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THE POINCARÉ SERIES OF THE MODULE
OF DERIVATIONS OF SOME

MONOMIAL RINGS

V. MICALE

Abstract

Let R be a quasi-homogeneous k-algebra and M be a finitely generated graded R-module. The
formal power series

∑
i dimk TorRi (k, M)zi is called the Poincaré series of M and it is denoted

by P R
M(z). We remark that the Poincaré series of the module of derivations of a monomial ring is

rational and determine it in some cases.

1. Introduction

For any commutative k-algebra R, the module of derivations is the set given
by Derk(R) = {ρ ∈ Homk(R, R) | ρ(ab) = aρ(b)+ ρ(a)b for all a, b ∈ R}.
This set has a natural R-module structure.

Let R be a quasi-homogeneous k-algebra. For any finitely generated graded
R-module M , the Poincaré series of M is the formal power series P R

M(z) =∑
i dimk TorR

i (k, M)zi .
In this paper, our object of study is the Poincaré series of the module of

derivations Derk(R) of a monomial k-algebra R.
In Section 2, we state a theorem due to Brumatti and Simis that represents

the starting point of our paper. We also remark that it follows from a theorem
due to Lescot that the Poincaré series of the module of derivations Derk(R) is
rational for any monomial k-algebra R.

In Section 3, we calculate the Poincaré series of the module of derivations
for a large class of Stanley-Reisner rings of dimension one or two.

In Section 4, we determine the Poincaré series of the module of derivations
for some further cases of monomial rings.

In Section 5, we give formulas for the Poincaré series of the module of
derivations when R = k[�] is the Stanley-Reisner ring of a join � = �1 ∗�2

or a disjoint union � = �1 ∪�2 of simplicial complexes.
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2. Preliminaries

A monomial algebra over a field k is an algebra of the formR= k[x1, . . . , xn]/I,
where I is an ideal generated by monomials. For any monomial k-algebra,
Derk(R) has a natural Zn-grading, induced by the Zn-grading of R. Hence it
follows from [11, Theorem 1] that the Poincaré series of Derk(R) is rational.

The starting point of our paper is the following theorem due to Brumatti
and Simis in [2], Theorem 2.2.1:

Theorem 2.1. Let R = k[x1, . . . , xn]/I be a monomial k-algebra. If the
ideal I is generated by monomials whose exponents are prime to the charac-
teristic of k, then

Derk(R) =
n⊕

i=1

(0 : (0 : xi))∂i

where ∂i = ∂
∂xi

.

Remark 2.2. Since P R
M⊕N(z) = P R

M(z)⊕P R
N (z) for any finitely generated

graded R-module M, N , it is enough to consider Poincaré series of the type
P R

0:(0:xi )
(z).

Our aim is to derive explicit formulas for the Poincaré series of the module
of derivations over some algebras using this result. We shall repeatedly use the
following lemma:

Lemma 2.3. Let R be a ring and let J be an ideal in R. Then P R
J (z) =

(P R
R/J (z)− 1)/z.

3. Stanley-Reisner rings of dimension one or two

In this section we consider Stanley-Reisner rings of dimension one or two. In
Section 4 we will consider some Stanley-Reisner ring of higher dimension.

A (finite) simplicial complex consists of a finite set V of vertices and a
collection � of subsets of V called faces or simplices such that:

(i) If v ∈ V , then {v} ∈ �.

(ii) If F ∈ � and G ⊆ F , then G ∈ �.

Let � be a simplicial complex and F ∈ �, then the dimensions of F and
� are defined by dim(F ) = |F | − 1 and dim(�) = sup{dim(F ) | F ∈ �}
respectively. A face of dimension q is sometimes refered to as a q-face.

A face F of � is said to be a facet if F is not properly contained in any
other face of �. The q-skeleton of a simplicial complex � is the simplicial
complex �q consisting of all p-faces of � with p ≤ q.
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Let S = k[x1, . . . , xn] be a polynomial ring over a field k and let � be a
simplicial complex with vertex set V = {1, . . . , n}. The Stanley-Reisner ring
k[�] is defined as the quotient ring S/I�, where

I� = ({xi1 · · · xir | i1 < · · · < ir, {i1 · · · ir} /∈ �})
and I� is called Stanley-Reisner ideal of �. By [14, Corollary 5.3.11],
dim k[�] = dim(�)+ 1.

