
MATH. SCAND. 102 (2008), 59–72

ALTERNATING GROUP ACTIONS ON
SPIN 4-MANIFOLDS

HONGXIA LI and XIMIN LIU∗

Abstract

Let X be a smooth, closed, connected spin 4-manifold with b1(X) = 0 and non-positive signature
σ(X). In this paper we use Seiberg-Witten theory to prove that if X admits a spin alternating A5
action, then b+

2 (X) ≥ |σ(X)|/8 + 3 under some non-degeneracy conditions.

1. Introduction

Let X be a smooth, closed, connected spin 4-manifold. We denote by b2(X)

the second Betti number and denote by σ(X) the signature of X. In [12],
Y. Matsumoto conjectured the following inequality

(1) b2(X) ≥ 11

8
|σ(X)|.

This conjecture is well known and has been called the 11
8 -conjecture (see also

[7]).
From the classification of unimodular even integral quadratic forms and the

Rochlin’s theorem, for the choice of orientation with non-positive signature
the intersection form of a closed spin 4-manifold X is

−2kE8 ⊕ mH, k ≥ 0,

where E8 is the 8 × 8 intersection form matrix and H is the hyperbolic matrix(
0 1
1 0

)
.

Thus, m = b+
2 (X) and k = −σ(X)/16 and so the inequality (1) is equival-

ent to m ≥ 3k. Since K3 surface satisfies the equality with k = 1 and m = 3,
the coefficient 11

8 is optimal, if the 11
8 -conjecture is true.

Donaldson has proved that if k > 0 then m ≥ 3 [4]. In early 1995, using
the Seiberg-Witten theory introduced by Seiberg and Witten [17], Furuta [8]
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proved that

(2) b2(X) ≥ 5

4
|σ(X)| + 2.

This estimate has been dubbed the 10
8 -theorem. In fact, if the intersection form

of X is definite, i.e., m = 0, then Donaldson proved that b2(X) and σ(X) are
zero [4], [5]. Thus, Furuta assumed that m is not zero. Inequality (2) follows
by a surgery argument from the non-positive signature, b1(X) = 0 case:

Theorem 1.1 (Furuta [8]). Let X be a smooth spin 4-manifold with b1(X) =
0 with non-positive signature. Let k = −σ(X)/16 and m = b+

2 (X). Then,

2k + 1 ≤ m

if m �= 0.

His key idea is to use a finite dimensional approximation of the monopole
equations. Later Furuta and Kametani [9] used equivariant e-invariants and
improved the above 10

8 -theorem as following.

Theorem 1.2 (Furuta and Kametani [9]). Suppose that X is a closed ori-
ented spin 4-manifold. If σ(X) < 0, then

b+
2 (X) ≥

⎧⎪⎨
⎪⎩

2(−σ(X)/16) + 1, −σ(X)/16 ≡ 0, 1 (mod 4),

2(−σ(X)/16) + 2, −σ(X)/16 ≡ 2 (mod 4),

2(−σ(X)/16) + 1, −σ(X)/16 ≡ 3 (mod 4).

The above inequality was also proved by N. Minami [13] by using an
equivariant join theorem to reduce the inequality to a theorem of Stolz [16].

Throughout this paper we will assume that m is not zero and b1(X) = 0,
unless stated otherwise.

A Z/2p-action is called a spin action if the generator of the action τ : X → X

lifts to an action τ̂ : PSpin → PSpin of the Spin bundle PSpin. Such an action is
of even type if τ̂ has order 2p and is of odd type if τ̂ has order 2p+1.

In [2], Bryan (see also [6]) used Furuta’s technique of finite dimensional
approximation and the equivariant K-theory to improve the above bound by p

under the assumption that X has a spin odd type Z/2p-action satisfying some
non-degeneracy conditions analogous to the condition m �= 0. More precisely,
he proved

Theorem 1.3 (Bryan [2]). Let X be a smooth, closed, connected spin 4-
manifold with b1(X) = 0. Assume that τ : X → X generates a spin smooth



alternating group actions on spin 4-manifolds 61

Z/2p-action of odd type. Let Xi denote the quotient of X by Z/2i ⊂ Z/2p.
Then

2k + 1 + p ≤ m

if m �= 2k + b+
2 (X1) and b+

2 (Xi) �= b+
2 (Xj ) > 0 for i �= j .

