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APPLICATIONS OF MOMENT PROBLEMS TO THE
OVERCOMPLETENESS OF SEQUENCES

ISABELLE CHALENDAR and JONATHAN R. PARTINGTON

Abstract

This paper introduces the notion of a determining function, which is used in order to apply results
on the determination of measures by moments to the theory of overcompleteness of sequences
in various function spaces, providing strong generalizations of results of Lin and Too. A further
application is given to the determination of probability distributions by means of moments of
record values.

1. Introduction

Problems involving the determination of a measure from its moments are of
importance in many areas of analysis and probability. (See, for example, [8].)
Recently, there has been some work to the effect that under some circumstances
the moments of two measures need not be assumed to be equal, since as soon
as they are approximately equal (in a sense to be made precise later), this forces
the measures to differ on a small set; stronger forms of such results force the
measures even to coincide [2], [3], [9], [12]. Such results can be applied in
the geometry of Banach spaces and in areas of probability theory. In order to
derive some of these as clearly as possible, we shall introduce the key notion
of a determining function, which is, roughly speaking, a function � such that
the measure �(x) dx is uniquely determined by its moments.

The main application that we have in mind is towards the overcompleteness
of sequences in Hardy and Bergman spaces. Recall that a sequence (xm)m in
a Banach space X is said to be complete if its closed linear span is the whole
space X , and overcomplete (or sometimes hypercomplete or densely closed)
if every infinite subsequence of (xm)m is complete in X (see, for example, the
book of Singer [13], and the very recent article [1]).

A weaker but more useful notion is finite overcompleteness: a sequence is
finitely overcomplete, when it remains complete on deleting finitely many terms
from the sequence. For example, the functions (fm)m with fm(x) = xm for
x ∈ (0, 1) can be shown to form a finitely overcomplete sequence in L2(0, 1)
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by means of the Stone-Weierstrass theorem. Finitely overcomplete sequences
have many applications in signal-processing, for example via the theory of
frames [7].

Thus, as an application of the theory of moments, we shall provide extensive
generalizations of Lin’s result [10] that the sequence of functions (xme−λx)m is
finitely overcomplete inL1(0,∞) for any λ > 0. Here we work with weighted
Lebesgue spaces, Hardy spaces and Bergman spaces, and in addition we give
some multivariable extensions.

We adopt the following conventions. Let N = {0, 1, 2, . . .}, R+ = {x ∈ R :
x ≥ 0} and similarly for Nn and Rn+. Also C+ = {z ∈ C : Re z > 0}.

For a given vector x = (x1, . . . , xn) ∈ Rn and a multi-index α = (α1, . . . ,

αn) ∈ Nn, we write xα to denote xα1
1 . . . xαnn .

A function f : Rn+ → C is said to be of polynomial growth, if there exist
constants C, d > 0 such that

(1) |f (x)| ≤ C(1 + ‖x‖d), (x ∈ Rn+).

Similarly for functions defined on Rn.
The symbol δx0 denotes a Dirac mass (atomic probability measure) suppor-

ted on {x0}.
The structure of this paper is as follows. In Section 2 we introduce the

notion of a determining function, which enables us to present various results
on the characterization of finite complex measures on Rn+ or Rn by means of
their moments. The main application of this is provided in Section 3, where we
explicitly construct a large class of finitely overcomplete sequences (sequences
that remain complete even after the removal of finitely-many terms) in weighted
Lebesgue spaces and also Hardy and Bergman spaces on C+; in the latter case
the sequences can be seen as perturbations of a function and its derivatives. A
further application is presented in Section 4, to the determination of probability
distributions by means of the moments of record values, extending results in
[12].

2. Approximate Carleman theorems

Definition 2.1. A function� : R+ → R is said to be a determining function,
if � is Borel measurable with �(x) �= 0 for x �= 0, and � has the property
that for each m ≥ 0 the function ψm given by ψm(x) = xm�(x) is bounded
and

(2)
∞∑
m=0

‖ψm‖−1/(2m)
∞ = ∞.
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Likewise, a function � : R → R is said to be a determining function, if � is
Borel measurable with �(x) �= 0 for x �= 0, and � has the property that for
each m ≥ 0 the function ψ2m given by ψ2m(x) = x2m�(x) is bounded and

(3)
∞∑
m=0

‖ψ2m‖−1/(2m)
∞ = ∞.

