3.1. If h is a positive locally Lipschitz continuous function satis-
fying (2.6) in an open set� ⊂ RN , then for every compact setK ⊂ �×� there
is a constant CK such that (2.4) and (2.5) are valid when h is differentiable at
x. Thus (2.6) is equivalent to the conjunction of (2.4) and (2.5). If�∗ is the set
of points in � where h is differentiable, then �∗  x �→ h′(x) is continuous.

Proof. If x ∈ � and Br(x) = {x + y; |y| < r} � �, then (2.6) implies
that

f (y) = 1
2Mr |y − x|2 − h(y)

is a convex function inBr(x) ifMr is the essential supremum of 1
2 |h′(y)|2/h(y)

in Br(x). If x ∈ �∗, that is, h is differentiable at x, then f is differentiable at
x and f (y) ≥ f (x)+ 〈y − x, f ′(x)〉, that is,

(3.1) h(y) ≤ h(x)+ 〈y − x, h′(x)〉 + 1
2Mr |x − y|2, |y − x| < r,
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which proves (2.4). If g(y) = f (y) − f (x) − 〈y − x, f ′(x)〉 and Gr =
supBr (x) g, then 0 ≤ g(y) ≤ Gr |y − x|/r when y ∈ Br(x), since g(x) =
g′(x) = 0. Hence

|g′(y)| ≤ (Gr − g(y))/(r − |y − x|) → Gr/r when �∗  y → x,

and since Gr/r → 0 when r → 0 it follows that f ′(y) → f ′(x), that is,
h′(y) → h′(x) when �∗  y → x. The complement of �∗ is a null set
by Rademacher’s theorem, so this implies that Mr → 1

2 |h′(x)|2/h(x) when
r → 0, and (2.5) follows from (3.1).

It is convenient to have a name for the functions in Theorem 3.1:

Definition 3.2. Positive locally Lipschitz continuous functions satisfying
(2.6) in an open set � ⊂ RN will be called weakly quadratically concave.

As in the proof of Theorem 3.1 we can transfer to weakly quadratically
concave functions a number of basic properties of convex functions:

Theorem 3.3. If h is a positive locally Lipschitz continuous weakly quad-
ratically concave function in the open set� ⊂ RN , then the Gateau differential

(3.2) h′(x; y) = lim
ε→+0

(h(x + εy)− h(x))/ε

exists for every x ∈ � and y ∈ RN , and it is a concave and positively homo-
geneous function of y, thus

(3.3) h′(x; y) = min
ξ∈h̃′(x)

〈y, ξ〉,
where h̃′(x) = {ξ ∈ RN ; 〈y, ξ〉 ≥ h′(x; y), y ∈ RN }

is a convex compact set. If�∗ is the set of points where h is differentiable then
� \�∗ is a null set and for arbitrary x ∈ � and y ∈ RN ,

h′(x; y) = lim
�∗x∗→x

〈h′(x∗), y〉; lim
�∗x∗→x

|h′(x∗)| = max
ξ∈h̃′(x)

|ξ |.

The distance from h′(x∗) to h̃′(x) tends to 0 when �∗  x∗ → x, and if ξ
is an extreme point of h̃′(x) then lim

�∗x∗→x
|h′(x∗) − ξ | = 0. If hj is a loc-

ally uniformly Lipschitz continuous sequence of positive weakly quadratically
concave functions and hj → h where h is also positive, then h is weakly
quadratically concave and

lim
j→∞

h′
j (x; y) ≥ h′(x; y), x ∈ �, y ∈ RN.
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If h is differentiable at x then h′
j (x; y) → h′(x; y) = 〈h′(x), y〉 for every

y ∈ RN .

Proof. If f is convex in a convex open set ω ⊂ RN and ω∗ is the subset
where f is differentiable, then

lim
ω∗x∗→x

〈f ′(x∗), y〉 = f ′(x; y), y ∈ RN, x ∈ ω.

In fact, since 〈f ′(x∗), y〉 ≤ (f (x∗ +εy)−f (x∗))/ε → (f (x+εy)−f (x))/ε
as x∗ → x, if ε > 0, it is clear that the left-hand side is bounded by the right-
hand side. Now

Fε(y) = sup
|x∗−x|<ε,x∗∈ω∗

〈f ′(x∗), y〉

is a convex positively homogeneous function and f (x + y) − f (x) ≤ Fε(y)

when |y| < ε. In fact, f (x ′ +y)−f (x ′) ≤ Fε(y) if x ′ + ty ∈ ω∗ for almost all
t ∈ [0, 1] and |x ′ − x| + |y| < ε; by Fubini’s theorem there exist such points
x ′ arbitrarily close to x. Hence f ′(x; y) ≤ Fε(y) which proves the statement.
If

Kx = {ξ ∈ RN ; f ′(x; y) ≥ 〈y, ξ〉, y ∈ RN },
then f ′(x; ·) is the supporting function of the convex compact set Kx . For
ε > 0 we have 〈f ′(x∗), y〉 ≤ f ′(x; y) + ε|y| when x∗ ∈ ω∗ and |x∗ − x| is
small enough, hence f ′(x∗) ∈ Kx + {y; |y| ≤ ε} then. If K̃x is the set of limit
points of f ′(x∗) as ω∗  x∗ → x, then K̃x ⊂ Kx is compact, and since the
convex hull is equal toKx it follows that K̃x contains the extreme points ofKx .
If these results and those in [3, Theorem 2.1.22] are applied to M|x|2 − h(x)

for a suitably large M , we obtain the statements in the theorem.