In the paper [10], Kim gave the same bound for smooth, spin, even type
Z/2p-action on X satisfying some non-degeneracy conditions analogous to
Bryan’s.

In the paper [11], Kiyono and Liu prove that if a spin 4-manifold X admits
a spin alternating group A4 action, then b+

2 (X) ≥ |σ(X)|/8 + 3 under some
non-degeneracy conditions.

In this article, we will use the same techniques to study the spin alternating
group A5 actions spin 4-manifolds, we obtain some improvement of the 10/8-
theory as in [11].

We organize the remainder of this paper as follows. In section 2, we give
some preliminaries to prove the main theorem. We introduce the representation
ring and the character table of alternating group A5 in section 3. In section 4, we
use equivariant K-theory and representation theory to study the G-equivariant
properties of the moduli space. In the last section we give our main results.

2. Notations and preliminaries

We assume that we have completed every Banach spaces with suitable Sobolev
norms. Let S = S+⊕ S− denote the decomposition of the spinor bundle into
the positive and negative spinor bundles. Let D: �(S+) → �(S−) be the Dirac
operator, and ρ: �∗

C → EndC(S) be the Clifford multiplication. The Seiberg-
Witten equations are for a pair (a, φ) ∈ �1(X,

√−1R) × �(S+) and they
are

Dφ + ρ(a)φ = 0, ρ(d+a) − φ ⊗ φ∗ + 1

2
|φ|2id = 0, d∗a = 0.

Let
V = �

(√−1�1 ⊕ S+)
,

W ′ = �
(
S− ⊕ √−1 su(S+) ⊕ √−1�0

)
.

We can think of the equation as the zero set of a map

D + Q: V → W,

where D(a, φ) = (Dφ, ρ(d+a), d∗a)), Q(a, φ) = (ρ(a)φ, φ⊗φ∗− 1
2 |φ|2id,

0), and W is defined to be the orthogonal complement to the constant functions
in W ′.



62 hongxia li and ximin liu

Now it is time to describe the group of symmetries of the equations. Define
Pin(2) ⊂ SU(2) to be the normalizer of S1 ⊂ SU(2). Regarding SU(2) as
the group of unit quaternions and taking S1 to be elements of the form e

√−1θ ,
Pin(2) then consists of the form e

√−1θ or e
√−1θJ . We define the action of

Pin(2) on V and W as follows: Since S+ and S− are SU(2) bundles, Pin(2)

naturally acts on �(S±) by multiplication on the left. Z/2 acts on �(�∗
C) by

multiplication by ±1 and this pulls back to an action of Pin(2) by the natural
map Pin(2) → Z/2. A calculation shows that this pullback also describes the
induced action of Pin(2) on

√−1 su(S+). Both D and Q are seen to be Pin(2)

equavariant maps.
If X is a smooth closed spin 4-manifold. Suppose that X admits a spin

structure preserving action by a compact Lie group G. We may assume a
Riemannian metric on X so that G acts by isometries. If the action is of even
type, Both D and Q are G̃ = Pin(2) × G equavariant maps.

Now we define Vλ to be the subspace of V spanned by the eigenspaces
of D∗D with eigenvalues less than or equal to λ ∈ R. Similarly, define Wλ

using DD∗. The virtual G-representation [Vλ ⊗ C] − [Wλ ⊗ C] ∈ R(G̃) is
the G̃-index of D and can be determined by the G̃-index and is independent
of λ ∈ R, where R(G̃) is the complex representation of G̃. In particular, since
V0 = Ker D and W0 = Coker D ⊕ Coker d+, we have

[Vλ ⊗ C] − [Wλ ⊗ C] = [V0 ⊗ C] − [W0 ⊗ C] ∈ R(G̃).

Note that Coker d+ = H 2+(X, R).