For example, on [0,∞), if �(x) = e−λxδ where λ > 0 and δ ≥ 1
2 ,

then ‖ψm‖−1/(2m)
∞ ∼ Cm−1/(2δ), for some constant C > 0, and if �(x) =

e−(λx/ log(x+2))1/2 , then ‖ψm‖−1/(2m)
∞ ∼ C(m logm)−1.

Similarly, on R, the function �(x) = e−λ|x|δ satisfies ‖ψ2m‖−1/(2m)
∞ ∼

Cm−1/δ , so � is a determining function provided that δ ≥ 1.
Note that, if � is a determining function, then so is the product γ�,

whenever γ is a Borel measurable function of polynomial growth such that
γ (x) �= 0 for x �= 0. This follows because

|xmγ (x)�(x)| ≤ C(‖ψm‖∞ + ‖ψm+d‖∞),

in the notation of (1).

Lemma 2.2. Let μ be a finite Borel measure on R+, and � a determining
function on R+. Then the moments Mm, defined by

Mm =
∫ ∞

0
xm|�(x)| dμ(x),

satisfy the Carleman condition

(4)
∞∑
m=0

|Mm|−1/(2m) = ∞.

Similarly, for μ a finite Borel measure on R, and� a determining function on
R, the moments Mm defined by

Mm =
∫ ∞

−∞
|x|m|�(x)| dμ(x),

satisfy the Carleman condition

(5)
∞∑
m=0

|M2m|−1/(2m) = ∞.
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Proof. We have
|Mm| ≤ ‖μ‖‖ψm‖∞,

from which the result follows easily.

Lin and Too [12] showed that if μ1 and μ2 are two absolutely continuous
probability measures such that

∫ ∞

0
xme−λx dμ1(x) =

∫ ∞

0
xme−λx dμ2(x)+ c,

for sufficiently large m and for some constants c and λ > 0, then μ1 = μ2.
This can be put into the wider context of determining functions, and one

may state a much more general theorem as follows.

Theorem 2.3. Let� = R or R+, and letμ1, μ2 be two finite complex Borel
measures on�. Let� be a determining function on�. Suppose that there exist
constants c and α such that for each m ≥ 0

∫
�

xm�(x) dμ1(x) =
∫
�

xm�(x) dμ2(x)+ cm,

where cm satisfies lim sup |cm − c|1/m = α. Then, there exists a complex
measure ν supported on [−α, α] ∩� such that

μ1 = μ2 + c

�(1)
δ1 + ν.

Proof. Set

dm =
∫
�

xm�(x) d

(
μ1 − μ2 − c

�(1)
δ1

)
(x).

Then lim sup |dm|1/m = α. Define a measure ρ by

dρ(x) = �(x) d

(
μ1 − μ2 − c

�(1)
δ1

)
(x).

By Lemma 2.2, the numbersMm = ∫
�

|x|md|ρ|(x) satisfy the Carleman con-
dition (4) or (5), as appropriate. When the measures are signed real Borel
measures, it follows from [9, Cor. 2.4] and [2, Thm. 3.1] – the general case is
in [3, Thm. 3.1] – that ρ is supported on [−α, α] ∩�. Since� does not vanish
on ((−∞,−α) ∪ (α,∞)) ∩�, the result now follows.
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Corollary 2.4. LetX and Y be two nonnegative random variables. Let�
be a determining function on R+. Suppose that there exist constants c and cm
(m ≥ 1) such that

E(Xm�(X)) = E(Ym�(Y ))+ cm,

where lim sup |cm−c|1/m = 0. ThenX and Y have the same distribution apart
from atomic measures of size c

�(1) concentrated at 0 and 1. In the particular
case where the distributions are purely non-atomic, they are the same.

Proof. By Theorem 2.3, the probability measures μ1 and μ2 associated
with X and Y satisfy μ1 = μ2 + c

�(1) δ1 + ν, with ν supported by {0}. Since
μ1 and μ2 are probability measures, ν = − c

�(1) δ0. The corollary follows.

It is convenient to give multivariable versions of the above results.

Theorem 2.5. Let � be either R or R+, let μ1 and μ2 be finite complex
Borel measures on�n. Let 1̃ := (1, 1, . . . , 1) and�1, . . . , �n be determining
functions on�. Set�(x) = ∏n

k=1�k(xk) for x = (x1, . . . , xn) ∈ �n. Suppose
that ∫

�n
xα�(x) dμ1(x) =

∫
�n
xα�(x) dμ2(x)+ c(α),

where c(α) satisfies the condition that for each ε > 0 there is a numberAε > 0
such that |c(α)− c| ≤ Aε(c1 + ε)α1 . . . (cn + ε)αn

for some fixed number c and constants c1, . . . , cn. Then there is a complex
measure ν supported on

∏n
k=1[−ck, ck] ∩�n such that

μ1 = μ2 + c

�(1̃)
δ1̃ + ν.

