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QUASIMONOTONE EMBEDDING OF ONE-SIDED
LIPSCHITZ CONTINUOUS FUNCTIONS

GERD HERZOG∗

Abstract

We prove that one-sided Lipschitz continuous functions can be embedded into quasimonotone
increasing functions, in a quite natural way. As a consequence of this result, quasimontonicity
methods can be used to study initial and boundary value problems in Banach spaces if one-sided
Lipschitz continuous functions are involved.

1. Introduction

Let (E, ‖ · ‖) be a real Banach space, and let m± : E × E → R denote the
one-sided directional derivatives of the norm, that is

m±[x, y] := lim
h→0±

‖x + hy‖ − ‖x‖
h

(x, y ∈ E).

Let D ⊆ E. We call a function g : D → E one-sided Lipschitz continuous
with constant μ ∈ R if

m+[y − x, g(y) − g(x)] ≤ μ‖y − x‖ (x, y ∈ D),

and if I ⊆ R is an interval, then g : I × D → E is called one-sided Lipschitz
continuous with function μ : I → R, if g(t, ·) : D → E is one-sided Lipschitz
continuous with constant μ(t) ∈ R for each t ∈ I .

Now, let E be ordered by a cone K . A cone K is a closed convex subset
of E with λK ⊆ K (λ ≥ 0), and K ∩ (−K) = {0}. As usual x ≤ y : ⇐⇒
y − x ∈ K , and we write x � y if y − x ∈ Int K . The subset

K∗ = {ϕ ∈ E∗ : ϕ(x) ≥ 0 (x ≥ 0)},
of the space of all continuous linear functionals E∗, is called the dual wedge
of K .
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A function g : D → E, D ⊆ E is quasimonotone increasing, in the sense
of Volkmann [12], if

x, y ∈ D, x ≤ y, ϕ ∈ K∗, ϕ(x) = ϕ(y) ⇒ ϕ(g(x)) ≤ ϕ(g(y)),

and if I ⊆ R is an interval, then g : I × D → E is called quasimonotone
increasing if g(t, ·) : D → E is quasimonotone increasing for each t ∈ I .

One-sided Lipschitz conditions are closely connected to a priori estimates,
and to stability, invariance and existence results for dynamical systems and
boundary value problems in Banach spaces, see for example [1], [2], [5], [8],
[11], and in particular Martin’s monograph [9], and the references given there.
On the other hand, quasimonotone increasing functions are closely connected
to differential inequalities, monotone dynamical systems, and boundary value
problems in Banach spaces see for example [1], [3], [6], [7], [12], [13], [14]
and the references given there.

In this paper we will prove that a one-sided Lipschitz continuous function
can be embedded into a quasimonotone increasing function, in a quite natural
way. As an application of this result, we will accomplish in some examples
how results on one-sided Lipschitz continuous functions can be derived by
results on quasimonotone increasing functions.

2. A quasimonotonicity criterion

LetE be a Banach space ordered by a coneK . We assume thatK is reproducing,
that is K − K = E, and that there exists � ∈ E∗, ‖�‖ = 1 such that

(1) ‖x‖ = inf{�(p) : −p ≤ x ≤ p} (x ∈ E).

Examples are E = Rn or E = l1(N) with K = {x : xk ≥ 0}, ‖x‖ =∑
k |xk|, and �(x) = ∑

k xk . Note also that in some cases an equivalent norm
can be defined by (1), for example in case dim E < ∞ and if � ∈ K∗ is such
that x ≥ 0, �(x) = 0 ⇒ x = 0.

The following characterization of quasimonotone increasing functions can
be found in [4].

Theorem 1. Let D ⊆ E, let g : D → E be a function, and let � be as
above. Then the following assertions are equivalent:

(1) g is quasimonotone increasing;

(2) m+[y − x, g(y) − g(x)] = �(g(y) − g(x)) (x, y ∈ D, x ≤ y).

We reproduce the proof for reader’s convenience.
Proof. We first prove

K = {x ∈ E : �(x) = ‖x‖}.
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If x ∈ K then obviously �(x) = ‖x‖. On the other hand, let �(x) = ‖x‖.
To each n ∈ N there exists pn ∈ K such that

�(pn) ≤ ‖x‖ + 1

n
, −pn ≤ x ≤ pn.