Remark. With the notation in the proof of Theorem 3.1 the limit of Mr

when r → 0 is 1
2 maxξ∈h̃′(x) |ξ |2/h(x). Since f (y) ≥ f (x)+ f ′(x; y − x) =

f (x)− h′(x; y − x) we obtain

(3.1)′ h(y) ≤ h(x)+ h′(x; y − x)+ 1
2Mr |y − x|2, |y − x| < r,

so (2.5) can be strengthened to
(2.5)′
lim
y→x

(
h(y)− h(x)− h′(x; y − x)

)
/|y − x|2 ≤ 1

4 max
ξ∈h̃′(x)

|ξ |2/h(x), x ∈ �.

If h is quadratically concave in �, it follows from Theorem 3.3 and (2.2) that
for arbitrary x, y ∈ �
(3.4) h(y) ≤ h(x)+ 〈y − x, ξ〉 + 1

4 |y − x|2|ξ |2/h(x),
if ξ is an extreme point of h̃′(x),
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hence

h(y) ≤ h(x)+ h′(x; y − x)+ 1
4 |y − x|2 max

ξ∈h̃′(x)
|ξ |2/h(x).

If hj is a sequence of quadratically concave functions in � converging point-
wise to a positive function h in �, then the sequence is locally uniformly
Lipschitz continuous by Theorem 2.2 and by Theorem 3.3 the inequality (2.2)
is valid for the limit h so it is quadratically concave too.

If h1 and h2 are quadratically concave functions it is obvious that h =
min(h1, h2) is quadratically concave. To prove the analogue for weakly quad-
ratically concave functions we need an elementary lemma on convex functions
of one variable.

Lemma 3.4. If f1 and f2 are convex functions in (−1, 1) and f = max(f1,

f2), then f ′′ ≥ min(f ′′
1 , f

′′
2 ) in the sense of measure theory.

Proof. For χ ∈ C∞
0 (−1, 1) we have by Taylor’s formula

〈f ′′, χ〉 = 〈f, χ ′′〉 = lim
ε→0

∫
f (x)(χ(x + ε)+ χ(x − ε)− 2χ(x))/ε2 dx

= lim
ε→0

∫
(f (x + ε)+ f (x − ε)− 2f (x))χ(x)/ε2 dx.

Set dμj = f ′′
j and dν = min(dμ1, dμ2). If f (x) = f1(x) then

f (x + ε)+ f (x − ε)− 2f (x) ≥ f1(x + ε)+ f1(x − ε)− 2f1(x)

=
∫

|t−x|<ε
(ε − |t − x|) dμ1(t) ≥

∫
|t−x|<ε

(ε − |t − x|) dν(t),

and similarly if f (x) = f2(x). Hence we obtain if χ ≥ 0

〈f ′′, χ〉 ≥
∫
dν(t) lim

ε→0

∫
|t−x|<ε

(ε − |t − x|)χ(x) dx/ε2 =
∫
χ(t) dν(t),

which proves that f ′′ ≥ dν = min(f ′′
1 , f

′′
2 ).

Theorem 3.5. If h1 and h2 are weakly quadratically concave functions in
� ⊂ RN , then h = min(h1, h2) is also weakly quadratically concave.

Proof. By Lemma 3.4 applied to M|x|2 − hj (x) for sufficiently large M
we have

(3.5) 〈h′′t, t〉 ≤ 1
2 |t |2 max(|h′

1(x)|2/h1(x), |h′
2(x)|2/h2(x)), t ∈ RN.
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Let χ1, χ2, χ0 be the characteristic functions of the sets

�1 = {x ∈ �;h1(x) < h2(x)},
�2 = {x ∈ �;h2(x) < h1(x)},
�0 = {x ∈ �;h1(x) = h2(x)}.

The sets �j with j = 1, 2 are open and h = hj there, hence

(3.6) χj 〈h′′t, t〉 ≤ 1
2χj |t |2|h′|2/h, t ∈ RN, j = 1, 2.

To prove this for j = 0 we first observe that by (3.5) the positive part of the
left-hand side is absolutely continuous. If h1 − h2 is differentiable at x ∈ �0

and the differential is not equal to 0, then x is not a point of density in �0.
Hence it follows from Rademacher’s theorem that h′

1(x) = h′
2(x) for almost

every x ∈ �0, so (3.6) follows from (3.5) when j = 0. This completes the
proof. (We could also have used the equivalent condition (2.5), for if h is
differentiable at x and h1(x) = h2(x), then h1 and h2 are differentiable at x
and h′

1(x) = h′
2(x) = h′(x).)

Positive locally uniform limits of quadratically concave functions in � are
quadratically concave, but we shall now prove that limits of smooth quadrat-
ically concave functions satisfy a stronger version of (3.4). For the proof we
need a preliminary lemma on convex functions.

Lemma 3.6. Let f be a positively homogeneous convex function in RN , thus
the supporting function of a convex compact set

K = {ξ ∈ RN ; 〈x, ξ〉 ≤ f (x), x ∈ RN }; f (x) = sup
ξ∈K

〈x, ξ〉.

If g is a convex function in C2({x ∈ RN ; |x| ≤ R}) then

(3.7) K ⊂ {g′(x); |x| ≤ R} + 4{ξ ; |ξ | ≤ sup
|x|≤R

|f (x)− g(x)|/R}.