3. The alternating group A5

The alternating group A5 is the group of even permutations of a set {a, b, c,

d, e}with 5 elements, it has 60 elements which can be divided into the following
5 conjugacy classes:

(1) the identity element 1;

(2) 15 elements of order 2 which is conjugate with x = (ab)(cd);

(3) 20 elements of order 3 which is conjugate with t = (abc);

(4) 12 elements of order 5 which is conjugate with s = (abcde);

(5) 12 elements of order 5 which is conjugate with s2 = (abced).

Thus we have the following character table for A5 [15]:
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1 t x s s2

ρ0 1 1 1 1 1
ρ1 3 0 −1 1 + ω + ω4 1 + ω2 + ω3

ρ2 3 0 −1 1 + ω2 + ω3 1 + ω + ω4

ρ3 4 1 0 −1 −1
ρ4 5 −1 1 0 0

where ω = e2πi/5.
Let X be a smooth closed spin 4-manifold. Suppose that X admits a spin

structure preserving action by a compact Lie group G. We may assume a
Riemannian matric on X so that G acts by isometries. This G-action can
always be lifted to Ĝ-actions on the spinor bundles, where Ĝ is the following
extension

1 → Z2 → Ĝ → G → 1.

Recall that the G-action is of even type if Ĝ contains a subgroup isomorphic
to G, and in turn is of odd type, otherwise. For alternating group A5, the
extension of A5 by Z2 is isomorphic to Z2 × A5, that is any spin alternating
group A5 action on spin 4-manifolds is of even type.

4. The index of D and the character formula for the K-theory degree

The virtual representation [Vλ,C] − [Wλ,C] ∈ R(G̃) is the same as Ind(D) =
[ker D ] − [Coker D ]. Furuta determines Ind(D) as a Pin(2) representation;
denoting the restriction map r: R(G̃) → R(Pin(2)), Furuta shows

r(Ind(D)) = 2kh − m1̃

where k = −σ(X)/16 and m = b+
2 (X). Thus Ind(D) = sh− t 1̃, where s and

t are polynomials such that s(1) = 2k and t (1) = m. For a spin A5 action,
G̃ = Pin(2) × A5, we can write

s(ρ1, ρ2, ρ3, ρ4) = a0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4,

and
t (ρ1, ρ2, ρ3, ρ4) = a1 + b1ρ1 + c1ρ2 + d1ρ3 + e1ρ4,

such that a0 + 3b0 + 3c0 + 4d0 + 5e0 = 2k and a1 + 3b1 + 3c1 + 4d1 + 5e1 =
m = b+

2 (X).
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For any element g ∈ A5, denote by 〈g〉 the subgroup of A5 generated by g.
Then we have

dim(H+(X)A5) = a1 = b+
2 (X/A5),

dim(H+(X)〈(abc)〉) = a1 + b1 + c1 + 2d1 + e1 = b+
2 (X/〈(abc)〉),

dim(H+(X)〈(ab)(cd)〉) = a1 + b1 + c1 + 2d1 + 3e1 = b+
2 (X/〈(ab)(cd))〉),

dim(H+(X)〈(abcde)〉) = a1 + b1 + c1 + e1 = b+
2 (X/〈(abcde)〉),

dim(H+(X)〈(abced)〉) = a1 + b1 + c1 + e1 = b+
2 (X/〈(abced)〉).

The Thom isomorphism theory in equivariant K-theory for a general com-
pact Lie group is a deep theory proved using elliptic operator [1]. The sub-
sequent character formula of this section uses only elementary properties of
the Bott class.

Let V and W be complex � representations for some compact Lie group �.
Let BV and BW denote balls in V and W and let f : BV → BW be a �-map
preserving the boundaries SV and SW . K�(V ) is by definition K�(BV, SV ),
and by the equivariant Thom isomorphism theorem, K�(V ) is a free R(�)

module with generator the Bott class λ(V ). Applying the K-theory functor to
f we get a map

f ∗ : K�(W) → K�(V )

which defines a unique element αf ∈ R(�) by the equation f ∗(λ(W)) =
αf · λ(V ). The element αf is called the K-theory degree of f .

