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RINGS WITH FINITE GORENSTEIN
GLOBAL DIMENSION

E. ENOCHS†, S. ESTRADA† and A. IACOB

Abstract

We find new classes of non noetherian rings which have the same homological behavior that
Gorenstein rings.

1. Introduction and Preliminaries

In his pivotal article [3] Bass studied Gorenstein rings. Among several charac-
terizations, he called a ring R Gorenstein if it is commutative, Noetherian and
every system of parameters in Rp generates an irreducible ideal, for all prime
ideals p. In the local case with finite Krull dimension, he characterized Goren-
stein rings as those that satisfy a property which corresponds to a geometric
property of a point on a variety. He also characterized such rings homologic-
ally by showing that these are precisely the R that have finite self-injective
dimension.

Auslander (in [1]) seems to be the first who noticed the similarity of module
behavior over Bass’Gorenstein rings and that over integral group rings of finite
groups. Auslander showed that certain syzygy modules over Gorenstein rings
have complete resolutions analogous to those exhibited by Tate and used to
define Tate homology and cohomology.

Iwanaga ([12]) showed that if a ring is left and right noetherian then having
finite left and right self injective dimension implies strong properties about
modules over such rings. He argued that over such a ring a module has finite
projective dimension if and only if it has finite injective dimension and he
showed that there is a universal finite bound for such dimensions.

It has become increasing clear that the most striking homological property
satisfied by the category of modules over these rings is that they have a certain
relative finite global dimensions. It is natural that this dimension should be
called a Gorenstein global dimension. In this paper we exhibit several classes
of rings having finite Gorenstein global dimensions.

† The author is partially supported by the DGI MTM2005-03227.
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Over this paper R will denote a not necessarily commutative ring with
identity. We denote by R-Mod the category of left R-modules.

Definition 1.1 ([8, Definition 2.1, Definition 5.1]). Let M ∈ R-Mod,
then M is said to be Gorenstein projective if there exists an exact sequence of
projective R-modules

(1.1) · · · → P−1 → P 0 → P 1 → · · ·
such that M = ker(P 0 → P 1) and such that Hom(P,−) leaves the complex
exact for any projective R-module P . The sequence (1.1) is often called a
complete projective resolution of M . Gorenstein injective modules (and then
complete injective resolutions) are defined dually.

Definition 1.2. Let M ∈ R-Mod. The Gorenstein projective dimension
ofM (Gpd(M)) is defined as the least integer n such that the n-syzygy ofM is
Gorenstein projective and ∞ if there is no such syzygy (where the syzygies are
taken in a projective resolution of M). Then the Gorenstein global projective
dimension, glGpd(R), is defined by

glGpd(R) = sup{Gpd(M) : M ∈ R-Mod}.
Global Gorenstein injective dimension is defined dually.

For anR-moduleM we shall denote by pd(M) and id(M) the projective and
injective dimension ofM , respectively. Then we define the finitistic projective
dimension FPD(R) and the finitistic injective dimension FID(R) as

FPD(R) = sup{pd(M) : pd(M) < ∞}
and

FID(R) = sup{id(M) : id(M) < ∞}.
Theorem 1.3 ([6, Theorem 2.28]). The following are equivalent for a ring

R:

(i) glGpd(R) < ∞ and glGid(R) < ∞.

(ii) for an R-module M , pd(M) < ∞ ⇔ id(M) < ∞ and FPD(R) < ∞
and FID(R) < ∞.

Moreover if one of these two equivalent conditions hold then

FPD(R) = FID(R) = glGpd(R) = glGid(R).

Definition 1.4. If R is a ring satisfying one of the conditions of The-
orem 1.3 then glGdim(R) stands for the common value of glGid(R), glGpd(R),
FPD(R) and FID(R).
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In [6] it is shown that for a ringR with both finite Gorenstein global dimen-
sions there is a nice program of the so-called Gorenstein homological algebra.
The corresponding categories of R-modules are what is known in the literat-
ure as Gorenstein categories. These were first studied in the interesting work
of Beligiannis [4] and Beligiannis-Reiten [5]. They are also studied in [6] in
the context of categories of quasi-coherent sheaves, that is for Grothendieck
categories where there may not be enough projectives.