For a general reference to properties of simplicial complexes and of Stanley-
Reisner rings, see [14, Chapter 5].

To calculate Hilbert series of a Stanley-Reisner ring R = k[�], where � is
a simplicial complex of dimension n − 1, we often use the formula given in
[13, Theorem II.1.4],

Hk[�](z) =
n−1∑
i=−1

fiz
i+1/(1− z)i+1

where we write fi for the number of i-dimensional faces of � for 0 ≤ i ≤ n−1,
and put f−1 = 1.

Example 3.1. Let � be a graph, that is a simplicial complex of dimension
1, with n vertices and d edges. Then Hk[�](z) = 1+ nz

1−z
+ dz2

(1−z)2 .

Let R = k[x1, . . . , xn]/I be a monomial k-algebra and let b ⊆ R be an
ideal generated by a subset of {x1, . . . , xn}. If I is generated by monomials of
degree two, then it follows from [4, Proposition 1.2] that b has a linear free
R-resolution. Moreover, a costruction of a linear resolution of b is given in
([6, Section 3]) in case b = (x1, . . . , xn).

Our next aim is to relate P R
b (z) to the Hilbert series HR/b(z) and HR(z).

Theorem 3.2. Let R = k[x1, . . . , xn]/I be a monomial k-algebra and
let b ⊆ R be an ideal generated by a subset of {x1, . . . , xn}. Then
HR(z)P R

R
b
(−z) = HR

b
(z).

Proof. By what it is written above, R/b has a free linear R-resolution

· · · −→ Rb3 [−3] −→ Rb2 [−2] −→ Rb1 [−1]

−→ Rb0 = R −→ R/� −→ 0.
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Let R = k ⊕R1 ⊕R2 ⊕ · · · and R/b = k ⊕ [R/b]1 ⊕ [R/b]2 ⊕ · · ·, then we
have the following graded version of the resolution above

...
...

...
...

...
...

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
0←−−− [R/b]3←−−− R3←−−− R

b1
2 ←−−− R

b2
1 ←−−− kb3 ←−−− 0

⊕ ⊕ ⊕ ⊕ ⊕
0←−−− [R/b]2←−−− R2←−−− R

b1
1 ←−−− kb2 ←−−− 0

⊕ ⊕ ⊕ ⊕
0←−−− [R/b]1←−−− R1←−−− kb1 ←−−− 0

⊕ ⊕ ⊕
0←−−− k ←−−− k ←−−− 0

Hence we get the following exact sequence of vector spaces (with m > 0)

0 −→ kbm −→ R
bm−1
1 −→ R

bm−2
2 −→
· · · −→ R

b1
m−1 −→ Rb0

m −→ [R/b]m −→ 0.

Let dimk Ri = hi and let dimk[R/b]i = ri and in particular h0 = r0 = 1.
Then, for every i ≥ 0, we have ri = hib0 − hi−1b1 + · · · + (−1)ih0bi , hence
(h0 + h1z+ h2z

2 + · · ·)(b0 − b1z+ b2z
2 − · · ·) = (r0 + r1z+ r2z

2 + · · ·).
Corollary 3.3. Let R and b be as in Theorem 3.2. Then

P R
b (z) = (

HR
b
(−z)/HR(−z)− 1

)
/z.

Now we give a characterization of Stanley-Reisner ideals generated by
monomials of degrees 2. Of course this is always the case if dim � = 0. So
we can consider the case dim � ≥ 1.

Proposition 3.4. Let � be a simplicial complex with dim � ≥ 1. The
Stanley-Reisner ideal I� is generated by monomials of degrees two if and only
if � is the maximal complex supported by its 1-skeleton.

Proof. The ideal I� is not generated by monomials of degrees two if and
only if there is a monomial xi(1)xi(2) · · · xi(d) ∈ I� of degree d ≥ 3 such that
xi(a)xi(b) /∈ I� for 1 ≤ a < b ≤ d, or equivalently that {i(1), i(2), . . . , i(d)} /∈
� with d ≥ 3 but {i(a), i(b)} ∈ � for 1 ≤ a < b ≤ d. Hence I� is not
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generated by monomials of degree two if and only if � is not the maximal
complex supported by its 1-skeleton.