Let Vg and Wg denote the subspaces if V and W fixed by an element g ∈ �

and let V ⊥
g and W⊥

g be the orthogonal complements. Let f g: Vg → Wg be the
restriction of f and let d(f g) denote the ordinary topological degree of f g

(by definition, d(f g) = 0 if dim Vg �= dim Wg). For any β ∈ R(�), let λ−1β

denote the alternating sum
∑

(−1)iλiβ of exterior powers.
T. tom Dieck proves the following character formula for the degree αf :

Theorem ([3]). Let f : BV → BW be a �-map preserving boundaries
and let αf ∈ R(�) be the K-theory degree. Then

trg(αf ) = d(f g) trg(λ−1(W
⊥
g − V ⊥

g ))

where trg is the trace of the action of an element g ∈ �.

This formula is very useful in the case where dim Vg �= dim Wg so that
d(f g) = 0.

Recall that λ−1
(∑

i airi

) = ∏
i (λ−1ri)

ai and that for a one dimensional
representation r , we have λ−1r = (1 − r). A two dimensional representation
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such as h has λ−1h = (1 − h + �2h). In this case, since h comes from an
SU(2) representation, �2h = det h = 1 so λ−1h = (2 − h).

In the following by using the character formula to examine the K-theory
degree αfλ

of the map fλ: BVλ,C → BWλ,C coming from the Seiberg-Witten
equations. We will abbreviate αfλ

as α and Vλ,C and Wλ,C as just V and W .
Let φ ∈ S1 ⊂ Pin(2) ⊂ G be the element generating a dense subgroup of S1,
and recall that there is the element J ∈ Pin(2) coming from the quaternion.
Note that the action of J on h has two invariant subspaces on which J acts by
multiplication with

√−1 and −√−1.

5. The main results

Consider α = αfλ
∈ R(Pin(2) × A5), it has the following form

α = α0 + α̃01̃ +
∞∑
i=1

αihi,

where αi = li + miρ1 + niρ2 + qiρ3 + riρ4, i ≥ 0 and α̃0 = l̃0 + m̃0ρ1 +
ñ0ρ2 + q̃0ρ3 + r̃0ρ4.

Since φ acts non-trivially on h and trivially on 1̃, so

dim(V (ρ1, ρ2, ρ3, ρ4))φ − dim(W(ρ1, ρ2, ρ3, ρ4))φ

= −(a1 + 3b1 + 3c1 + 4d1 + 5e1) = −m = −b+
2 (X).

So if b+
2 (X) > 0, trφ α = 0.

Since φt acts non-trivially on V (ρ1, ρ2, ρ3, ρ4)h, φ acts trivially on 1̃
and t acts trivially on a1 and the actions of t on b1ρ1, c1ρ2, e1ρ4 all have
a 1-dimensional invariant subspace while the action of t on d1ρ3 has a 2-
dimensional invariant subspace. So we have

dim(V (ρ1, ρ2, ρ3, ρ4))φt − dim(W(ρ1, ρ2, ρ3, ρ4))φt

= −(a1 + b1 + c1 + 2d1 + e1) = −b+
2 (X/〈t〉).

So if a1 + b1 + c1 + 2d1 + e1 = b+
2 (X/〈t〉) �= 0, trφt α = 0.

Since φx acts non-trivially on V (ρ1, ρ2, ρ3, ρ4)h and φ acts trivially on 1̃,
on the other hand, φx acts trivially on 1̃ and the action of x on b1ρ1, c1ρ2

both have a 1-dimensional invariant subspace while the action of x on d1ρ3

with a 2-dimensional invariant subspace and the action of x on e1ρ4 with a
3-dimensional invariant subspace. So we have

dim(V (ρ1, ρ2, ρ3, ρ4))φx − dim(W(ρ1, ρ2, ρ3, ρ4))φx

= −(a1 + b1 + c1 + 2d1 + 3e1) = −b+
2 (X/〈x〉).
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So if a1 + b1 + c1 + 2d1 + 3e1 = b+
2 (X/〈x〉) �= 0, then trφx α = 0.

Since φs acts non-trivially on V (ρ1, ρ2, ρ3, ρ4)h and φ acts trivially on 1̃
while s acts trivially on a1 and the actions of s on b1ρ1, c1ρ2 and e1ρ4 all have
a 1-dimensional invariant subspace. So we have

dim(V (ρ1, ρ2, ρ3, ρ4))φs − dim(W(ρ1, ρ2, ρ3, ρ4))φs

= −(a1 + b1 + c1 + e1) = −b+
2 (X/〈s〉).