If glGdim(R) is finite, by [6, Theorem 2.26], we do have Gorenstein pro-
jective precovers and therefore for every R-module M there exists a deleted
resolution of M by Gorenstein projectives

GM = · · · → G2 → G1 → G0 → 0

which is unique up to homotopy, so it defines right derived functors of Hom
(see the introduction of [13] for a full explanation of these results). Those are
commonly denoted by Gexti (M,N). By [6, Theorem 2.25] there are Goren-
stein injective preenvelopes for every R-module N , so right derived functors
of Hom can be defined from those. Furthermore in [10] (see also [9] for a
version over Gorenstein rings) it is shown that both procedures give the same
functors Gexti , that is, there is balance in this situation.

Now if glGdim(R) = n < ∞ then for an R-module M there is a complete
projective resolution PM attached to the Gorenstein projective n-syzygy ofM .
Again this resolution is a homotopy invariant so it defines the so-called Tate co-

homology groups Êxt
i
(M,N) as the ith-cohomology groups of Hom(PM,N),

(i ∈ Z). These groups can also be computed by using a complete injective res-
olution of an n-cosyzygy of N , as it was noticed in [11].

As a consequence of the previous comments we get that the Avramov-
Martsinkovsky’s long exact sequence (see [2, 7.1 Theorem]) connecting the

three theories (the Exti , Gexti and Êxt
i

functors) still holds for R-Mod where
glGdim(R) is finite.

Theorem 1.5 (Avramov-Martsinkovsky). Let R be a ring with glGdim(R)
= n.

There exist natural exact sequences

0 → Gext1(M,N) → Ext1(M,N) → Êxt
1
(M,N) → Gext2(M,N) →

· · · → Gextn(M,N) → Extn(M,N) → Êxt
n
(M,N) → 0.

As a first examples of rings with finite Gorenstein global dimension we get
that every Iwanaga-Gorenstein ring (that is, a ring R noetherian on both sides
and with finite self-injective dimension) has finite Gorenstein global dimension
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equal to the self-injective dimension (see for example [9, Proposition 11.2.5,
Proposition 11.5.7 and Theorem 9.1.10]). But there are many non-trivial ex-
amples of non-noetherian rings having finite Gorenstein global dimension (by
a trivial example we mean a ring R with finite left global dimension).

So this paper is devoted to the study of examples of these rings and to prove
that the property of the finiteness of the Gorenstein dimension is inherited by
extensions of rings such as polynomial and series rings and quasi-Frobenius
extensions. As a remarkable example we prove in Theorem 2.7 that the ring
with infinitely many non-commuting indeterminates R{X1, X2, · · ·} has fi-
nite Gorenstein global dimension whenever R has such. For the ring of dual
numbers R[X]/(X2) we explicitly describe the finite Gorenstein injective and
projective resolutions of every module (Theorem 3.5). We note that if R �= 0,
R[X]/(X2) always has infinite left global dimension.

2. Polynomial and series rings

Let M be an R-module. We will denote by M[[X−1]] the R[X]-module
HomR(RR[X]R[X], RM) whose action by X is given by the “shift” operator
X(m0 +m1X

−1 +m2X
−2 +m3X

−3 + · · ·) = m1 +m2X
−1 +m3X

−2 + · · ·.
These R[X] modules were first introduced by Macaulay, and later Northcott
used this notation in [16].

Lemma 2.1. LetM be anR[X]-module. Then there is a short exact sequence
of R[X]-modules

0 → M → M[[X−1]] → M[[X−1]] → 0.

As a consequence, ifE is anR[X]-module which is injective asR-module then
idR[X] E ≤ 1.

Proof. We define α : M → M[[X−1]] to be the (unique) morphism of
R[X]-modules such that β ◦ α = id

RM where β : M[[X−1]] → M is the
morphism of R-modules β(m0 +m1X

−1 +m2X
−2 +m3X

−3 +· · ·) = m0. So
α(e) = e + XeX−1 + X2eX−2 + · · ·, e ∈ E. So we have the exact sequence
of R[X]-modules

0 → M
α−→ M[[X−1]] → M[[X−1]]

α(M)
→ 0.