We note that if dim � = 1, then it follows from Proposition 3.4 that I� is
generated by monomials of degree two if and only if � is triangle free.

Theorem 3.5. Let � be a simplicial complex with dim(�) ≤ 1 and let R be
the Stanley-Reisner ring of �. Then either (0 : (0 : xi)) = R or (0 : (0 : xi))

is generated by a subset of {x1, . . . , xn} that may depends on i.

Proof. Of course, if dim � = 0, then (0 : (0 : xi)) = (xi) for every i.
Suppose that dim � = 1. If the theorem is not true for (0 : (0 : xi)), then
we can suppose that xj , xk /∈ (0 : (0 : xi)) and xjxk ∈ (0 : (0 : xi)) with
xjxk �= 0. As xi ∈ (0 : (0 : xi)), xi, xj , xk are distinct. Since dim � = 1, then
necessary xixjxk = 0 and therefore xjxk ∈ (0 : xi). This is impossible since
(xjxk)

2 �= 0.

Remark 3.6. We note that the theorem above in general is not true when
dim � > 1, even if I� is generated by monomials of degree 2. Indeed let
� be a 2-dimensional simplicial complex with vertex set V = {1, . . . , 5} and
facets {{1, 2, 5}, {2, 3}, {3, 4}, {4, 5}}. Then I� = (x1x3, x1x4, x2x4, x3x5) and
(0 : (0 : x1)) = (x1, x2x5).

Now we are ready to calculate the Poincaré series of the module of deriva-
tions of Stanley-Reisner rings k[�] of dimension one or two (i.e. dim � ≤ 1).

Let us start with the case of simplicial complexes � of dimension zero
(hence dim k[�] = 1) with vertex set {1, . . . , n}. Then we have that R =
k[�] = k[x1, . . . , xn]/(xixj , i �= j) and (0 : (0 : xi)) = (xi) for all i. By
Corollary 3.3 (that we can use because of Theorem 3.5), we get that

P R
(x1)

(z) = 1

1− (n− 1)z

and by Theorem 2.1 and Remark 2.2, we have that P R
Derk(R)(z) = nP R

(x1)
(z).

Let us now consider complexes of dimension one, that is graphs (hence
dim k[�] = 2). As above, because of Theorem 3.5, we can use Corollary 3.3
together with Theorem 2.1 in order to give a method to determine the Poincaré
series of Derk k[�] for the Stanley-Reisner ring of some of these 1-dimensional
complexes.

Let us start with the case of a star graph.

Example 3.7. With the same argument as for the 0-dimensional case we
have that the Poincaré series of the module of derivations for a star graph with
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vertex set V = {1, . . . , n} and with center vertex n is

P R
Derk(R)(z) =

n− (n− 2)z

1− (n− 2)z

if n ≥ 3 and it is equal to 2 if n = 2 (as in this case (0 : (0 : xi)) = R and
Derk(R) � R2).

Let v be a vertex of a graph �. The degree of v, deg(v), is the number of
edges at v. We denote by N�(v) the set of neighbors of a vertex v.

Proposition 3.8. Let � be a triangle free graph that is not a star graph,
with n vertices and d edges. Then

P R
Derk(R)(z) =

(r + n)+ (r + n− 2d)z

1− (n− 2)z+ (d + 1− n)z2

where r is the number of vertices of degree 1.

Proof. For any vertices i and j in �, let l(i, j) be the minimal length of
a path connecting i and j , and let l(i, j) = ∞ if no such path exists. We
claim that (0 : (0 : xi)) = (xk | k ∈ Ii), where Ii = {i} ∪ {k | l(i, k) =
1 and deg(k) = 1}. In fact, this claim follows directly from the fact that
(0 : (0 : xi)) = (xk | l(i, k) ≥ 2). Now it follows that:

P R
(0:(0:xi ))

(z) = 1

z

(
HR/(0:(0:xi ))(−z)

HR(−z)
− 1

)
= (ri + 1)+ (ri + 1− di)z

1− (n− 2)z+ (d + 1− n)z2

with di = deg(i). As
∑n

i=1 ri = r and
∑n

i=1 di = 2d, the formula for
P R

Derk(R)(z) follows from Theorem 2.1.