For the same reason, we have

dim(V (ρ1, ρ2, ρ3, ρ4))φs2 − dim(W(ρ1, ρ2, ρ3, ρ4))φs2

= −(a1 + b1 + c1 + e1) = −b+
2 (X/〈s2〉).

So if a1 + b1 + c1 + e1 = b+
2 (X/〈s〉) = b+

2 (X/〈s2〉) �= 0, then trφs α =
trφs2 α = 0.

In summary, if a1 + b1 + c1 + e1 = b+
2 (X/〈s〉) �= 0, we have trφ α =

trφt α = trφx α = trφs α = trφs2 α = 0 which implies that

0 = trφ α = trφ

(
α0 + α̃01̃ +

∞∑
i=1

αihi

)

= trφ α0 + trφ α̃0 +
∞∑
i=1

trφ αi(φ
i + φ−i )

= (l0 + 3m0 + 3n0 + 4q0 + 5r0) + (l̃0 + 3m̃0 + 3ñ0 + 4q̃0 + 5r̃0)

+
∞∑
i=1

trφ αi(φ
i + φ−i ),

0 = trφt α = trt

(
α0 + α̃01̃ +

∞∑
i=1

αi(φ
i + φ−i )

)

= (l0 + q0 − r0) + (l̃0 + q̃0 − r̃0) +
∞∑
i=1

trt αi(φ
i + φ−i ),

0 = trφx α = trx

(
α0 + α̃01̃ +

∞∑
i=1

αi(φ
i + φ−i )

)

= (l0 − m0 − n0 + r0) + (l̃0 − m̃0 − ñ0 + r̃0) +
∞∑
i=1

trt αi(φ
i + φ−i ),
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and so on. From these equations we have α0 = −α̃0 and αi = 0, i > 0, that is
α = α0(1 − 1̃).

Next we calculate trJ α. SinceJ acts non-trivially on bothh and 1̃, dim VJ =
dim WJ = 0, so d(f J ) = 1 and the character formula gives trJ (α) =
trJ (λ−1(m1̃ − 2kh) = trJ ((1 − 1̃)m(2 − h)−2k) = 2m−2k using trJ h = 0
and trJ 1̃ = −1.

Now we calculate trJ t α. Since J t acts non-trivially on both V (ρ1, ρ2, ρ3,

ρ4)h and W(ρ1, ρ2, ρ3, ρ4)1̃, so d(f J t ) = 1. By tom Dieck formula, we have

trJ t (α) = trJ t [λ−1(a1 + b1ρ1 + c1ρ2 + d1ρ3 + e1ρ4)1̃

− λ−1(a0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4)h]

= 2a1 [2(1+ε)(1+ε2)]b1 [2(1+ε2)(1+ε)]c1 [22(1+ε)(1+ε2)]d1 [2(1+ε)2(1+ε2)2]e1

2a0 [2(1+ε2)(1+ε)]b0 [2(1+ε)(1+ε2)]c0 [22(1+ε2)(1+ε)]d0 [2(1+ε2)2(1+ε)2]e0

= 2(a1+b1+c1+2d1+e1)−(a0+b0+c0+2d0+e0)

Here the 2-dimensional representation h decomposes into two complex lines
on which J acts as

√−1 and −√−1. And the 3-dimensional representation ρ1

decomposes into three complex lines on which t acts as 1, ε and ε2 where ε =
e2πi/3. The 3-dimensional representation ρ2 decomposes into three complex
lines on which t acts as 1, ε2 and ε. The 4-dimensional representation ρ3

decomposes into four complex lines on which t acts as 1, 1, ε, ε2. The 5-
dimensional representation ρ4 decomposes into five complex lines on which t

acts as 1, ε, ε, ε2, ε2. J acts on 1̃ as −1.
Since Jx acts non-trivially on V (ρ1, ρ2, ρ3, ρ4)h and 1̃ while the actions of

Jx on b1ρ1, c1ρ2, d1ρ3 and e1ρ4 all have two 1-dimensional invariant subspace.
So we have

dim(V (ρ1, ρ2, ρ3, ρ4))Jx − dim(W(ρ1, ρ2, ρ3, ρ4))Jx

= −(2b1 + 2c1 + 2d1 + 2e1).