Now we define a morphism of R[X]-modules M[[X−1]]
α(M)

→ M[[X−1]],

e0 + e1X
−1 + e2X

−2 + · · · + α(E)

	→ Xe0 − e1 + (Xe1 − e2)X
−1 + (Xe2 − e3)X

−2 + · · · .
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It is straightforward to check that this is well defined and is an isomorphism
of R[X]-modules.

Corollary 2.2. IfM is anR[X]-module and if idR M ≤ n then idR[X]M ≤
n+ 1.

Proof. Immediate.

We recall that for an R[X]-module M there is an analogous exact se-
quence 0 → M[X] → M[X] → M → 0 of R[X]-modules which gives
that pdR M ≤ n ⇒ pdR[X] ≤ n+ 1.

Theorem 2.3. Let R be a ring with glGdim(R) = n. Then glGdim(R[X])
= n+ 1.

Proof. Since R[X] is a projective R-module we get that pdR[X]M ≤ n ⇒
pdR M ≤ n and idR[X]M ≤ n ⇒ idR M ≤ n. So now suppose that pdR[X] <

∞. Then pdR M < ∞ and so pdR M ≤ n. This gives that idR M ≤ n and
so that pdR[X] ≤ n + 1 and that idR[X] ≤ n + 1. So pdR[X]M < ∞ ⇒
pdR[X]M ≤ n + 1, idR[X]M ≤ n + 1. Similarly we get idR[X]M < ∞ ⇒
idR[X]M ≤ n+ 1, pdR[X]M ≤ n+ 1 So we get that glGdim(R[X]) ≤ n+ 1.
If N �= 0 is an R-module with pdR N = n and if we make N into an R[X]-
module with XN = 0 then it is standard that pdR[X]N = n + 1. This gives
that we have the equality glGdim(R[X]) = n+ 1.

Proposition 2.4. If R is right coherent and if glGdim(R) = n then
glGdim(R[[X]]) = n+ 1.

Proof. We have R[[X]] ∼= RN as left R-module. Since R is right coherent
the product of flat left R-modules is flat. Hence R[[X]] is a flat left R-module.
Consequently any injective left R[[X]]-module is injective as an R-module.
Now let L be an R[[X]]-module with idR[[X]] L < ∞. Then by the above
idR L < ∞ and so pdR L ≤ n. By Theorem 2.3 and the first change of rings
Theorem ([18, Theorem 4.3.3]) pdR[[X]] L = 1 + pdR L ≤ n+ 1.

If pdR[[X]] L < ∞ then pdR L < ∞. Then idR L ≤ n.
By the first injective change of rings Theorem ([18, pp. 104]) idR[[X]] L =

1 + idR L ≤ n+ 1.

Remark. Theorem 2.3 can also be proved by using change of rings The-
orem. But Lemma 2.1 has independent interest so we have opted for an inde-
pendent proof of Theorem 2.3 for using it.

Corollary 2.5. Let R be a ring with glGdim(R) = n. Then:

(1) glGdim(R[X1, . . . , Xk]) = n+ k, for all k ≥ 1.
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(2) IfR[[X1, . . . , Xk−1]] is right coherent then glGdim(R[[X1 . . . , Xk]]) =
n+ k, for all k ≥ 1.

Proof. This is consequence of the previous results (Theorem 2.3 and Pro-
position 2.4) and the known fact that if L is an R[X1, . . . , Xk]-module with
finite pdR L then

pdR[X1,...,Xk ] L = k + pdR L, and idR[X1,...,Xk ] L = k + idR L.

Let us see now that the ringR{X1, X2, . . .} in the non-commuting indeterm-
inatesX1,X2,. . .with coefficients inR has finite Gorenstein global dimension.
So we will have an “absolutely non-noetherian” example of a ring with finite
global Gorenstein dimension. We start with the following remark.

Lemma 2.6.

lgldim(R{X1, X2, . . .}) = 1 + lgldim(R)

for non commuting indeterminates X1, X2, . . ..