Proof. Set

d(α) =
∫
�n
xα�(x) d

(
μ1 − μ2 − c

�(1̃)
δ1̃

)
(x).

Then for each ε > 0 we have

|d(α)| ≤ Aε(c1 + ε)α1 . . . (cn + ε)αn .

Define a measure ρ by

dρ(x) = �(x) d

(
μ1 − μ2 − c

c

�(1̃)
δ1̃

)
(x).
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As in the proof of Theorem 2.3, consider the numbers

M(j,m) =
∫
�

|xj |md|ρ|(x).

Since �j is a determining function, we see, as in the proof of Lemma 2.2,
that for each j the sequence (M(j,m))m satisfies the Carleman condition. The
result now follows from [3, Thm. 3.1].

The next corollary follows as in the one-dimensional case.

Corollary 2.6. Given the hypotheses of Theorem 2.5, suppose that

lim sup
|α|→∞

|c(α)− c|1/|α| = 0.

Thenμ1 = μ2 + c

�(1̃)
(δ1̃ − δ0̃), where 0̃ = (0, 0, . . . , 0). In the particular case

when μ1 and μ2 are purely non-atomic, then they are equal.

Another straightforward corollary holds for radial weights.

Corollary 2.7. Let � = R or R+ and let μ1 and μ2 be two finite complex
measures on �n. Let � be a determining function on �. Suppose that∫

�n
xα�(‖x‖) dμ1(x) =

∫
�n
xα�(‖x‖) dμ2(x)+ c(α),

where c(α) satisfies the condition that for each ε > 0 there is a numberAε > 0
such that |c(α)− c| ≤ Aε(c1 + ε)α1 . . . (cn + ε)αn

for some fixed number c and constants c1, . . . , cn. Then there is a complex
measure ν supported on

∏n
k=1[−ck, ck] ∩�n such that

μ1 = μ2 + c

�(
√
n)
δ1̃ + ν.

Proof. The proof follows along standard lines.

3. Finitely overcomplete sequences

In this section we derive some applications of moment problems to the theory
of Banach spaces.

Definition 3.1. A sequence (xm)m in a Banach space is finitely overcom-
plete if it remains complete (that is, its linear span is dense) whenever finitely
many terms are removed.
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In [10] Lin showed that the sequence of functions (xme−λx)m is finitely
overcomplete in L1(R+) for any λ > 0. Much more can be proved using the
method of moments.

Theorem 3.2. Let � be either R or R+, let p ∈ [1,∞), and let � be a
determining function on� such that x 
→ �(x)ε ∈ Lp(�) for some ε ∈ (0, 1).
Suppose that the functions �m ∈ Lp(�) satisfy lim ‖�m‖1/m

p = 0. Then the
sequence (fm)m given by

fm(x) = xm�(x)+�m(x),

is finitely overcomplete in Lp(�).

Proof. Note that∫
�

|x|mp�(x)p dx =
∫
�

|x|mp�(x)p(1−ε)�(x)pε dx

≤ Cm

∫
�

�(x)pε dx,

where Cm := sup{|x|mp�(x)p(1−ε) : x ∈ �} < ∞, since � is determining.
So the functions fm lie in Lp(�). Suppose that g ∈ Lq(�) with q = p

p−1 and

‖g‖q = 1; if
∫
�
g(x)fm(x)dx = 0 for m ≥ m0, then
∣∣∣∣
∫
�

(xm�(x)1−ε)(g(x)�(x)ε) dx
∣∣∣∣ ≤ ‖�m‖p.

Also g(x)�(x)εdx is a finite purely non-atomic measure and x 
→ �(x)1−ε is
also a determining function. Hence, by Theorem 2.3, g is zero almost every-
where. By the Hahn-Banach theorem, (fm)m is finitely overcomplete inLp(�).

On taking some examples of determining functions given after Defini-
tion 2.1, the above theorem provides a far-reaching generalization of Lin’s
result, which we state separately, as follows.