Let us now consider the cases of a cycle and of a complete bipartite graph.

Example 3.9. Let � be a cycle with vertex set V = {1, . . . , n}, n ≥ 3. If
n = 3, then R = k[�] = k[x1, x2, x3]/(x1x2x3) is a complete intersection and
P R

Derk(R)(z) = 3/(1− z) (cf. Subsection 4.1).
If n ≥ 4, then, by Proposition 3.8

P R
Derk(R)(z) =

n(1− z)

1− (n− 2)z+ z2
.

Example 3.10. Let now � be a complete bipartite graph Km,n with vertex
set V = {1, . . . , m + n} and edges {i, j} with i = 1, . . . , m and j = m +
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1, . . . , m + n. Since the cases kn,1 and k1,m were treated in the Example 3.7,
we can suppose n, m ≥ 2. Then by Proposition 3.8 we have that

P R
Derk(R)(z) =

m+ n+ (m+ n− 2mn)z

1− (m+ n− 2)z+ (mn−m− n+ 1)z2)
.

4. Further cases

In this section we determine the Poincaré series of the module of derivations
for some further cases of monomial ring. Before we do it we need one more
result.

In [12], Levin introduces the idea of a large homomorphism of graded
(or local) rings as a dual notion to small homomorphisms of graded rings
introduced in [1]. Namely, if A and B are quasi-homogeneous rings and f :
A −→ B is a graded homomorphism which is surjective, then f is large if
f∗ : TorA(k, k) −→ TorB(k, k) is surjective.

It follows from [12, Theorem 1.1] that f : A −→ B is large if and only if
P A

M(z) = P A
B (z)P B

M(z) for all finitely generated graded B-module M .
For the rest of the paper we only need that the map f : R −→ R/(xi) is

large for any monomial ring R = k[x1, . . . , xn]/I and for any 1 ≤ i ≤ n.
However, we prove a little more.

Proposition 4.1. Let R = k[x1, . . . , xn]/I be a monomial ring. Then, for
all j , 1 ≤ j ≤ n, the map f : R −→ R/(x1, . . . , xj ) is large.

Proof. Since the composition of large homomorphisms is large, it is
enough to prove that the map f : R −→ R/(x1) is large. Let us consider
the minimal free R-resolution of k

0←− k←− R←− Rb1 ←− · · · .
We may choose this resolution to be multigraded. If we kill everything of
degree grater than zero in x1, we get the minimal free R/(x1)-resolution of k

0←− k←− R/(x1)←− [R/(x1)]
b′1 ←− · · · .

Since all vertical maps

0←−−− k ←−−− R ←−−− Rb1 ←−−− · · ·
↓ ↓ ↓

0←−−− k ←−−− R/(x1)←−−− [R/(x1)]b
′
1 ←−−− · · ·

are surjective, the homomorphism f∗ : TorR(k, k) −→ TorR/(x1)(k, k) is sur-
jective.
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In Subsections 4.1 and 4.2 we consider graded rings R for which P R
k (z)

it is known. So we may calculate P R
(xi )

(z) using Lemma 2.3 and the following
formula.

Corollary 4.2. Let R and xi (i = 1, . . . , n) be as in Proposition 4.1, then

P R
R/(xi )

(z) = P R
k (z)

P
R/(xi )

k (z)
.

4.1. The complete intersection case

In order to determine the Poincaré series of the module of derivations of a
complete intersection, we use Corollary 4.2 together with the fact, due to Tate
(cf. [14, Theorem 6]; [9, Corollary 3.4.3]), that

P R
k (z) = (1+ z)n

(1− z2)m

for any graded complete intersection R = k[x1, . . . , xn]/(f1, . . . , fm).
Let R = k[x1, . . . , xn]/I be a monomial ring that is also a complete inter-

section. Then R has the form

k[x1, . . . , xn](
x

n1
1 · · · xnm1

m1 , x
nm1+1

m1+1 · · · xnm2
m2 , . . . , x

nmr−1+1

mr−1+1 · · · xnmr
mr

)
with mr ≤ n.

