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ON RØRDAM’S CLASSIFICATION OF CERTAIN
C∗-ALGEBRAS WITH ONE NON-TRIVIAL

IDEAL, II

GUNNAR RESTORFF and EFREN RUIZ

Abstract

In this paper we extend the classification results obtained by Rørdam in the paper [16]. We
prove a strong classification theorem for the unital essential extensions of Kirchberg algebras, a
classification theorem for the non-stable, non-unital essential extensions of Kirchberg algebras,
and we characterize the range in both cases. The invariants are cyclic six term exact sequences
together with the class of some unit.

In the mid-nineties Rørdam considered the classification problem for essential
extensions of Kirchberg algebras ([16]). It turned out that one has to consider
three cases: the stable case, the unital case, and the non-stable, non-unital case.
Using the associated cyclic six term exact sequence he solved the classification
problem in the first case and characterized the range of the invariant.

Rørdam’s article is quite outstanding both in the general classification the-
ory and with respect to this specific classification problem. Since Rørdam’s
methods are not similar to the usual methods of classification theory and some
proofs are ad hoc, his methods for classifying non-simple C∗-algebras have
not been generalized until recently ([5]). While Rørdam’s article did solve the
classification problem in the stable case, it does not seem possible to apply his
argument neither to the other two cases nor to prove a lifting theorem in the
stable case.

Extending Rørdam’s work, the lifting theorem in the stable case and a
classification theorem in the unital case were proved in [4]. In the present
paper, we will present the classification results and describe the ranges of the
invariants for all the three cases – in the first two cases, we will even allow
for lifting of isomorphisms. Thus giving a very satisfactory answer to the
classification problem for this class of C∗-algebras.
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1. Introduction

In this paper we will consider extensions of simple C∗-algebras. Let E denote
the category of extensions e: � ↪→ �→→ � of separableC∗-algebras � and �
with the morphisms being triples (φ0, φ1, φ2) of ∗-homomorphisms such that
the diagram

e: � ↪−−−−→ � −−−−→→ �
||↓φ0

||↓φ1
||↓φ2

e′: �′ ↪−−−−→ �′ −−−−→→ �′

commutes (note that we use the symbols ↪→ resp.→→ meaning an injective
resp. surjective morphism).

Recall that a category D is a subcategory of the category C , if every object
in D is an object in C , every morphism between objects in D is a morphism
in C , the identity morphism of every object in D is the identity morphism of
that object in C , and the composition in D is inherited from C . We say that a
subcategory D of C is full, if for all objects X and Y in D , every morphism
in C from X to Y is in fact a morphism in D . When nothing else is stated,
functors considered in this paper are assumed to be covariant.

Consider the subcategory of the category of C∗-algebras consisting of sep-
arable C∗-algebras with exactly one non-trivial ideal, and as morphisms we
take ∗-homomorphisms which map the non-trivial ideal to the non-trivial ideal.
This category is equivalent to the full subcategory E0 of E consisting of all es-
sential extensions e: � ↪→ � →→ �, where � and � are separable, simple
C∗-algebras – and we will freely use this identification.

Now we will consider the category H of cyclic six term exact sequences of
countable abelian groups. We can canonically consider H as the subcategory
of the category of chain complexes over Z with chain maps as morphisms
(cf. [8, §IV.1]) – the objects are the chain complexes consisting of countable
abelian groups that are exact and periodic of period six, and the morphisms
are those chain maps, which are periodic of period six. In this way we may as
well denote the cyclic six term exact sequence

M0
∂0−−−−→M1

∂1−−−−→M2

↑||∂5
||↓∂2

M5←−−−−
∂4

M4←−−−−
∂3

M3

by (Mn, ∂n)n∈Z6 (here Z6 denotes the cyclic group of order six).
Now we define a functor K� from E to H as follows. For every extension

e: �
ι
↪→ �

π→→ � in E we let K�(e) be the standard cyclic six term exact
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sequence in K-theory associated to e

K0(�)
K0(ι)−−−−−−→ K0(�)

K0(π)−−−−−−→ K0(�)

↑||δ1
||↓δ0

K1(�)←−−−−−−
K1(π)

K1(�) ←−−−−−−
K1(ι)

K1(�)

We define K� on morphisms in the obvious way.
Let EK be the full subcategory of E0 consisting of all essential extensions

e: � ↪→ �→→ �, where � and � are Kirchberg algebras satisfying the UCT (a
Kirchberg algebra is a separable, nuclear, simple, purely infinite C∗-algebra).
By Zhang’s dichotomy ([18]), � is stable.