Then if b1 + c1 + d1 + e1 �= 0, that is b+
2 (X/〈s〉) + b+

2 (X/〈t〉) �= 2b+
2 (X/A5),

we have trJx α = 0.
Since J s acts non-trivially on both V (ρ1, ρ2, ρ3, ρ4)h and W(ρ1, ρ2, ρ3,

ρ4)1̃, then

dim(V (ρ1, ρ2, ρ3, ρ4))J s − dim(W(ρ1, ρ2, ρ3, ρ4))J s = 0,
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and d(f Js) = 1. From tom Dieck formula, we have

trJ s(α) = trJ s[λ−1(a1 + b1ρ1 + c1ρ2 + d1ρ3 + e1ρ4)1̃

− λ−1(a0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4)h]

= 2a1 [2(1 + ω)(1 + ω4)]b1 [2(1 + ω2)(1 + ω3)]c1

[(1 + ω)(1 + ω2)(1 + ω3)(1 + ω4)]d1

[2(1 + ω)(1 + ω2)(1 + ω3)(1 + ω4)]e1

2−a0 [2(1 + ω2)(1 + ω3)]−b0 [2(1 + ω4)(1 + ω)]−c0

[(1 + ω2)(1 + ω4)(1 + ω)(1 + ω3)]−d0

[2(1 + ω2)(1 + ω4)(1 + ω)(1 + ω3)]−e0

= 2(a1+b1+c1+e1)−(a0+b0+c0+e0)[(1 + ω)(1 + ω4)]b1−c0

[(1 + ω2)(1 + ω3)]c1−b0 .

For the same reason, we have

trJ s2(α) = 2a1+b1+c1+e1 [(1 + ω)(1 + ω4)]c1 [(1 + ω2)(1 + ω3)]b1

2a0+b0+c0+e0 [(1 + ω2)(1 + ω3)]c0 [(1 + ω4)(1 + ω)]b0

= 2(a1+b1+c1+e1)−(a0+b0+c0+e0)

[(1 + ω4)(1 + ω)]c1−b0 [(1 + ω2)(1 + ω3)]b1−c0 .

By direct calculation, we have

trJ α0 = l0 + 3m0 + 3n0 + 4q0 + 5r0 = 2m−2k−1,(3)

trt α0 = l0 + q0 − r0 = 2(a1+b1+c1+2d1+e1)−(a0+b0+c0+2d0+e0)−1,(4)

trx α0 = l0 − m0 − n0 + r0 = 0.(5)

trs α0 = l0 + (1 + ω + ω4)m0 + (1 + ω2 + ω3)n0 − q0

= 2(a1+b1+c1+e1)−(a0+b0+c0+e0)−1(6)

[(1 + ω)(1 + ω4)]b1−c0 [(1 + ω2)(1 + ω3)]c1−b0

tr2
s α0 = l0 + (1 + ω2 + ω3)m0 + (1 + ω + ω4)n0 − q0

= 2(a1+b1+c1+e1)−(a0+b0+c0+e0)−1(7)

[(1 + ω2)(1 + ω3)]b1−c0 [(1 + ω)(1 + ω4)]c1−b0

Here we use 0 = trJx α = trx(2 · α0) = 2 · trx α0 and so on.
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From (3) and (5) we get

(8) l0 + q0 + 2r0 = 2m−2k−3.

So we have the following main result.

Theorem 5.1. Let X be a smooth spin 4-manifold with b1(X) = 0 and non-
positive signature. Let k = −σ(X)/16 and m = b+

2 (X). If X admits a spin
alternating group A5 action, then 2k + 3 ≤ m if b+

2 (X/〈s〉) + b+
2 (X/〈t〉) �=

2b+
2 (X/A5) and b+

2 (X/〈s〉) �= 0.