By Corollary 4.2 and Lemma 2.3, we have that P R
(xi )

(z) = 1/(1 − z) for
every i = 1, . . . , n. Moreover, we see that (0 : (0 : xi)) = (xi) for 1 ≤ i ≤ mr

and (0 : (0 : xi)) = R for mr < i ≤ n.
Assume that the exponents n1, . . . , nmr

are prime to the characteristic of k.
Then Derk(R) = (x1)∂1⊕· · ·⊕(xmr

)∂mr
⊕R∂mr+1⊕· · ·⊕R∂n by Theorem 2.1,

and we get

P R
Derk(R)(z) =

n+ (mr − n)z

1− z
.

4.2. The case of k[X1, . . . , Xn]/(X1, . . . , Xn)
l

In [8, p. 748], Golod showed, in particular, that for algebras R of the form
k[X1, . . . , Xn]/(X1, . . . , Xn)

l , the Poincaré series is

P R
k (z) = (1+ z)n

1−∑n
i=1

(
i+l−2
l−1

)(
n+l−1
i+l−1

)
zi+1

.
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We see that (0 : xi) = ml−1, (with m = (x1, . . . , xn)), hence (0 : (0 : xi)) =
m.

Assume that the characteristic of k is either 0 or a prime p > l. Then
Derk(R) = m∂1 ⊕ · · · ⊕m∂n by Theorem 2.1. Using Lemma 2.3, we get

P R
Derk(R)(z) = n

(1+z)n

1−∑n
i=1 (

i+l−2
l−1 )(n+l−1

i+l−1)z
i+1
− 1

z
.

4.3. The case of skeletons of a simplex

A simplicial complex � with vertex set V and with |V | = m is called simplex
if dim � = m− 1. In this subsection we determine the Poincaré series of the
module of derivations for a Stanley-Reisner ring R of the skeleton of a simplex.
We can also think of R as the factor ring of the polynomial ring modulo all
squarefree monomials of a certain degree.

Let �
q

n−1 be the q-dimensional skeleton of a (n− 1)-dimensional simplex
�n−1. If q = n−1, then R = k[x1, . . . , xn], Derk(R) � Rn and P R

Derk(R)(z) =
n. Hence let us suppose that q < n − 1. Then we have that R = k[�] =
k[x1, . . . , xn]/(xm1xm2 · · · xmq+2 | m1 < m2 < · · · < mq+2).

For 1 ≤ i ≤ n, we easily see that (0 : (0 : xi)) = (xi) and, by Theorem 2.1,
we get Derk(R) = (x1)∂1⊕. . .⊕(xn)∂n. Moreover, by [14, Proposition 5.3.14],
we have that R is Cohen-Macaulay. Finally HR(z) =∑q+1

i=0

(
n

i

)
zi/(1− z)i .

Assume that k is an infinite field. Since dim R = q + 1, we can find
a regular sequence {a1, . . . , aq+1} of linear elements of length q + 1. Let
R′ = R/(a1, . . . , aq+1). Then

HR′(z) = (1− z)q+1HR(z)

= 1+
(

n− (q + 1)

1

)
z+

(
n− (q + 1)+ 1

2

)
z2 + · · · +

(
n− 1

q + 1

)
zq+1

and all graded rings with such a Hilbert series are isomorphic to the ring
R = k[y1, . . . , yn−(q+1)]/(y1, . . . , yn−(q+1))

q+2. Hence R′ � R. Since
{a1, . . . , aq+1} is a regular sequence and using the results in Subsection 4.2,
we get

P R
k (z) = (1+ z)q+1P R′

k (z) = (1+ z)n

1−∑n−(q+1)

i=1

(
i+q

q+1

)(
n

i+q+1

)
zi+1

.

Finally, using Theorem 2.1, Lemma 2.3 and Corollary 4.2 we can derive a
formula for P R

Derk(R)(z).
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5. Disjoint unions and joins of simplicial complexes

Let {�i}i=1,...,r be a family of simplicial complexes with disjoint vertex sets
Vi . Then the disjoint union is a simplicial complex ∪�i on the vertex set
∪Vi . The join, ∗�i , is the simplicial complex on the vertex set ∪Vi with faces
F1 ∪ . . . ∪ Fr where Fi ∈ �i for i ≤ i ≤ r .