Rørdam proves in [16, Proposition 4.6] the following:

Proposition 1.1. Let e: � ↪→ �→→ � be an object in EK . Then

(i) E is unital if and only if � is unital and the Busby map τ : �→ Q(�) is
unital.

(ii) E is stable if and only if � is non-unital (i.e. � is stable).

(iii) E is neither unital nor stable if and only if � is unital but the Busby map
τ : �→ Q(�) is not unital.

The purpose of this paper is to look at some functor F in each of these cases,
and look at the following questions (here, we are using the language promoted
by Elliott in [6]):

1. Is F a classification functor, i.e. do we have that F(e) ∼= F(e′) implies
e ∼= e′ in EK (for all extensions e and e′ in the class considered)?

2. Is F a strong classification functor, i.e. does there for each isomorphism
α: F(e)→ F(e′) exist an isomorphism
: e→ e′ such that F(
) = α (for
all extensions e and e′ in the class considered)? Clearly, this implies 1.

3. What is the range of the invariant F (in this context, this is only interesting
when the answer to 1. is positive)?

2. Main results

The main theorems of this paper will be stated in this section. The proofs are in
Sections 4, 5, and 6, while a few results needed in the proofs are in Section 3.

In [4, Theorem 11] there is a rather general metatheorem, which – in certain
cases – allows us to deduce from a strong classification functor on stable
algebras a classification functor on the unital algebras. With some mild extra
conditions, we will prove that this is in fact a strong classification functor on
the unital algebras:
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Theorem 2.1. Let C be a subcategory of the category of C∗-algebras
which is closed under tensoring by Mat2(C) and K and contains the canonical
embeddings κ1: � → Mat2(�) and κ: � → � ⊗ K as morphisms for every
C∗-algebra � in C . Assume that there is a functor F: C → D satisfying

• For every C∗-algebra � in C , the embeddings κ1: � → Mat2(�) and
κ: �→ �⊗K induce isomorphisms F(κ1) and F(κ).

• For all stable C∗-algebras � and � in C , every isomorphism from F(�)
to F(�) is induced by an isomorphism from � to �.

• There exists a functor G from D to the category of abelian groups such
that G ◦ F = K0

Then the following holds

(i) Assume that � and � are unital, properly infinite, separable algebras
in C , and that there is an isomorphism α: F(�) → F(�), such that
G(α)([1�]0) = [1�]0. Then � and � are ∗-isomorphic.

(ii) In addition to (i) assume that every ∗-isomorphism between algebras in
C is a morphism in C , and that for everyC∗-algebra � in C , F(Ad u|�) =
idF(�) for every unitary u in M(�). Then there exists an isomorphism
φ: �→ � in C such that F(φ) = α.

If � ⊗ K and � ⊗ K have the cancellation property, then we can omit the
assumption on properly infiniteness and separability in (i) and (ii).

Rørdam proved in [16, Theorem 5.3] that K� is a classification functor for
stable extensions in EK . Using Bonkat’s thesis [2] and Kirchberg’s isomorph-
ism theorem for ideal filtrated KK-theory (see e.g. [9]), it was proven in [4]
that K� is in fact a strong classification functor for stable extensions in EK .

Theorem 2.2. The functor K� restricted to the stable extensions in EK is
a strong classification functor.

Moreover, Rørdam also characterized the range in this case ([16, Proposi-
tion 5.4]). We have added the (almost) trivial fact, that the extensions can be
chosen to be essential.

Theorem 2.3. The range of K� restricted to the stable extensions in EK is
all the objects in H .

With this version of the metatheorem (Theorem 2.1), we are able to prove
that the classification functor in [4, Corollary 12] is in fact a strong classification
functor.