Proof. If a linear form 〈x, θ〉 is added to f (x) and to g(x) then K is
replaced byK + {θ} and g′(x) is replaced by g′(x)+ θ , so the statement does
not change. It is therefore sufficient to prove that if 0 ∈ K , that is, f ≥ 0, then
|g′(x)| ≤ 4ε/R for some x with |x| < R if ε = sup|x|≤R |f (x)− g(x)|. Since

g(x)+ 2ε|x|2/R2 ≥ f (x)− ε + 2ε|x|2/R2 ≥ ε when |x| = R,

and g(0) ≤ ε, it follows that g(x) + 2ε|x|2/R2 has a minimum point in the
open ball, thus g′(x) + 4εx/R2 = 0 and |g′(x)| ≤ 4ε/R for some x with
|x| < R. This proves the lemma.
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Theorem 3.7. If h is a positive quadratically concave function in an open
set � ⊂ RN which in every relatively compact subset is a uniform limit of
smooth quadratically concave functions, then

(3.8) h(y) ≤ h(x)+ 〈y − x, ξ〉 + 1
4 |y − x|2|ξ |2/h(x),

x, y ∈ �, ξ ∈ h̃′(x),
(3.9) h̃′(x) = {ξ ∈ RN ; 〈z, ξ〉 ≥ h′(x; z), z ∈ RN }.

Recall that by (3.4) the inequality (3.8) is valid for every quadratically con-
cave function when ξ is an extreme point of h̃′(x). For the example discussed
at the beginning of this section,

h(x) = |x|2 + 4 − 4|x ′|, x ′ = (x1, . . . , xN−1), |x| < 1,

we have h′(x; z) = 2xNzN − 4|z′|, hence h̃′(x) = {(ξ ′, 2xN); |ξ ′| ≤ 4}, when
x ′ = 0, but (3.8) is not valid when |ξ ′| < 4. In fact, if y ′ = 0 too then (3.8)
requires that

y2
N ≤ x2

N + 2xN(yN − xN)+ 1
4 (yN − xN)

2(|ξ ′|2 + 4x2
N)/(x

2
N + 4),

which simplifies to 16 ≤ |ξ ′|2 if yN 	= xN . – By Theorem 2.5 it does not matter
in Theorem 3.7 if by smooth we mean C1, C2, or C∞.

Proof of Theorem 3.7. We may assume that x = 0. Let 0 ∈ ω � � and
choose a sequence hj ∈ C2(ω̄) of quadratically concave functions converging
uniformly to h in ω̄. Let 1

4 |h′
j |2/hj ≤ M in ω̄, which implies that fj (x) =

M|x|2 − hj (x) is convex in ω̄; so is the limit f (x) = M|x|2 − h(x), and
f ′(0; ·) = −h′(0; ·). If ξ ∈ h̃′(0) then 〈z, ξ〉 ≥ −f ′(0; z), that is, 〈z,−ξ〉 ≤
f ′(0; z). We have

f ′(0; z) = lim
δ→+0

(f (δz)− f (0))/δ

with uniform convergence when |z| ≤ 1. For arbitrary ε > 0 it follows then
that

|f ′(0; z)− (fj (δz)− fj (0))/δ| < ε, if |z| ≤ 1, 0 < δ < δε and j > Jε,δ.

Let ξ ∈ h̃′(0) and fix δ < δε for a moment. By Lemma 3.6 we can then for large
j find zj with |zj | ≤ 1 such that |f ′

j (δzj ) + ξ | ≤ 4ε, hence |h′
j (δzj ) − ξ | ≤

4ε + 2Mδ. If we apply (2.2) to hj with x replaced by δzj it follows when
j → ∞ that for some z with |z| ≤ δ and ξ̃ with |ξ̃ − ξ | ≤ 4ε+ 2Mδ we have

h(y) ≤ h(z)+ 〈y − z, ξ̃〉 + 1
4 |y − z|2|ξ̃ |2/h(z), y ∈ ω.
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When ε and δ → 0 then z → 0 and ξ̃ → ξ , so we obtain (3.8) with x = 0 and
y ∈ ω. The proof is complete.

The following corollary makes the condition in Theorem 3.7 concrete in a
special case close to Example 3.1 in [4].

Corollary 3.8. Let h1 and h2 be positive C2 functions in a neighborhood
of 0 ∈ RN such that h1(0) = h2(0). Then h = min(h1, h2) is not in any ball
B with center at 0 a uniform limit of C2 quadratically concave functions in B
unless

(3.10) 〈v, ∂〉2(λ1h1 + λ2h2)(0) ≤ 1
2 |∂(λ1h1 + λ2h2)(0)|2/h(0),

when λ1 + λ2 = 1, λ1, λ2 ≥ 0 and v is a unit vector such that 〈v, ∂〉h1(0) =
〈v, ∂〉h2(0). This is equivalent to

(3.10)′
〈v, ∂〉2hj (0) ≤ 1

2 |h′
j (0)|2/h(0), j = 1, 2,

2∑
1

(|h′
j (0)|2 − 2h(0)〈v, ∂〉2hj (0)

) 1
2 ≥ |h′

1(0)− h′
2(0)|.

Proof. We can assume that h′
1(0) 	= h′

2(0) for otherwise there is nothing
to prove. Since

h′(0; x) = min
j=1,2

〈h′
j (0), x〉,

the condition on ξ in Theorem 3.7 is that

ξ = λ1h
′
1(0)+ λ2h

′
2(0), where λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 = 1.