Proof. This is a consequence of [14, Theorem 14]. Notice that the category
R{X1, X2, · · ·}-Mod is equivalent with the functor category R-ModQ where
Q is a quiver with one vertex v and a countable number of loops beginning
and ending in v.

Remark. We note that the corresponding result with commuting indeterm-
inates is

lgldim(R[X1, . . . , Xk]) = k + lgldim(R).

Theorem 2.7. Let R be a ring with glGdim(R) = n. Then glGdim(R{X1,

X2, . . .}) = n+ 1.

To prove this theorem we will appeal to the following lemma. Given RN

denote
R{X1, X2, . . .} ⊗R N

by N{X1, X2, . . .}.
Lemma 2.8. For a given R{X1,X2,...}M there exists a short exact sequence

0 → M{X1, X2, . . .}(ω0) → M{X1, X2, . . .} → M → 0.

Proof. By restriction of scalars M is an R-module. Let us consider

M{X1, X2, . . .} ∼= R{X1, X2, . . .} ⊗R M.
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Then any R-linearM → N whereN is left R{X1, X2, . . .}-module (and so an
R-module) has a unique extension

R{X1, X2, . . .} ⊗R M ∼= M{X1, X2, . . .} → M.

Applying this to id : M → M gives ϕ : M{X1, X2, . . .} → M where, for
example, ϕ(mXi) = Xim for m ∈ M and i ≥ 1 and where Xim is computed
using the original scalar multiplication inM . For all k ≥ 1, we define a family
of R{X1, X2, . . .}-morphisms ψi : M{X1, X2, . . .} → M{X1, X2, . . .}, from
the R-linear maps εi : M → M{X1, X2, . . .} defined by m

εi	→ Xim − mXi .
So hence we get an R{X1, X2, . . .}-linear map

ψ : M{X1, X2, . . .}(ω0) −→ M{X1, X2, . . .}.
Using a natural grading onM{X1, X2, . . .} it is not hard to argue that this map
is an injection. Since each Xim − mXi ∈ Ker(ϕ), i ≥ 1 it is easy to see that
the Im(ψ) ⊆ Ker(ϕ). We claim that

0 → M{X1, X2, . . .}(ω0)
ψ→ M{X1, X2, . . .} ϕ→ M → 0

is exact. Let us take u ∈ Ker(ϕ). We use Gauss’ notation ≡ (Im(ψ)). Using
the relations

Xim ≡ mXi (Im(ψ)), ∀i ≥ 1

and the ones that follow as a consequence (for example mX1X2X1 ≡
X1X2X1m (Im(ψ))) we see that in fact every v ∈ M{X1, X2, . . .} satisfies
v ≡ m′ (Im(ψ)) for some m′ ∈ M . So if u ≡ m (Im(ψ)) is in Ker(ϕ), m will
be also in Ker(ϕ). But for all m′ ∈ M , ϕ(m′) = m′ so then m = 0 and then
u ≡ 0 (Im(ψ)), so u ∈ Im(ψ).

Proof of Theorem 2.7. Let L be an R{X1, X2, . . .}-module such that
idR{X1,X2,...} L < ∞. If M is an R-module, we have canonical isomorphisms
R{X1, X2, . . .} ⊗R M ∼= M{X1, X2, . . .} and L ∼= HomR{X1,X2,...}(R{X1, X2,

. . .}, L) so

HomR(M,L) ∼= HomR{X1,X2,...}(M{X1, X2, . . .}, L),
for all R-module M and all R{X1, X2, . . .}-module L. Therefore if E is an
injective R{X1, X2, . . .}-module, it is injective as R-module. So idR L < ∞.
Since glGdim(R) = n, pdR L ≤ n. Let

0 → K → Pn−1 → · · · → P1 → P0 → L → 0
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be an exact sequence of R{X1, X2, . . .}-modules with R{X1,X2,...}Pi projective
0 ≤ i ≤ n − 1 and K projective as R-module. By Lemma 2.8 we have the
short exact sequence

0 → K{X1, X2, . . .}(w0) → K{X1, X2, . . .} → K → 0.