Theorem 2.4. The functor (e: � ↪→ �→→ �) �→ (K�(e), [1�]0) restricted
to the unital extensions in EK is a strong classification functor.



284 gunnar restorff and efren ruiz

Using Rørdam’s range result in the stable case, we characterize the range
in the unital case.

Theorem 2.5. The range of the functor (e: � ↪→ � →→ �) �→ (K�(e),
[1�]0) restricted to the unital extensions in EK is all the objects (Mn, ∂n)n∈Z6

in H together with one distinguished element m1 ∈ M1.

Using the methods invented by Rørdam in [16] and a more recent result of
Elliott and Kucerovsky [7], we are able to arrive at a classification functor in
the non-stable, non-unital case. There is no obvious way to deduce from our
proof that this is a strong classification functor (though, we believe that this is
the case).

Theorem 2.6. The functor (e: � ↪→ �→→ �) �→ (K�(e), [1�]0) restricted
to the non-stable, non-unital extensions in EK is a classification functor.

Using Rørdam’s range result in the stable case, we are also able to charac-
terize the range in the non-stable, non-unital case.

Theorem 2.7. The range of the functor (e: � ↪→ � →→ �) �→ (K�(e),
[1�]0) restricted to the non-stable, non-unital extensions in EK is all the objects
(Mn, ∂n)n∈Z6 in H together with one distinguished element m2 ∈ M2.

Question 1. Is the functor (e: � ↪→ � →→ �) �→ (K�(e), [1�]0) in the
preceding theorem a strong classification functor?

Question 2. To what extent do we have lifting of homomorphisms?

Question 3. Is it possible to prove a uniqueness theorem of automorph-
isms, isomorphisms, or homomorphisms (by including some sort ofK-theory
with coefficients)?

While this paper gives a (strong) classification result for the purely in-
finite Cuntz-Krieger algebras with exactly one ideal, the classification result
is unknown for general Cuntz-Krieger algebras. In [14] the purely infinite
Cuntz-Krieger algebras are classified up to stable isomorphism by an invariant
naturally extending K�.

Question 4. Is the functor given in [14] a strong classification functor (of
the stabilized Cuntz-Krieger algebras)?

With a positive answer to this question, we would get a strong classification
result for Cuntz-Krieger algebras from Theorem 2.1.
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3. Prerequisites

In this section we will state some results and prove some lemmas we will need
in the proofs of the main theorems.

Remark 3.1. Recall that the multiplier algebra M(�) of a C∗-algebra �
is the largest unital C∗-algebra which contains � as an essential ideal, i.e. if �
is embedded as an essential ideal in a unitalC∗-algebra �, then the embedding
� ↪→ M(�) can be uniquely extended to an (injective) ∗-homomorphism
�→M(�) – moreover, this embedding is unital.

If � and � are C∗-algebras, then we have canonical embeddings �⊗∗� ⊆
M(�)⊗∗M(�) ⊆M(�⊗∗ �) (see e.g. [13, Lemma 11.12]). By the above
comments, the latter embedding is unital.

We call a functor F on the category of C∗-algebras stable if F(κ) is an
isomorphism whenever κ: �→ �⊗K is the canonical embedding. The next
lemma is well known (follows easily from [1, Proposition 12.2.2]).

Lemma 3.2. Let � be a C∗-algebra, let u be a unitary in M(�), and let F
be a stable, homotopy invariant functor on the category of C∗-algebras (e.g.
K0 or K1). Then F(Ad u|�) = idF(�).

We say that a sub-C∗-algebra � of a C∗-algebra � is full if the ideal gen-
erated by � is �. We say that a projection p in M(�) is full if the hereditary
corner p�p is a full sub-C∗-algebra of �. L. G. Brown proved the corollary
below for the contravariant functor Ext(−) ([3, Corollary 2.10]). Using the
previous lemma in Brown’s proof, we get the analogous result for K-theory:

Corollary 3.3. Let � and � be σ -unital C∗-algebras, and assume that �
is a full hereditary subalgebra of �. Then the inclusion map ι: � ↪→ � induces
isomorphisms K0(ι) and K1(ι) in K-theory.