The equation h1(x) = h2(x) defines a C2 hypersurface � with tangent v at the
origin, and on this surface we have h(x) = hj (x) for j = 1, 2, hence

h(x) = h(0)+ 〈x, h′
j (0)〉 + 1

2 〈h′′
j (0)x, x〉 + o(|x|2), x ∈ �, j = 1, 2,

thus

h(x) = h(0)+ 〈x, ξ〉 + 1
2 〈(λ1h

′′
1(0)+ λ2h

′′
2(0))x, x〉 + o(|x|2).

When x → 0 along a curve in � with tangent v at 0, it follows that h cannot be
approximated by smooth quadratically concave functions in a neighborhood
of the origin unless

1
2 〈(λ1h

′′
1(0)+λ2h

′′
2(0))v, v〉 ≤ 1

4 |ξ |2|v|2/h(0) = 1
4 |λ1h

′
1(0)+λ2h

′
2(0)|2/h(0).
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This completes the proof of (3.10). To prove the equivalence of (3.10) and
(3.10)′ we observe that a quadratic polynomial p(λ) with leading term cλ2,
c ≥ 0, is non-negative in [0, 1] if and only if p(0) ≥ 0, p(1) ≥ 0, and√
c ≤ √

p(0)+ √
p(1). In fact, for 0 < λ < 1,

p(λ) = λp(1)+ (1 − λ)p(0)+ cλ(λ− 1)

= (
λ
√
p(1)+ (λ− 1)

√
p(0)

)2 + (
(
√
p(0)+ √

p(1))2 − c
)
λ(1 − λ).

The first term on the right vanishes for some λ ∈ (0, 1) unless p(1) = 0 or
p(0) = 0. If p(0) = 0 < p(1) then the right-hand side is (p(1)−c)λ+O(λ2)

as λ → 0, so c ≤ p(1) if p ≥ 0 in (0, 1). Similarly c ≤ p(0) if p(1) =
0 < p(0), and c = 0 if p(0) = p(1) = 0. This proves the necessity, and the
sufficiency follows at once from the formula.

The condition (3.10) is also sufficient for approximation by smooth quadrat-
ically concave functions to be possible: Let 0 ≤ ψ ∈ C∞

0 (R
N),

∫
ψ(x) dx =

1, and set ψδ(x) = δ−Nψ(x/δ). If h1 and h2 are positive C2 functions in a
neighborhood � of a compact set K ⊂ RN satisfying (2.6), h = min(h1, h2),
and if the analogue of (3.10) is fulfilled where h1 = h2, then the regularisation
of hε(x) = h(x) − ε(|x|2 + 1) by convolution with ψδ satisfies (2.6) in a
neighborhood of K if 0 < δ < δε, 0 < ε < ε0, and converges to h uniformly
and with a uniform Lipschitz bound when first δ and then ε tend to 0.

The proof is straightforward but rather long and will be omitted. We have
not been able to decide if there is a general converse of Theorem 3.7, that is,
whether all quadratically concave functions satisfying (3.8) are locally uniform
limits of smooth quadratically concave functions. However, this is true for the
simplest functions suggested by (3.8):

Proposition 3.9. Let K be a convex compact subset of RN and set with
γ > 0

(3.11) h(x) = min
ξ∈K

(
γ + 〈x, ξ〉 + 1

4 |x|2|ξ |2/γ )
.

Then h is positive and quadratically concave in the complement of
{−2γ ξ/|ξ |2; 0 	= ξ ∈ K}, and h is on compact subsets a uniform limit of
smooth quadratically concave functions. Moreover, h ∈ C1,1 in �{0}, and

h′′(x) = O(|x|−2), h(x) = γ + h′(0; x)+O(|x|2), when x → 0.

Here h′(0; x) = minξ∈K〈x, ξ〉, thus x �→ −h′(0; −x) is the supporting func-
tion of K .

Proof. If ξ 	= 0 then γ + 〈x, ξ〉 + 1
4 |x|2|ξ |2/γ = ∣∣γ ξ/|ξ | + 1

2x|ξ |
∣∣2
/γ ,

so h(x) is positive in the complement � of {−2γ ξ/|ξ |2; 0 	= ξ ∈ K}, which
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is essentially the inversion of K . Thus h is a positive quadratically concave
function in�, and when x → 0 we have h(x) = γ +h′(0; x)+O(|x|2). When
x 	= 0 the minimum in (3.11) is atttained at a unique point ξ = ξ(x) ∈ K

because the minimized function is strictly convex and K is convex. It is clear
that ξ(x)must be a continuous function of x when x 	= 0, thus h ∈ C1(�\{0}).
To prove that h ∈ C1,1 there we observe that if p(ξ) is a quadratic polynomial
with principal part c|ξ |2 where c > 0 and minξ∈K p(ξ) is attained at ξ ∈
K , then p(η) ≥ p(ξ) + c|η − ξ |2 when η ∈ K by Taylor’s formula, for
〈p′(ξ), η − ξ〉 = limε→+0(p(ξ + ε(η − ξ)) − p(ξ))/ε ≥ 0. Now let the
minimum in the definition of h(x) and of h(y) be attained at ξ ∈ K and η ∈ K
respectively. To estimate ξ − η in terms of x − y we first note that as just
observed

γ + 〈x, η〉 + 1
4 |x|2|η|2/γ ≥ h(x)+ 1

4 |x|2|ξ − η|2/γ
= γ + 〈x, ξ〉 + 1

4 |x|2(|ξ |2 + |ξ − η|2)/γ.
Interchanging x, ξ and y, η we get

γ + 〈y, η〉 + 1
4 |y|2(|η|2 + |ξ − η|2)/γ ≤ γ + 〈y, ξ〉 + 1

4 |y|2|ξ |2/γ,

and subtraction gives after multiplication by 4γ

(|x|2 + |y|2)|ξ − η|2 ≤ 4γ 〈y − x, ξ − η〉 + (|y|2 − |x|2)(|ξ |2 − |η|2).