In this section, we derive formulas for the Poincaré series of the module of
derivations Derk(R) when R is the Stanley-Reisner ring of a disjoint union or
join of r simplicial complexes. We only consider the case r = 2, as the general
case can be obtained by induction.

Proposition 5.1. Let �1 and �2 be simplicial complexes and let � =
�1 ∗�2. Then P R

Derk(R)(z) = P
R1
Derk(R1)

(z)+ P
R2
Derk(R2)

(z) where R = k[�] and
Ri = k[�i].

Proof. Let �1 and �2 be simplicial complexes on V1 = {1, . . . , n} and
V2 = {1, . . . , m} respectively. First we note that R � R1 ⊗ R2. Indeed
R1 = k[x1, . . . , xn]/I�1 and R2 = k[y1, . . . , ym]/I�2 . Then we have that R1⊗
R2 = k[x1, . . . , xn, y1, . . . , ym]/I�, where I� is generated by those xi1 · · · xik ·
yj1
· · · yjl

(i1 < · · · < ik, j1 < · · · < jl) for which {i1, . . . , ik, j1, . . . , jl} /∈ �,

that is for which {i1, . . . , ik} /∈ �1 and {j1, . . . , jl} /∈ �2. This gives that I� is
the sum of the extension of I�1 and the extension of I�2 to k[x1, . . . , xn, y1, . . . ,

ym] so that R � R1 ⊗ R2.
Let i ∈ V1. It easy to check that (0 :R (0 :R xi⊗1)) � (0 :R1 (0 :R1 xi))⊗k

R2. As the functor • ⊗k R2 is exact, then P R
(0:R(0:Rxi⊗1))(z) = P

R1
(0:R1 (0:R1 xi ))

(z).

As a similar equation holds for j ∈ V2, the asserted formula follows from
Theorem 2.1.

Proposition 5.2. Let �1 and �2 be simplicial complexes, and let � =
�1 ∪�2. Then

P R
Derk(R)(z)

P R
k (z)

= P
R1
Derk(R1)

(z)

P
R1
k (z)

+ P
R2
Derk(R2)

(z)

P
R2
k (z)

+ r1
P R

k (z)− (1+ z)P
R2
k (z)

zP R
k (z)P

R2
k (z)

+ r2
P R

k (z)− (1+ z)P
R1
k (z)

zP R
k (z)P

R1
k (z)

where R = k[�], Ri = k[�i] and ri is the number of vertices in �i connected
with every other vertex in �i for i = 1, 2.

Proof. The ring R is nothing but the fiber product of R1 and R2 over k (cf.
[5] and [10] for local rings. The extension to the case of graded rings and graded
module is immediate). The natural projections pi : R −→ Ri (i = 1, 2) are
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large homomorphisms and we consider any Ri-module as a R-module via pi .
Denoting by m, m1, m2 the maximal graded ideals of R, R1, R2 respectively,
we have m = m1 ⊕ m2. It follows that the Poincaré series of R, R1, R2 are
related ([5, Satz 1]):

1

P R
k (z)

= 1

P
R1
k (z)

+ 1

P
R2
k (z)

− 1.

Let i ∈ V1. Since (0 :R xi) = (0 :R1 xi) ⊕ m2, it follows that (0 :R
(0 :R xi)) = (0 :R1 (0 :R1 xi)) except if (0 :R xi) = 0; in this case we have
(0 :R (0 :R xi)) = m1 ⊕ 0 � m1. As the map p1 is large, we get

P R
(0:R1 (0:R1 xi ))

(z)

P R
k (z)

=
P

R1
(0:R1 (0:R1 xi ))

(z)

P
R1
k (z)

and
P R

m1
(z)

P R
k (z)

= P R1
m1

(z)

P
R1
k (z)

.

A similar formula is obtained for j ∈ V2. Then using Theorem 2.1, we
obtain the required formula for P R

Derk(R)(z).
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