Lemma 3.4. Let C be a subcategory of the category of C∗-algebras, and
let F: C → D be a functor. Assume that

• For every � in C , the C∗-algebra Mat2(�) is an object in C , the canon-
ical embedding κ1: � → Mat2(�) is a morphism in C , and F(κ1) is an
isomorphism.

• For every � in C and every unitary u in M(�), Ad u|� is an automorphism
in C and F(Ad u|�) = idF(�).

Let � and � be C∗-algebras in C , let ϕ: � → � be a morphism in C , let
v ∈ M(�) be a partial isometry satisfying v∗vϕ(a) = ϕ(a) = ϕ(a)v∗v
for all a ∈ �, and define ψ : � → � by ψ(a) = vϕ(a)v∗. Then ψ is a
∗-homomorphism. If ψ is a morphism in C , then F(ϕ) = F(ψ).
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Proof. Clearly, ψ is linear and ∗-preserving. Also

ψ(aa′) = vϕ(aa′)v∗ = vϕ(a)v∗vϕ(a′)v∗ = ψ(a)ψ(a′)
for all a, a′ ∈ �.

Assume ψ is a morphism in C . Let

u =
(

v 1− vv∗
1− v∗v v∗

)
∈ Mat2(M(�)) = Mat2(C)⊗M(�)

⊆M(Mat2(C)⊗�) =M(Mat2(�)),

and recall from Remark 3.1 that the above inclusion is a unital embedding.

Then u∗ =
(

v∗ 1−v∗v
1−vv∗ v

)
, and a short calculation shows that u is a unitary in

M(Mat2(�)). Let κ1: �→ Mat2(�) be the canonical embedding. Then

Ad u ◦ κ1 ◦ ϕ(a) = u
(
ϕ(a) 0

0 0

)
u∗ =

(
vϕ(a)v∗ 0

0 0

)
= κ1 ◦ ψ(a)

for all a ∈ �. So by the assumption, we have that

F(κ1) ◦ F(ψ) = F(κ1 ◦ ψ) = F(Ad u|Mat2(�) ◦ κ1 ◦ ϕ)
= F(Ad u|Mat2(�)) ◦ F(κ1) ◦ F(ϕ) = F(κ1) ◦ F(ϕ).

Since F(κ1) is an isomorphism, F(ψ) = F(ϕ).

Lemma 3.5. Let � be a non-trivial ideal in the C∗-algebra �, and as-
sume that � is a hereditary sub-C∗-algebra of �. Then we have the following
commutative diagram:

0 −−−−→ � ∩ � ↪−−−−→ � −−−−→→ �/(� ∩ �) −−−−→ 0

0 −−−−→ � ↪−−−−→ � −−−−→→ �/� −−−−→ 0

with exact rows, and the vertical arrows being the inclusions. Moreover, �∩�
and �/(� ∩ �) are hereditary sub-C∗-algebras of � and �/�, resp.

If, in addition, � and �/� are simple, � is a full sub-C∗-algebra of �, and
�∩� is non-zero, then �∩� and �/(�∩�) are full hereditary sub-C∗-algebras
of � and �/�, resp.

Proof. The short, straightforward proof is left to the reader.



on rørdam’s classification of certain C∗-algebras . . . 287

4. The classification theorem – the unital case

In this section we will extend the proofs in [4] to prove the metatheorem,
Theorem 2.1, and the classification result in the unital case, Theorem 2.4.

Proof of Theorem 2.1. The first part is proved in [4, Theorem 11]. So
assume that �, �, and α are as in the theorem. Assume furthermore that for
every C∗-algebra � in C , we have F(Ad u|�) = idF(�) for all u in M(�).

In the proof of [4, Theorem 11] we found a ∗-isomorphismφ: �⊗K→ �⊗
K such that F(φ) = F(κ ′)◦α◦F(κ)−1, where κ: �→ �⊗K and κ ′: �→ �⊗K
are the canonical embeddings (corresponding to the minimal projection e11).
We found a partial isometry v ∈ M(� ⊗ K) such that v∗v = 1M(�⊗K) and
vv∗ = 1M(�)⊗ e11, and we showed that ψ(x) = v(φ ◦ κ)(x)v∗ for x ∈ �, is a
∗-isomorphism of � onto �⊗e11

∼= �. So there exists a unique ∗-isomorphism
ψ0: �→ � such that ψ = κ ′ ◦ ψ0. We claim that F(ψ0) = α.