Hence

|ξ − η| ≤ |x − y|(4γ + |x + y||ξ + η|)/(|x|2 + |y|2),

and since h′(x) = ξ(x) + 1
2x|ξ(x)|2/γ , it follows that h′ is locally Lipschitz

continuous in �{0}, with |h′′(x)| ≤ 2(1 + |x||ξ(x)|/γ )(γ + |x||ξ(x)|)/|x|2 +
1
2 |ξ(x)|2/γ almost everywhere.

Let |ξ |2 ≤ A when ξ ∈ K , and set for δ > 0

hδ(x) = min
ξ∈K

(
γ + δ(|ξ |2 − A)+ 〈x, ξ〉 + 1

4 |x|2|ξ |2/γ )
.

It is clear that hδ ↑ h locally uniformly as δ ↓ 0, and hδ is quadratically
concave for the minimized functions are quadratically concave. Since they
are strictly convex with respect to ξ , also when x = 0, the minimum is for
every x attained at a unique point ξ = ξδ(x) ∈ K , so hδ is differentiable
with h′

δ(x) = ξδ(x)+ 1
2x|ξδ(x)|2/γ , which proves that hδ ∈ C1. The proof is

complete.
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Example. If K = {ξ ∈ RN ; |ξ | ≤ R, ξ ′′ = 0}, where ξ ′ = (ξ1, . . . , ξk),
ξ ′′ = (ξk+1, . . . , ξN) for some k with 0 < k < N , then (3.11) gives

h(x) =
{
γ − γ |x ′|2/|x|2, if 2γ |x ′| ≤ R|x|2
γ − R|x ′| + 1

4 |x|2R2/γ, if 2γ |x ′| ≥ R|x|2.

Let 0 ≤ χ ∈ C∞
0 (R

N) be an even function with
∫
χ(x) dx = 1, and set

hε = h ∗ χε where χε(x) = χ(x/ε)/εN . Then the regularization hε is an even
function so h′

ε(0) = 0. If t ∈ RN , |t | = 1 and t ′ = 0, then 〈∂, t〉2h(x) is
equal to R2/2γ when 2γ |x ′| > R|x|2 and equal to −γ |x ′|2〈∂, t〉2|x|−2 when
2γ |x ′| < R|x|2, hence bounded then. Thus

〈∂, t〉2hε(0)− R2/(2γ ) =
∫

2γ |x ′|<R|x|2
(〈∂, t〉2h(x)− R2/(2γ )

)
χε(x) dx

can be estimated by C
∫

2γ |x ′|≤εR|x|2 χ(x) dx = O(εk) when ε → 0. This
means that hε is very far from satisfying (2.6) at the origin, for the left-hand
side is R2/(2γ ) + O(εk) while the right-hand side vanishes. It is therefore
impossible to prove a converse of Theorem 3.7 by a standard regularization
using a convolution, even if it is combined with some minor modification as
in part c) of the proof of Theorem 2.4.

We shall now extend Theorem 2.4 by proving that functions in a ball satis-
fying an infinitesimal version of (3.8) in a very weak sense are quadratically
concave there. The main step is to prove an analogue of Lemma 2.3.

Lemma 3.10. Let h be positive and weakly quadratically concave in a
neighborhood of the closure of the unit ball B. Assume that

(3.8)′ lim
y→x

(h(y)− h(x)− 〈y − x, ξ〉)/|y − x|2 < 1
4 |ξ |2/h(x),

x ∈ B, ξ ∈ h̃′(x),
(3.12) 〈x, ξ〉 < h(x), x ∈ ∂B, ξ ∈ h̃′(x).

Then the open subset�a,b = {x ∈ B;h(x) > |ax+ b|2} of B is connected for
arbitrary (a, b) ∈ R+ × RN .

Proof. We shall follow the proof of Lemma 2.3 closely. As there we may
assume that (a, b) 	= (0, 0), and we set g(x) = h(x) − f (x) where f (x) =
|ax + b|2. If x ∈ B and g(x) = h(x)− f (x) = 0, f ′(x) = ξ ∈ h̃′(x), then it
follows from (3.8)′ that

f (y) = f (x)+ 〈y − x, f ′(x)〉 + 1
4 |f ′(x)|2|y − x|2/f (x)

= h(x)+ 〈y − x, ξ〉 + 1
4 |ξ |2|y − x|2/h(x) ≥ h(y),



94 lars hörmander

when y is in a neighborhood of x. Thus g(y) ≤ 0, so x is not in the closure
of �a,b. If x ∈ B ∩ ∂�a,b it follows that f ′(x) /∈ h̃′(x), which means that
〈z, f ′(x)〉 < h′(x; z) for some z ∈ RN . By the continuity of f ′ and the semi-
continuity of h′ this remains true with x replaced by any y in a neighborhood
of x, and for all z in an open set. Hence g is strictly increasing in directions
near z, in a neighborhood of x, so the equation g = 0 defines a Lipschitz
surface satisfying a cone condition there. Since �a,b consists of the points on
one side, it is locally connected.