Since K{X1, X2, . . .} is a projective R{X1, X2, . . .}-module it follows that
pdR{X1,X2,...} L ≤ n + 1. Conversely assume that R{X1,X2,...}L is such that
pdR{X1,X2,...} L < ∞. Then pdR L < ∞. Again, since glGdim(R) = n,
idR L ≤ n. So Extn+iR (M,L) = 0, ∀RM . Now we follow the usual pro-
cedure to compute the ExtjR functors by using a resolution of M of projective
R-modules and the previous isomorphism to get:

ExtjR(M,L) ∼= ExtjR{X1,X2,...}(M{X1, X2, . . .}, L)
∀j ≥ 0, so Extn+iR{X1,X2,...}(M{X1, X2, . . .}, L) = 0, ∀i ≥ 1. Now from the short
exact sequence of Lemma 2.8 we have the long exact sequence of homology

· · · → 0 = Extn+1
R{X1,X2,...}(M{X1, X2, . . .}, L)ω0

∼= Extn+1
R{X1,X2,...}(M{X1, X2, . . .}(ω0), L) → Extn+2

R{X1,X2,...}(M,L)

→ Extn+2
R{X1,X2,...}(M{X1, X2, . . .}, L) = 0 → · · · .

So Extn+kR{X1,X2,...}(M,L) = 0, ∀k ≥ 2 and hence idR{X1,X2,...} L ≤ n+ 1.
From the previous it is clear that FPD(R{X1, X2, . . .}),FID(R{X1, X2,

. . .}) ≤ n + 1. If pdR N = n for an R-module N �= 0, then since R{X1} =
R[X1] we have pdR{X1}N = n+1 whereX1N = 0. So then pdR{X1,X2,...}N ≥
n + 1 where XiN = 0 for each i. Since this dimension is finite, we see that
we get the desired equality.

3. Quasi-frobenius extensions

In [12] Iwanaga proved that a quasi-Frobenius extension of a Gorenstein ring
R is also Gorenstein. In this section we prove the analogous result for rings
with finite Gorenstein global dimensions. We first recall from [12, Section 2]
the definition of a quasi-Frobenius extension. They first appeared in [15].

Definition 3.1. For rings R ⊆ T , T/R is called a left quasi-Frobenius
extension if RT is finitely generated projective and T TR is isomorphic to a direct
summand in a direct sum of copies of HomR(RTR,R RR). A quasi-Frobenius
extension is a left and right quasi-Frobenius extension.

Theorem 3.2. Let T ⊇ R be a quasi-Frobenius extension of R. Then if
glGdim(R) = n then glGdim(T ) = n.
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Proof. We show that pdT M < ∞ ⇒ idT M < ∞. The class of T -
modules of finite injective dimension at most n is resolving (which means that
for a short exact sequence of T -modules 0 → A → B → C → 0 if idT A ≤ n

and idT B ≤ n then idT C ≤ n) so, since pdT M < ∞, it suffices to prove that
idT T (I) ≤ n for an arbitrary set I . By [12, Proposition 5]

idT (T
(I)) = idT ((T ⊗ R)(I)) = idT (T ⊗ R(I)) ≤ idR(R

(I)) ≤ n.

Conversely we have to check that idT M < ∞ ⇒ pdT M < ∞. Since
T + = HomZ(T ,Q/Z) is an injective cogenerator of T -Mod and now the
class of T -modules with finite projective dimension is coresolving (the dual of
resolving) it suffices to check that pdT (T

+)I ≤ n. Since T is a direct summand
of HomR(T , R), T + will be a direct summand of HomR(T , R)

+. So it suffices
to prove that pdT (HomR(T , R)

+)I ≤ n. Since (R+)I is injective asR-module
and R is glGdim(R) = n, pdR(R

+)I ≤ n so there exits an exact sequence

0 → Pn → · · · → P0 → (R+)I → 0

with Pi projective R-modules 0 ≤ i ≤ n. But then

0 → T ⊗ RPn → · · · → T ⊗ RP0 → T ⊗ R(R
+)I → 0

is a finite projective resolution of T -modules of T ⊗ R(R
+)I (T is flat as

R-module). Now

T ⊗R (R
+)I ∼= T HomR(R Hom(T TR, RRR)T , R(R

+)I )

∼= HomZ(R
(I) ⊗ R HomR(T TR, RRR)T ,Q/Z)

∼= HomZ(T HomR(T TR, RRR)
(I)
R ,Q/Z)

∼= (
T HomR(RTR, RRR)

(I)
R

)+

∼= T (HomR(T , R)
+)I .