By Lemma 3.4

F(κ ′) ◦ F(ψ0) = F(ψ) = F(φ ◦ κ) = F(κ ′) ◦ α.
Since F(κ ′) is an isomorphism, it follows that F(ψ0) = α.

Proof of Theorem 2.4. This is a direct consequence of Lemma 3.2 and
Theorem 2.1. We only need to prove that K�(Ad u|�) = idK�(�) for every
extension e: � ↪→ � →→ � in EK and every unitary u ∈ M(�). Since
� is an essential ideal in M(�), we have that M(�) ⊆ M(�) (and, just
as in Remark 3.1, this embedding is unital). The quotient map from � to
� can be extended to a surjective ∗-homomorphism M(�) → M(�) by
[12, Proposition 3.12.10], which of course is unital. Now Lemma 3.2 directly
implies that K�(Ad u|�) = idK�(�) (in the above settings).

5. The range results

In this section we prove the (slight) improvement of Rørdam’s range result in
the stable case, Theorem 2.3. Using this result, we prove the range results in
the two other cases, Theorems 2.5 and 2.7.

Proof of extra assertion in Theorem 2.3. In [16, Proposition 5.4]
Rørdam proves everything except that the extension can be chosen to be
essential. Since the functors K0 and K1 are split exact, K�(e) degenerates
into two split exact sequences for every trivial extension e in EK . So if the
given sequence in the theorem does not consist of two split exact sequences
0→ M0+i → M1+i → M2+i → 0, for i = 0, 3, then the extension construc-
ted by Rørdam is necessarily essential.

So assume that 0 → M0+i → M1+i → M2+i → 0, for i = 0, 3, are
split exact sequences. Then there exist stable Kirchberg algebras � and � in
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the UCT class with G0
∼= K0(�), G2

∼= K0(�), G3
∼= K1(�), G5

∼= K1(�).
Because � is stable and � is separable, there exists an essential trivial extension
e: � ↪→ �→→ � (represent � on B, use � ∼= �⊗K and �⊗K ⊆M(�)⊗∗
B ⊆M(�⊗K) to create an injective ∗-homomorphism τ : �→M(�) with
the range not intersecting �). Because e is trivial, K�(e) ∼= (Mn, ∂n)n∈Z6 .

Proof of Theorems 2.5 and 2.7. Let (Mn, ∂n)n∈Z6 be an object in H .
From Rørdam’s range result, Theorem 2.3, we know that there exists an essen-
tial stable extension e: � ↪→ �→→ � in EK , such that we have an isomorphism
α = (αn)n∈Z6 :K�(e)→ (Mn, ∂n)n∈Z6 . For notational convenience, we may as-
sume that � is an ideal in �, and that � is the quotient �/�.

If a C∗-algebra has a full, properly infinite projection, then every element
ofK0 is of the form [p]0 for a full, properly infinite projection p in the algebra.
Since � is purely infinite, there exists a full, properly infinite projection q in �
such that [q]0 = 0 in K0(�). Because of [16, Proposition 4.1] we can lift it to
a projection q0 ∈ �. By [16, Proposition 4.5] q0 is full and properly infinite.

Now we prove Theorem 2.5. Letm1 ∈ M1 be given. Then there exists a full,
properly infinite projection p in � such that α1([p]0) = m1. Then p�p is a
full, hereditary sub-C∗-algebra of � and p�p ∩� = p�p (note that p�p is
not unital, because p �∈ �). By Brown’s Theorem ([3, Theorem 2.8]) we have
p�p ⊗K ∼= �⊗K. The functor −⊗K preserves the ideal lattice, therefore
p�p has exactly one non-trivial ideal, say �. The ideal � is the only non-
trivial ideal in �, so by ([11, Theorem 3.2.7]) � = p�p ∩ �. Consequently,
� = p�p. So p�p and p�p/p�p are simple, and from Lemma 3.5 we have
the commutative diagram

0 −−−−→ p�p ↪−−−−→ p�p −−−−→→ p�p/p�p −−−−→ 0

ι|p�p ι ῑ

0 −−−−→ � ↪−−−−→ � −−−−→→ � −−−−→ 0

where the vertical maps are embeddings as full, hereditary sub-C∗-algebras.
Let e′ denote the extension e′:p�p ↪→ p�p→→ p�p/p�p.