On the other hand, from (4) and (8) we get

3r0 = 2m−2k−3 − 2(a1+b1+c1+2d1+e1)−(a0+b0+c0+2d0+e0)−1 ∈ 3Z ⊂ Z

Then from Theorem 5.1 we know 2m−2k−3, so

2(a1+b1+c1+2d1+e1)−(a0+b+0+c0+2d0+e0)−1 ∈ Z,

that is

(a1 + b1 + c1 + 2d1 + e1) − (a0 + b + 0 + c0 + 2d0 + e0) − 1 ≥ 0.

Thus we obtain the following result

Proposition 5.1. Let X be a smooth spin 4-manifold with b1(X) = 0 and
non-positive signature. If X admits a spin alternating group A5 action, then

dim((IndA5 D)〈t〉) + 1 ≤ b+
2 (X/〈t〉)

if b+
2 (X/〈s〉) + b+

2 (X/〈t〉) �= 2b+
2 (X/A5) and b+

2 (X/〈s〉) �= 0.

Now we supposeb+
2 (X/A5) > 0 andb+

2 (X/〈s〉)+b+
2 (X/〈t〉) = 2b+

2 (X/A5),
then we have b+

2 (X/〈s〉) > 0 and b1 = c1 = d1 = e1 = 0. In this case, we
have the following equations

trJ α0 = l0 + 3m0 + 3n0 + 4q0 + 5r0 = 2m−2k−1,(9)

trt α0 = l0 + q0 − r0 = 2a1−(a0+b0+c0+2d0+e0)−1,(10)

trx α0 = l0 − m0 − n0 + r0 = 2m−2k−1.(11)

From (9) and (11), we get m0 + n0 + q0 + r0 = 0. So we have the following
proposition.

Proposition 5.2. Let X be a smooth spin 4-manifold with b1(X) = 0 and
non-positive signature. If X admits a spin alternating group A5 action, then the
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K-theory degree α = α0(1−1̃) for some α0 = l0+m0ρ1+n0ρ2+q0ρ3−(m0+
n0 + q0)ρ4 if b+

2 (X/A5) > 0 and b+
2 (X/〈s〉) + b+

2 (X/〈t〉) = 2b+
2 (X/A5).

Next we assume that b+
2 (X/A5) = 0, b+

2 (X/〈s〉) = 0 but b+
2 (X/〈t〉) �= 0,

that is a1 = b1 = c1 = e1 = 0 and d1 �= 0. Considering the action of φs, we
know the actions of φs on h, ρ1h, ρ2h, ρ3h, ρ4h and ρ31̃ are all non-trivial but
it acts on 1̃, ρ11̃, ρ21̃, ρ41̃ all with a 1-dimensional invariant subspace. So

dim(V (ρ1, ρ2, ρ3, ρ4))φs − dim(W(ρ1, ρ2, ρ3, ρ4))φs

= −(a1 + b1 + c1 + e1) = 0

and d(f φs) = 1. From tom Dieck formula we have

trφs α

= trφs[λ−1(d1ρ3)1̃ − λ−1(a0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4)h]

= [(1 − ω)(1 − ω2)(1 − ω3)(1 − ω4)]d1 [(1 − φ)(1 − φ−1)]−(a0+b0+c0+e0)

[(1 − ω2φ)(1 − ω2φ−1)]−(c0+d0+e0)[(1 − ω3φ)(1 − ω3φ−1)]−(c0+d0+e0)

[(1 − ωφ)(1 − ωφ−1)]−(b0+d0+e0)[(1 − ω4φ)(1 − ω4φ−1)]−(b0+d0+e0)

Since trs• α : U(1) → C is a C0-function, φ is a generic element, so
a0 + b0 + c0 + e0 ≤ 0, c0 + d0 + e0 ≤ 0, b0 + d0 + e0 ≤ 0. On the other hand,
Ind D = −σ/8 ∈ Z, but we have Ind D = a0 + 3b0 + 3c0 + 4d0 + 5e0 ≤ 0,
so

(12) a0 + b0 + c0 + e0 = c0 + d0 + e0 = b0 + d0 + e0 = 0,

which means b0 = c0, d0 = a0 + b0 and e0 = −(a0 + 2b0). Besides, X is
homotopic to �nS