As a particular case of Theorem 3.2 we get:

Corollary 3.3. If G is a finite group and R is such that glGdim(R) = n

then glGdim(RG) = n.

Proof. This is immediate by noticing thatR ⊆ RG is a left quasi-Frobenius
extension.
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3.1. The ring of dual numbers

For any ringR, the ring of dual numbersR[X]/(X2) is a quasi-Frobenius exten-
sion of R. So by Theorem 3.2, if glGdim(R) is finite, glGdim(R[X]/(X2)) =
glGdim(R). In this section we shall describe the finite Gorenstein projective
and Gorenstein injective resolutions of an R[X]/(X2)-module, when R is a
ring with finite left global dimension. We recall that if R �= 0 the left global
dimension of R[X]/(X2) is infinite.

For the next result we need to remark the following: let ϕ : R → S be a
ring homomorphism, then if RM is a left R-module, HomR(RSS,R M) is a left
S-module, and we have the R-linear HomR(S,M) → M (σ 	→ σ(1)) with
such that for any R-linear N → M there exists a unique S-linear map such
that the diagram

R-linear∃! S-linear

HomR(S, M)

SN

M

is commutative. Dually we have the obvious diagram

SN

R-linear ∃! S-linear

RM S �R M

Let us denote the ringR[X]/(X2) simply byR[x], with the understanding that
x2 = 0. So the elements are r0 + r1x, r0, r1 ∈ R. Let M be an R[x]-module.
Then we can define a map β : M[x] → M given bym+m′x 	→ m+xm′. This
map is surjective andR[x]-linear. The kernel consists of ker(β) = {xm−mx :
m ∈ M}. Now we define a new structure of R[x]-module on M: for x ∈ R[x]
x · m = −xm and let us denote by M0 the R[x]-module M with the new
structure. ThenM0 ∼= ker(β) (asR[x]-modules) by defining α : M0 → M[x],
α(m) = xm−mx. So we have an exact sequence

0 → M0 α→ M[x]
β→ M → 0

for any R[x]M and also an exact

0 → M → M0[x] → M0 → 0.
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So “pasting” we get an exact complex

· · · → M[x] → M0[x] → M[x] → M → 0

Dually, given RM we define M[x−1] = {m0 + m1x
−1 : m0,m1 ∈ M} ∼=

HomR(R[x],M). Then M[x−1] is an R[x]-module where x(m0 +m1x
−1) =

m1. We have a monomorphism of left R[x]-modules 0 → M → M[x−1]
given by m 	→ m+ (xm)x−1. The cokernel is isomorphic to M0. Notice that,
for all RM there is an isomorphism of R[x]-modules M[x] ∼= M[x−1] given
by m0 +m1x 	→ m1 +m0x

−1.

Lemma 3.4. Let M be an R[x]-module and α : M → M[x] α(m) =
xm−mx the previous monomorphism ofR[x]-modules. Then for any projective
R[x]-module Q and any R[x]-linear map δ : M → Q there exists an R[x]-
linear map γ : M[x] → Q such that γα = δ.

Proof. Clearly it suffices to prove the result for a freeR[x] module. First we
assume thatQ = R[x]. It is clear thatM[x] ∼= α(M)⊕M andR[x] ∼= R1⊕R2

as R-modules (Ri = R, i = 1, 2). Then δ = (δ1, δ2). Then there exists
η1 : M[x] → R1 and η2 : M[x] → R2 such that η1α = δ1 and η2α = δ2 and
such that η1(M) = 0, η2(M) = 0. But then by the universal property described
above there exists a unique morphism of R[x]-modules γ : M[x] → R[x]
such that γα = δ and γ (M) = 0.