From Brown’s Theorem forK-theory (Corollary 3.3) we get isomorphisms
in the following diagram:

Ki(p�p) −−−→ Ki(p�p) −−−→ Ki(p�p/p�p) −−−→ Ki+1(p�p)

||↓Ki(ι|p�p)∼= ||↓Ki(ι)∼= ||↓Ki(ῑ)∼= ||↓Ki+1(ι|p�p)∼=

Ki(�) −−−→ Ki(�) −−−→ Ki(�) −−−→ Ki+1(�)

for i = 0, 1. Clearly α ◦K�(ι) is an isomorphism fromK�(e′) to (Mn, ∂n)n∈Z6

mapping [p]0 ∈ K0(p�p) to m1 ∈ M1. Clearly p�p is a unital C∗-algebra
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with unit p. The C∗-algebras p�p and p�p/p�p are separable, nuclear,
and belong to the UCT class (by Brown’s Theorem ([3, Theorem 2.8]) and
[1, 22.3.5(a)]). Also they are purely infinite ([10, Proposition 4.17]). We have
already seen that e′ is essential, so e′ is a unital extension in EK .

Now we consider the non-stable, non-unital case (Theorem 2.7). Let m2 ∈
M2 be given. Then there exists a full, properly infinite projection p in � such
that α2([p]0) = m2. We can lift p to a positive element x ∈ � (e.g. [15,
2.2.10]). It is easy to see that x�x/(x�x ∩�) ∼= (x�x +�)/� = p�p. Let
�′ = x�x ∩ �, �′ = x�x, and �′ = p�p, and let e′ denote the extension
e′: �′ ↪→ �′ →→ �′.

Clearly �′ is a full hereditary sub-C∗-algebra of � (x ∈ �′ and x �∈ � since
p �= 0). Since � is essential in � and x �= 0, there exists b ∈ � such that
bx �= 0. So xb∗bx = (bx)∗bx �= 0, and hence �′ �= {0}. Being hereditary
subalgebras of simple C∗-algebras, �′ and �′ are simple. By [11, Theorem
3.2.7] we see that �′ is the only non-trivial ideal in �′. From Lemma 3.5 we
have the commutative diagram

0 −−−−→ �′ ↪−−−−→ �′ −−−−→→ �′ −−−−→ 0

ι|�′ ι ῑ

0 −−−−→ � ↪−−−−→ � −−−−→→ � −−−−→ 0

where the vertical maps are embeddings as full, hereditary subalgebras.
As above, Brown’s Theorem forK-theory shows thatK�(ι) is an isomorph-

ism. So α ◦ K�(ι) is an isomorphism from K�(e′) to (Mn, ∂n)n∈Z6 mapping
[p]0 ∈ K0(�

′) to m2 ∈ M2. Clearly �′ is a unital C∗-algebra with unit p. As
above, we see that �′ and �′ are Kirchberg algebras from the UCT class. We
have already seen that e′ is essential, so e′ is an extension in EK . So if e′ is
non-unital, then we are done.

Assume that e′ is unital. Let e0 denote the direct sum extension e0: �′ ↪→
�′ ⊕ �′ →→ �′. Let τ ′ and τ0 be the Busby invariant of e′ and e0, resp. Then
τ ′ is unital, but τ0 is non-unital. Let τ ′′ = τ ′ ⊕ τ0. Then τ ′′ is an essential,
non-unital extension, and [τ ′′] = [τ ′⊕τ0] = [τ ′] in Ext(�′,�′). Hence by [16,
Proposition 2.1] the cyclic six term exact sequences corresponding to τ ′′ and
τ ′ are congruent, i.e. there exists an isomorphism which is the identity on the
K-theory of the ideal and the quotient. This assures us that – when composed
with the isomorphism from K�(e′) to (Mn, ∂n)n∈Z6 – the class of the unit in
p�p, [p]0 ∈ K0(p�p), will be mapped onto m2. By the above remarks, e′′ is
a non-stable, non-unital extension in EK .
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6. The classification theorem – the non-stable, non-unital case

In this section we prove the classification theorem in the non-stable, non-unital
case, Theorem 2.6. First we need to recall some notation and some facts from
[16].