Suppose now that x ∈ ∂B ∩ ∂�a,b, hence g(x) = h(x) − f (x) = 0,
and that f ′(x) /∈ h̃′(x). If 〈z, f ′(x)〉 < h′(x; z) for some z with 〈z, x〉 = 0,
that is, tangent to ∂B, then it follows as when x ∈ B that �a,b is locally
connected at x. On the other hand, if 〈z, f ′(x)〉 ≥ h′(x; z) when 〈z, x〉 = 0
then the restriction of the linear form z → 〈z, f ′(x)〉 to the orthogonal space
of x can be extended to a form satisfying such an inequality for all z, that is,
f ′(x) + 2Cx = ξ ∈ h̃′(x) for some C 	= 0. (This may be true for all C in
some interval not containing 0, but the sign of C is unique in any case since
f ′(x) /∈ h̃′(x).) By (3.8)′

g(x + y) = h(x + y)− f (x + y)

≤ h(x)+ 〈y, ξ〉 + 1
4 |y|2|ξ |2/h(x)

− f (x)− 〈y, f ′(x)〉 − 1
4 |f ′(x)|2|y|2/f (x)

= 〈y, 2Cx〉 + 1
4 |y|2(|ξ |2 − |f ′(x)|2)/h(x)

= 〈y, 2Cx〉 + 1
4 |y|2〈2Cx, 2ξ − 2Cx〉/h(x)

= C
(
2〈y, x〉 + |y|2(〈x, ξ〉 − C)/h(x)

)
when |y| is sufficiently small. Since 2〈y, x〉 ≤ −|y|2 if x + y ∈ B, it follows
if C > 0 that

g(x + y) ≤ C|y|2(〈x, ξ〉/h(x)− 1 − C/h(x)) ≤ 0

by (3.12). Hence x is not in the closure of �a,b.
Finally, if C < 0, then h̃′(x)− f ′(x) contains 2Cx which is directed along

the interior normal of B at x. Thus g(x) is strictly increasing in a neighbor-
hood of x in all directions close to the interior normal. Hence �a,b is locally
connected at x and contains the interior normal in a deleted neighborhood of
x.

The proof of the lemma can now be completed by repeating the end of the
proof of Lemma 2.3, so we leave this for the reader.
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Theorem 3.11. Let h be a weakly quadratically concave function in the
open unit ball B, and assume that

(3.8)′′ lim
y→x

(h(y)− h(x)− 〈y − x, ξ〉)/|y − x|2 ≤ 1
4 |ξ |2/h(x),

x ∈ B, ξ ∈ h̃′(x).

Then it follows that (3.8) is valid inB; in particular h is quadratically concave
in B.

Proof. We shall proceed in three steps as in the proof of Theorem 2.4.
a) Assume at first that h is positive and satisfies (3.8)′ in a neighborhood of

B, and that (3.12) is fulfilled. Given x ∈ B and ξ ∈ h̃′(x) we set

|ay + b|2 = h(x)+ 〈y − x, ξ〉 + 1
4 |y − x|2|ξ |2/h(x), that is,

a = 1
2 |ξ |/√h(x), b = √

h(x)ξ/|ξ | − 1
2x|ξ |/

√
h(x).

(If ξ = 0 then a = 0 and b/
√
h(x) is any unit vector.) For some δ > 0 we

have

h(y)− |ay + b|2
≤ h(x)+ 〈y − x, ξ〉 + |y − x|2( 1

4 |ξ |2/h(x)− δ
) − |ay + b|2

= −|y − x|2δ,
when |y − x| is sufficiently small. For small ε > 0 the set

�(1−ε)a,(1−ε)b = {y ∈ B;h(y) > (1 − ε)2|ay + b|2}
has one component which is a neighborhood of x shrinking to {x} when ε → 0.
By Lemma 3.10 there can be no other component which proves that�a,b = ∅,
hence that (3.8) is valid.

b) Now we just assume that h is positive and satisfies (3.8)′ in a neighbor-
hood of B but we no longer assume (3.12). If (3.8) is valid in B and x ∈ ∂B,
0 	= ξ ∈ h̃′(x), then for |y| ≤ 1∣∣h(x)ξ/|ξ |+ 1

2 (y−x)|ξ |
∣∣ ≥ √

h(x)h(y), hence
∣∣h(x)ξ/|ξ |− 1

2x|ξ |
∣∣ > 1

2 |ξ |.
If we square it follows that h(x)(h(x) − 〈x, ξ〉) > 0 which proves (3.12). (If
ξ = 0 then (3.12) is obvious.)

The proof of the theorem is now completed by “continuous induction”: If
hr(x) = h(rx), then (3.12) holds and the statement is true when h is replaced
by hr and r > 0 is sufficiently small. The set of such r ≤ 1 is closed, and
it follows from part a) of the proof that it is open, since (3.12) is valid for hr

when r is in this set. (See also the proof of Theorem 2.4.)
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c) Assume now just that h is positive and that (3.8)′′ is valid in a neighbor-
hood of B. Set hε(x) = h(x)− gε(x) where gε(x) = ε(|x|2 + 1) with ε > 0
so small that hε > 0 in B. Then h̃′

ε(x) = h̃′(x)− g′
ε(x), and if ξ ∈ h̃′(x) then

hε(y)− hε(x)− 〈y − x, ξ − g′
ε(x)〉 − 1

4 |y − x|2|ξ − g′
ε(x)|2/hε(x)

= h(y)− h(x)− 〈y − x, ξ〉 − 1
4 |y − x|2|ξ |2/h(x)

− (
gε(y)− gε(x)− 〈y − x, g′

ε(x)〉 − 1
4 |y − x|2|g′

ε(x)|2/gε(x)
)

+ 1
4 |y− x|2(|ξ |2/(hε(x)+ gε(x))− |ξ − g′

ε(x)|2/hε(x)− |g′
ε(x)|2/gε(x)

)
.