Now let us takeQ = R[x](I ). By proceeding as before we find γ : M[x] →
R[x]I such that γα = δ. Let us see that in fact γ (M[x]) ⊆ R[x](I ). But this
is easy by noticing that if S ⊆ M is a submodule then

M M[x]

S S[x]

R[x]

α�S

α

is commutative and the extension S[x] → R[x] is the restriction of the exten-
sionM[x] → R[x] and also satisfies that S → R[x] is 0. But then if S ⊆ M is
finitely generated whenever S → R[x](I ) → R[x] is 0 (and it will be 0 except
for a finite number of i ∈ I ) the extension S[x] → R[x] will be 0. So we
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do get a map S[x] → Hom(R[x], R)(I). Then we see we will also get a map
M[x] → Hom(R[x], R)(I) for any M (by restrictions to all finitely generated
S ⊆ M and using the above).

Theorem 3.5. Let R be a ring such that lgldim(R) = n and M ∈
R[x]-Mod. There exists a finite Gorenstein projective resolution in R[x]-Mod
of M ,

0 → Gn → Gn−1 → · · · → G1 → G0 → M → 0

whereGn is projective asR-module. DuallyM has a finite Gorenstein injective
resolution in R[x]-Mod,

0 → M → U0 → U1 → · · · → Un−1 → Un → 0

where Un is injective as R-module.

Proof. Let M be any R[x]-module and consider the short exact sequence

0 → K0 → P0 → M → 0

with P0 a projective R[x]-module. Since lgldim(R) = n, pdR K0 ≤ n − 1.
Proceeding in this manner we get an exact sequence of R[x]-modules

0 → K → Pn−1 → · · · → P0 → M → 0

such that R[x]Pi is projective ∀1 ≤ i ≤ n − 1 and R[x]K is projective as R-
module. We show that K is Gorenstein projective. By the preceding, we get a
short exact sequence of R[x]-modules

0 → K0 → K[x] → K → 0

and then, by pasting, an exact

· · · → K0[x] → K[x] → K0[x] → K[x] → K → 0.

Then we also get a similar exact

0 → K → K[x−1] → K0[x−1] → K[x−1] → · · · .
So we have a complete projective resolution of K ,

· · · → K0[x] → K[x] → K0[x] → K[x]

→ K[x−1] → K0[x−1] → K[x−1] → · · · .
By Lemma 3.4, HomR[x](−,Q) remains exact the sequence, for all projective
R[x]Q, so

GpdR[x]M ≤ n.
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Let 0 → M → E0 → E1 → . . . → En−1 → D → 0 be a partial injective
resolution ofM overR[x]. Any injectiveR[x]-module is an injectiveR-module
so this is also a partial injective resolution over R. Since lgldim(R) = n it
follows that D is injective as an R-module. By the above we have an exact
complex

D : · · · → D0[x] → D[x] → D0[x]

→ D[x] → D[x−1] → D0[x−1] → · · ·
such that D = Ker(D[x−1] → D0[x−1]). Since RD is injective and R[x]
is a flat R-module we have that D[x] ∼= D[x−1] ∼= HomR(R[x],D) are
injective R[x]-modules ([9, Theorem 3.2.9]) therefore also injective over R.
The exact sequence 0 → D → D[x−1] → D0 → 0 gives us that D0 is an
injectiveR-module. ThenD0[x] is an injectiveR[x]-module. So D is an exact
complex of injective R[x]-modules. We show that HomR[x](T ,D) is exact for
any injective R[x]T . Since Ext1

R[x](T
0[x],D0) ∼= Ext1

R(T
0,D0) = 0 it follows

that the sequence

(3.1) 0 → HomR[x](T
0[x],D0)

→ HomR[x](T
0[x],D[x]) → HomR[x](T

0[x],D) → 0

is exact.
But T is an injective R[x]-module, so the sequence 0 → T → T 0[x] →

T 0 → 0 is split exact. Since T is a direct summand of T 0[x], (3.1) gives that
any diagram

D[x]

T

D

can be completed to a commutative one. Thus D is a Gorenstein injective
R[x]-module. So GidR[x]M ≤ n.
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