2 × S2 for some integer n ≡ 0 (mod 4).
At last, we suppose b+

2 (X) = 0, that is a1 = b1 = c1 = d1 = e1 = 0. Then
from the actions of φ on h and 1̃, and the actions of x on ρ1, ρ2, ρ3 and ρ4, we
have dim(V h)φx − dim(W 1̃)φx = 0, so d(f φx) = 1. Then from tom Dieck
formula, we have

trφx α

= trφx[−λ−1(a0 + b0ρ1 + c0ρ2 + d0ρ3 + e0ρ4)h]

= [(1 − φ)(1 − φ−1)]−(a0+b0+c0+2d0+3e0)[(1 + φ)(1 + φ−1)]−(2b0+2c0+2d0+2e0)

Since trx• α : U(1) → C is a C0-function, φ is a generic element, then
a0 + b0 + c0 + 2d0 + 3e0 ≤ 0 and 2b0 + 2c0 + 2d0 + 2e0 ≤ 0.

On the other hand, Ind D = −σ/8 ∈ Z, but we have Ind D = a0 + 3b0 +
3c0 + 4d0 + 5e0 ≤ 0, so Ind D = 0. Moreover, a0 + b0 + c0 + 2d0 + 3e0 = 0
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and 2b0 + 2c0 + 2d0 + 2e0 = 0. These two equations along with (12) tell us
that a0 = d0 = −e0 and b0 = c0 = 0.

In summary, we have the following result from the above discuss.

Proposition 5.3. Let X be a smooth spin 4-manifold with b1(X) = 0
and non-positive signature. If X admits a spin alternating group A5 action,
b+

2 (X/A5) = 0 and b+
2 (X/〈s〉) = 0 but b+

2 (X/〈t〉) �= 0, then as an element of
R(A5), IndA5 D is of the form

a0 + b0(ρ1 + ρ2) + (a0 + b0)ρ3 − (a0 + 2b0)ρ4,

and X is homotopic to �nS
2 × S2 for some integer n ≡ 0 (mod 4). Moreover,

if b+
2 (X) = 0 then IndA5 D is a multiple of 1 + ρ3 − ρ4.

Now we look at a concrete example of A5-action. Consider the K3 surface X

defined by equations
∑4

i=0 z2
i = 0 and

∑4
i=0 z3

i = 0 in CP 4. By the symmetry
of defining equations, the alternating group A5 of degree 5 acts on X by
permutations of variables. Via this action, A5 acts on X smoothly (in fact,
holomorphically). For this action it is easy to get that IndA5 D = 2 ∈ R(A5),
H2(X) = 4 + 2ρ3 + 2ρ4 ∈ R(A5). Besides, by Theorem 5.1, we must have
b+

2 (X/〈s〉) + b+
2 (X/〈t〉) = 2b+

2 (X/A5) or b+
2 (X/〈s〉) = 0.

On the other hand, applying Proposition 4 of [6] to the above action of A5

on K3 surface, we have dim(H+
2 (X)A5) ≥ dim((IndA5 D)A5)+1 = 2+1 = 3,

but dim(H+
2 (X)) = 3, so (H+

2 (X))A5 = H+
2 (X).

For homotopy K3 surface we have

Proposition 5.4. Let X be a homotopy K3 surface. If X admits a spin
alternating group A5 action, then as an element of R(A5), H+

2 (X, C) = 3.

Proof. From Theorem 5.1, we haveb+
2 (X/〈s〉)+b+

2 (X/〈t〉) = 2b+
2 (X/A5)

or b+
2 (X/〈s〉) = 0, that is b1 = c1 = d1 = e1 = 0 or a1 = b1 = c1 = e1 = 0.

If b1 = c1 = d1 = e1 = 0 which along with the fact dim H+
2 (X, C) = 3

means that H+
2 (X, C) = 3. If a1 = b1 = c1 = e1 = 0, then H+

2 (X) = d1ρ3.
But from dim H+

2 (X) = 3 and the degree of ρ3 being 4, we know there is no
representation of H+

2 (X) satisfying this condition.
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