Corollary 3.3. Let γ : R+ → C be a function of polynomial growth such
that γ (x) �= 0 except possibly at 0, and let (�m) be an arbitrary sequence in
Lp(R+) such that lim ‖�m‖1/m

p = 0. Then the functions fm defined by

fm(x) = xmγ (x)e−λx
δ +�m(x)

form a finitely overcomplete set in Lp(R+) for every p with 1 ≤ p < ∞, for
each λ > 0 and δ ≥ 1

2 . Similarly, the functions gm defined by

gm(x) = xmγ (x)e
−λ

(
x

log(x+2)

)1/2

+�m(x)
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form a finitely overcomplete set in Lp(R+) for each λ > 0.
Alternatively, let γ : R → C be function of polynomial growth such that

γ (x) �= 0 except possibly at 0, and let (�m) be an arbitrary sequence inLp(R)
such that lim ‖�m‖1/m

p = 0. Then the functions fm defined by

fm(x) = xmγ (x)e−λ|x|
δ +�m(x)

form a finitely overcomplete set in Lp(R) for every p with 1 ≤ p < ∞, for
each λ > 0 and δ ≥ 1.

As before, it is possible to derive multivariable extensions of the above
results.

Theorem 3.4. Let � = R or R+, let p ∈ [1,∞) and �1, . . . , �n be
determining functions on �. Define � : �n → R+ by

�(x) = �1(x1) · · ·�n(xn) for x = (x1, . . . , xn) ∈ �n,
and suppose that x 
→ �(x)ε ∈ Lp(�n) for some ε ∈ (0, 1). Suppose that
the functions �α ∈ Lp(Rn) satisfy lim sup|α|→∞ ‖�α‖1/|α|

p = 0. Then the set
(fα)α given by

fα(x) = xα�(x)+�α(x),

is finitely overcomplete in Lp(�n).

Proof. As in the proof of Theorem 3.2, it is easily verified that the given
functions lie in Lp. Once again we use duality, supposing that g ∈ Lq(�n)

satisfies ∫
�n
g(x)fα(x) dx = 0

for all but finitely many α. We deduce from Theorem 2.5 that g = 0 almost
everywhere.

This has the following immediate consequence.

Corollary 3.5. Let γ : Rn+ → C be a function of polynomial growth
such that γ (x) �= 0 except possibly at 0, and let (�α)α∈Nn be a family of
functions in Lp(Rn+) such that lim sup|α|→∞ ‖�α‖1/|α|

p = 0. Then for every p
with 1 ≤ p < ∞, and for all λ1, . . . , λn > 0 and δ1, . . . , δn ≥ 1

2 , the functions
fα defined by

fα(x) = xαγ (x)e−(λ1x
δ1
1 +···+λnxδnn ) +�α(x)

form a finitely overcomplete set in Lp(Rn+).
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Alternatively, let γ : Rn → C be a function of polynomial growth such that
γ (x) �= 0 except possibly at 0, and let (�α)α∈Nn be a family of functions in
Lp(Rn) such that lim sup|α|→∞ ‖�α‖1/|α|

p = 0. Then for every p with 1 ≤ p <

∞, and for all λ1, . . . , λn > 0 and δ1, . . . , δn ≥ 1, the functions fα defined by

fα(x) = xαγ (x)e−(λ1|x1|δ1 +···+λn|xn|δn ) +�α(x)

form a finitely overcomplete set in Lp(R).

Now let β ≥ −1 and define the measure μβ on R+ by dμβ(t) = dt/tβ+1

for t > 0. We then have the following result about overcompleteness in
L2(R+, dμβ).

Corollary 3.6. Let � be a determining function on R+ such that the
function x 
→ �(x)ε lies in L2(R+) for some ε ∈ (0, 1). Then the sequence of
functions (fm)m given by

fm(x) = xm�(x)+�m(x), m ∈ N,m > β/2

is finitely overcomplete in L2(R+, dμβ) whenever

lim
m→∞ ‖�m‖1/m

L2(R+,dμβ) = 0.

Proof. This follows from Theorem 3.2 using the isometry

J : L2(R+) → L2(R+, dμβ)

given by
(Jf )(x) = x(β+1)/2f (x),

and noting that x 
→ xδ�(x) is a determining function whenever δ > 0 and
� is a determining function.