The last parenthesis is ≤ 0, and the preceding one is equal to

ε|y − x|2(1 − |x|2/(|x|2 + 1)) = ε|y − x|2/(|x|2 + 1).

Hence the upper limit in (3.8)′ is ≤ 1
4 |ξ − g′

ε(x)|2/hε(x)− ε/(|x|2 + 1) when
h is replaced by hε, which proves that (3.8) is fulfilled in B when h is replaced
by hε. When ε → 0 we conclude that (3.8) is valid for h, under the additional
assumption above that (3.8)′ is valid in a neighborhood of B. If we drop that
hypothesis too we just have to apply this conclusion to hr and let r ↑ 1
afterwards to complete the proof.

The relevance of Lemma 3.10 for the proof of Theorem 3.11 is underlined
by the following general construction of examples of the kind given at the
beginning of this section.

Proposition 3.12. Assume that h is a positive (weakly) quadratically con-
cave function in an open set � ⊂ RN and that for some (a, b) ∈ R+ × RN the
open set

�a,b = {x ∈ �;h(x) > |ax + b|2}
is not connected. Let ω be a component of �a,b where ax + b 	= 0. Then

H(x) =
{ |ax + b|2, when x ∈ ω,

h(x), when x ∈ � \ ω,

is weakly quadratically concave but not quadratically concave in �.

Proof. Let ω′ be the union of the components of �a,b other than ω, thus
ω ∩ ω′ = ∅ and ω ∪ ω′ = �a,b. If t > 1 and t − 1 is small enough then the
open sets

ωt = {x ∈ ω;h(x) > t |ax + b|2}, ω′
t = {x ∈ ω′;h(x) > t |ax + b|2}

are not empty, and h(x) ≤ t |ax + b|2 in � \ (ωt ∪ ω′
t ). If we define

Ht(x) =
{
t |ax + b|2, when x ∈ ωt ,
h(x), when x ∈ � \ ωt ,
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then Ht(x) = min(h(x), t |ax + b|2) in � \ ω′
t , for the minimum is equal

to t |ax + b|2 in ωt and equal to h(x) in � \ (ωt ∪ ω′
t ). Thus Ht is weakly

quadratically concave in each of the open sets � \ ωt and � \ ω′
t which cover

� since ωt ∩ ω′
t ⊂ ω ∩ ω′ = ∅. When t ↓ 1 then Ht ↓ H1 = H , so H is

weakly quadratically concave. However, H(x) = |ax + b|2 when x ∈ ω and
H(x) > |ax + b|2 when x ∈ ω′ so H is not quadratically concave.

The following proposition combined with Proposition 3.12 yields a general
version of the example given at the beginning of the section.

Proposition 3.13. LetK be a compact set in RN such that the convex hull
ch(K) is of dimension N − 1. If K is not convex and ξ 0 is in the interior of
ch(K) \ K in the affine hyperplane � spanned by K , then the hypotheses of
Proposition 3.12 are fulfilled if h is defined by (3.11) and

|ax + b|2 = γ + 〈x, ξ 0〉 + 1
4 |x|2|ξ 0|2/γ,

provided that � is a sufficiently small neighborhood of the origin.

Proof. Since

γ + 〈x, ξ〉 + 1
4 |x|2|ξ |2/γ = γ

∣∣ 1
2x|ξ |/γ + ξ/|ξ |∣∣2

= γ
∣∣ 1

2 |x|ξ/γ + x/|x|∣∣2

we have for x 	= 0 with the notation y = x/|x|2

h(x) = γ |x|2 min
ξ∈K |ξ/(2γ )+ y|2, |ax + b|2 = γ |x|2|ξ 0/(2γ )+ y|2.

If we write

Kγ = {−ξ/(2γ ); ξ ∈ K}, ξ 0
γ = −ξ 0/(2γ ),

then h(x) is equal to γ |x|2 times the distance from y to Kγ and |ax + b|2
is equal to γ |x|2 times the distance from y to ξ 0

γ . Hence |ax + b|2 > h(x) if
|y| > R = supξ∈Kγ |ξ | and y ∈ −�/(2γ ), that is, if |x| < 1/R and 0 	= x ∈ S
where S is the sphere (or hyperplane) through the origin obtained by inversion
of −�/(2γ ). Note that a unit normal ν of � is a unit normal of S at 0. If
instead y = ξ 0

γ + τν for some τ 	= 0 then ξ 0
γ is the only point in −�/(2γ )

at distance τ from y, so |τ | < minξ∈Kγ |y − ξ |, hence |ax + b|2 < h(x) if
x = y/|y|2, which means that x is on a circle (or line) in the plane spanned
by ν and ξ 0, with tangent ν at the origin. If � is a neighborhood of the origin
and |x| < 1/R when x ∈ � it follows that �a,b ∩ S = ∅ but that �a,b
contains circular arcs (line segments) approaching the origin in the directions
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±ν. Hence the intersection of �a,b with the interior and the exterior of S are
non-empty, which proves the proposition.