All C∗-algebras in this section are assumed to be separable and nuclear
– so in particular, we always have Ext(�,�) = KK1(�,�). If � is a stable
C∗-algebra and � is aC∗-algebra, then we will denote the class of essential ex-
tensions e: � ↪→ �→→ � by Ext(�,�). For each injective ∗-homomorphism
ϕ: �1→�2 and for each (essential) extension e: � ↪→ �→→ �2 in Ext(�2,�),
there exists a unique extension ϕ · e: � ↪→ �′ →→ �1 in Ext(�1,�), where �′
is a sub-C∗-algebra of �, making the following diagram commute:

ϕ · e: � ↪−−−−→ �′ −−−−→→ �1

id�
||↓ϕ

e: � ↪−−−−→ � −−−−→→ �2

For each isomorphism ψ : �1 → �2 and for each e: �1 ↪→ � →→ � in
Ext(�,�1) there exists a unique extension e ·ψ : �2 ↪→ �→→ � in Ext(�,�2)

making the diagram commute:

e: �1 ↪−−−−→ � −−−−→→ �
||↓ψ id� id�

e · ψ : �2 ↪−−−−→ � −−−−→ �

Let x�,�: Ext(�,�)→ Ext(�,�) be the canonical map, and let γ0:KK(�,
�)→ Hom(K0(�),K0(�)) denote the map from the UCT.

Proof of Theorem 2.6. Assume that e1: �1 ↪→ �1 →→ �1 and e2: �2 ↪→
�2 →→ �2 are non-stable, non-unital extensions in EK and that (αn)n∈Z6 :K�(e1)

→ K�(e2) is an isomorphism satisfying α2([1�1 ]0) = [1�2 ]0.
By the proof of [16, Theorem 3.2], there exist invertible elements a ∈

KK(�1,�2) and b ∈ KK(�1,�2) such that x�1,�1(e1) · b = a · x�2,�2(e2)

in Ext(�1,�2) and γ0(a) = α2. By Kirchberg-Phillips’ classification theorem
(see e.g. [17, Theorem 8.4.1]) there exist ∗-isomorphisms ϕ: �1 → �2 and
ψ : �1 → �2 such that KK(ϕ) = a and KK(ψ) = b. Hence, by [16, Propos-
ition 1.1], x�1,�2(e1 · ψ) = x�1,�2(ϕ · e2).

Since ϕ and ψ are isomorphisms, e1 is isomorphic to e1 · ψ and e2 is
isomorphic toϕ ·e2. Note that e1 ·ψ andϕ ·e2 are non-unital essential extensions
of �1 by �2. Since �2 is a stable, purely infinite, simple C∗-algebra, by
[7, Theorem 17], e1 · ψ and ϕ · e2 are purely large. Let τ1 and τ2 be the
Busby invariant associated to e1 · ψ and ϕ · e2, resp. Then [τ1] = [τ2] in
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Ext(�1,�2). Since e1 · ψ and ϕ · e2 are non-unital, purely large, essential
extensions and [τ1] = [τ2] in Ext(�1,�2), by [7, Corollary 16] there exists a
unitary u ∈M(�2) such that

(1) Ad(π(u)) ◦ τ1 = τ2.

Let �′i = π−1(τi(�1)), for i = 1, 2, where π : M(�2) → M(�2)/�2 is
the quotient map. Then �1

∼= �′1 and �2
∼= �′2. By Equation (1), uxu∗ ∈ �′2

for all x ∈ �′1 and u∗yu ∈ �′1 for all y ∈ �′2. Then �′1 � x �→ uxu∗ ∈ �′2 is a
∗-isomorphism, so e1 is isomorphic to e2.
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