By means of a multiple of the Laplace transform, depending only on β,
there is an isometric isomorphism between L2(R+, dμβ) for β > −1 and the
weighted Bergman spaceXβ = A2

β(C+) consisting of all analytic functions F
on the right half-plane C+ such that the norm

‖F‖A2
β (C+) =

(
1

π

∫
C+

|F(x + iy)|2xβ dx dy
)1/2

is finite. The case corresponding to β = −1 (i.e. dμβ(t) = dt) is the Hardy
space Xβ = H 2(C+) where the norm is

‖F‖H 2(C+) =
(

sup
x>0

∫ ∞

−∞
|F(x + iy)|2 dy

)1/2

.
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This Paley-Wiener type result can be found in [4], [5].
Under these isometric isomorphisms, the function f given by f (t) =

tβ+1e−λt with λ > 0 corresponds to a multiple of the reproducing kernel
kλ satisfying 〈F, kλ〉Xβ = F(λ), (F ∈ Xβ).
Likewise t 
→ tmf (t) corresponds to (−1)m times the mth derivative of kλ.

Theorem 3.7. Let � be a determining function on R+ such that x 
→
�(x)ε ∈ L2(R+) for some ε ∈ (0, 1). For β ≥ −1, define a function k in Xβ
by

k(z) =
∫ ∞

0
xβ+1�(x)e−xz dx, (z ∈ C+).

If (Gm)m is a sequence in Xβ with limm→∞ ‖Gm‖1/m
Xβ

= 0, then the functions

(k(m) +Gm)m form a finitely overcomplete set in Xβ .

Proof. This follows from the properties of the Laplace transform as a map-
ping from L2(R+, dμβ) ontoXβ described above together with Corollary 3.6.

The analogue of Lin’s result for R, which is a special case of our Corol-
lary 3.3, is that the functions (xme−λ|x|)m are finitely overcomplete in L2(R).
By using transform methods similar to those above, we obtain a further corol-
lary of interest.

Corollary 3.8. Let � be a determining function on R such that x 
→
�(x)ε ∈ L2(R) for some ε ∈ (0, 1). Define a function k in L2(R) by

k(w) =
∫ ∞

−∞
�(x)e−iwx dx, (w ∈ R).

If (Gm)m is a sequence inL2(R)with limm→∞ ‖Gm‖1/m = 0, then the functions
(k(m) +Gm)m form a finitely overcomplete set in L2(R).

Proof. Observe that k is the Fourier transform of the function x → �(x),
and imk(m) is the transform of x 
→ xm�(x). The result now follows from
the Plancherel theorem that the Fourier transform is a constant multiple of an
isometry on L2(R).

Probably the most important application of Corollary 3.8 is obtained by
taking �(x) = e−λ|x| for λ > 0, which gives

kλ(w) = λ

λ2 + w2
,

the Poisson kernel for the right half-plane (cf. [6, p. 123]).
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4. Characterizing probability distributions

In [10], [12], Lin and Too gave an application of the moment problem to the
characterization of probability distributions via the moments of record values.
In view of the results of this paper, it is possible to give more general versions
of their results, and this is the aim of the present section.

Suppose (Xm)m be a sequence of independent, identically-distributed non-
negative random variables with continuous distribution F . Let k be a positive
integer and suppose that EXp1 < ∞ for some p > k. The record times of the
Xm, denoted L(m), are defined by L(0) = 1 and

L(m) = min{k : Xk > XL(m−1)}, (m ≥ 1).

Then it follows that EXkL(m) < ∞ [11]. Let (Ym)m be another such sequence,
with continuous distribution G, and with corresponding record values YM(m).

Theorem 4.1.With the notation as above, suppose thatEXkL(m) =EYkM(m)+
cm/m!, and there is a number c such that |cm − c|1/m → 0. Then X and Y
have the same distribution.

Proof. We use a modification of the argument given in [12]. There it is
shown that

EXkL(m) = 1

m!

∫ 1

0
(F−1(t))k

(
log

1

1 − t

)m
dt,

and we have
∫ 1

0
f (t)

(
log

1

1 − t

)m
dt =

∫ 1

0
g(t)

(
log

1

1 − t

)m
+ cm,

where f (t) = (F−1(t))k and g(t) = (G−1(t))k . This becomes, by means of a
change of variable x = − log(1 − t),

∫ ∞

0
xmh(x)dx =

∫ ∞

0
xml(x)dx + cm,

with h(x) = f (t)e−x and l(x) = g(t)e−x . The first term can be written
∫ ∞

0
xme−(p−1)x/p(F−1(t))ke−x/pdx,

where x 
→ e−(p−1)x/p is a determining function and x 
→ (F−1(t))ke−x/p
lies in L1(R+) by Hölder’s inequality. The end of the proof follows from
Theorem 2.3.
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