Propositions 3.12 and 3.13 show that when h̃′(x) has dimension N − 1 it
is unavoidable to assume in Theorem 3.11 that (3.8)′′ is valid for all ξ in the
convex set h̃′(x) and not only for the extreme points. However, this is not at
all clear when the dimension is N or ≤ N − 2. Indeed, if K is a compact
convex set with interior points then the proof of Proposition 3.13 shows that
(3.11) does not change if the convex set K is replaced by its boundary. If the
dimension is ≤ N −2 then the proof of Proposition 3.13 breaks down because
the complement of the sphere SN−k ⊂ RN is connected when k ≥ 2.

We shall finally prove that the hypothesis in Theorems 2.4 and 3.11 that B
is a ball is essential. We begin with an observation on the analogous situation
for convex (or concave) functions.

Proposition 3.14. If � ⊂ RN is an open set and � is not convex, one
can find x, y ∈ � and ψ ∈ C∞(�) such that ψ ′′ ≥ 0 in � but ψ(y) <
ψ(x)+ 〈y − x,ψ ′(x)〉.

Thus ψ satisfies a local convexity condition but not a global one.

Proof. If� is not convex we can choose x0, y0 ∈ � so that some point z0

in the interval [x0, y0] is not in �. If x and y are in � and |x − x0| + |y − y0|
is sufficiently small, then [x, y] also contains a point z1 so close to z0 that
z1 /∈ �. We can choose the coordinates so that z1 = 0, thus |z| < δ implies
z /∈ � for some δ > 0, and x, y are on the x1 axis, x = (a, 0, . . . , 0),
y = (b, 0, . . . , 0)where a < 0 < b. Choose convexC∞ functionsψ+ andψ−
of z′ = (z2, . . . , zN) such thatψ+(0) < ψ−(0) butψ+ = ψ− when |z′| > δ/2.
We can for example choose ψ+ strictly convex first and define ψ− by adding
a small non-negative function which is positive at the origin. If we define
ψ(z) = ψ±(z′) when ±z1 ≥ 0 then ψ ∈ C∞(�) has the desired property.

We could have made ψ strictly convex by choosing ψ± strictly convex and
adding εz2

1 for some small positive ε. An analogue for quadratically concave
functions follows at once:

Lemma 3.15. If � ⊂ RN is an open bounded set and � is not convex, then
one can choose x, y ∈ � and a positive function h ∈ C∞(�) such that h
satisfies (2.6) but

h(y) > h(x)+ 〈y − x, h′(x)〉 + 1
4 |y − x|2|h′(x)|2/h(x).

Proof. Since� is bounded the function ψ constructed in Proposition 3.14
is bounded in �. Hence h = 1 − εψ is positive in � if ε is a small positive
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number, and (2.6) is fulfilled since h′′ = −εψ ′′ ≤ 0. We have

h(y)− h(x)− 〈y − x, h′(x)〉 − 1
4 |y − x|2|h′(x)|2/h(x)

= −ε(ψ(y)−ψ(x)−〈y−x,ψ ′(x)〉+ 1
4 |y−x|2ε|ψ ′(x)|2/(1−εψ(x))) > 0

if ε is sufficiently small.

Quadratic concavity and weak quadratic concavity are obviously invariant
under Euclidean motions. To strengthen the conclusion of Lemma 3.15 we
must use the invariance under inversions also, as in [4, Section 8]. We recall
that the inversion in RN with respect to the origin is defined by x∗ = x/|x|2
when x 	= 0; then (x∗)∗ = x. If h is a function defined in an open set� ⊂ RN

then composition with inversion gives a function in �∗ = {x∗; x ∈ �}. When
h(x) = |ax + b|2 as in (2.1) then

h(x) = |ax∗|x|2 + b|2 = a2|x∗|2|x|4 + 2a|x|2〈x∗, b〉 + |b|2
= |x|2∣∣|b|x∗ + ab/|b|∣∣2

where b/|b| should be read as a unit vector if b = 0. If we define quite generally
for functions h in �

h∗(x∗) = h(x)/|x|2 = |x∗|2h(x∗/|x∗|2), x∗ ∈ �∗

then it follows from the definition (2.1) that quadratically concave functions
are mapped to quadratically concave functions. If h ∈ C2(�) satisfies (2.6)
then h∗ ∈ C2(�∗) satisfies (2.6), for (2.6) means that h′′ ≤ h′′

0 at x ∈ � if
h0(y) = |ay + b|2 and h = h0, h′ = h′

0 at x, which implies that h∗ = h∗
0,

h∗′ = h∗
0
′ and h∗′′ ≤ h∗

0
′′ at x∗. Since h∗

0 is of the same form as h0, the assertion
follows. It can of course also be proved by a direct computation.

Theorem 3.16. If � is an open bounded set in RN such that (2.6) implies
(2.2) when h ∈ C∞(�), then � is a ball.

Proof. By Lemma 3.15 K = � must be convex, and by the precding
observations on inversions K must remain convex after inversion in any point
x0 ∈ �K , defined as the inversion of K − x0. Now let B be an open ball with
minimal radius such that B ⊃ K . Then ∂B ∩ ∂K must contain at least two
points, for if there is just one such point a translation ofB in the radial direction
there would give a congruent open ball containingK . IfK 	= B we can choose
a point x0 ∈ B \ K and consider the inversion K∗ of K with respect to x0.
Since B \ {x0} is mapped to the exterior of the sphere S obtained by inversion
of ∂B, it follows thatK∗ contains no points in the interior of S but at least two
points on S. This contradicts the convexity ofK∗, for the open interval joining
these points on S is in the interior of S, and the theorem is proved.
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