Thus, ‖pn−x‖ = �(pn−x) = �(pn)−‖x‖ ≤ 1/n. Hencex = limn→∞ pn ≥
0.

Next, we prove the following representation of K∗: Let ϕ ∈ E∗ \ {0}. Then

ϕ ∈ K∗ ⇐⇒
∥∥∥∥� − ϕ

‖ϕ‖
∥∥∥∥ ≤ 1.

Set χ = � − ϕ/‖ϕ‖. If ‖χ‖ ≤ 1 then

ϕ(x) = ‖ϕ‖(‖x‖ − χ(x)) ≥ 0 (x ∈ K),

hence ϕ ∈ K∗. On the other hand, if ϕ ∈ K∗, then

0 ≤ χ(x) = ‖x‖ − ϕ(x)

‖ϕ‖ ≤ ‖x‖ (x ∈ K).

Fix x ∈ E, and let ε > 0. Choose p0 such that

�(p0) ≤ ‖x‖ + 2ε, −p0 ≤ x ≤ p0.

Set
x1 = p0 + x

2
, x2 = p0 − x

2
.

Then x = x1 − x2, x1, x2 ∈ K ,

‖x1‖ = �(x1) = 1

2
(�(x) + �(p0)) ≤ ‖x‖ + ε,

and analogously ‖x2‖ ≤ ‖x‖ + ε.
Therefore

−‖x‖ − ε ≤ −‖x2‖ ≤ −χ(x2) ≤ χ(x1 − x2) ≤ χ(x1) ≤ ‖x1‖ ≤ ‖x‖ + ε,

that is |χ(x)| ≤ ‖x‖ + ε. For ε → 0+ we obtain |χ(x)| ≤ ‖x‖. Hence
‖χ‖ ≤ 1.

To prove the theorem we use Mazur’s characterization of m+, see [9], [10]:

(2) m+[x, y] = max{χ(y) : χ ∈ E∗, ‖χ‖ = 1, χ(x) = ‖x‖}.
Let g : D → E be quasimonotone increasing, let x, y ∈ D, x ≤ y, and let

χ ∈ E∗, ‖χ‖ = 1, χ(y − x) = ‖y − x‖.
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Then ϕ := � − χ ∈ K∗, and

ϕ(y − x) = ‖y − x‖ − χ(y − x) = 0.

Hence ϕ(g(y) − g(x)) ≥ 0, that is

χ(g(y) − g(x)) ≤ �(g(y) − g(x)).

By means of (2) we have m+[y −x, g(y)−g(x)] ≤ �(g(y)−g(x)). Equality
follows from

m+[y − x, g(y) − g(x)] ≥ lim
h→0+

�(y − x + h(g(y) − g(x))) − �(y − x)

h
,

since ‖�‖ = 1.
Now, let m+[y − x, g(y)−g(x)] ≤ �(g(y)−g(x)) be valid for x, y ∈ D,

x ≤ y.
Let x, y ∈ D, x ≤ y, and ϕ ∈ K∗ \ {0} with ϕ(x) = ϕ(y). For χ =

� − ϕ/‖ϕ‖ we know ‖χ‖ ≤ 1, and χ(y − x) = ‖y − x‖, in particular
‖χ‖ = 1. Equation (2) gives

χ(g(y) − g(x)) ≤ m+[y − x, g(y) − g(x)] ≤ �(g(y) − g(x)),

that is
ϕ(g(y) − g(x)) = ‖ϕ‖(� − χ)(g(y) − g(x)) ≥ 0.

Hence g is quasimonotone increasing.

Remark. Fromm+[x, −y] = −m−[x, y] (x, y ∈ E) we get: A functiong :
D → E is quasimonotone decreasing (that is −g is quasimonotone increasing)
if and only if

m−[y − x, g(y) − g(x)] = �(g(y) − g(x)) (x, y ∈ D, x ≤ y).

3. Quasimonotone embedding

In the sequel, let (X, ‖ · ‖) be a real Banach space, and let the Banach space
Y = X × R be normed by ‖(x, ξ)‖ = max{‖x‖, |ξ |}, and ordered by the cone

K = {(x, ξ) ∈ Y : ‖x‖ ≤ ξ}.
The cone K has nonempty interior, in fact (x, ξ) ∈ Int K if and only

if ‖x‖ < ξ . In particular K is reproducing and the dual wedge is a cone.
Moreover K is regular, that is each monotone and order bounded sequence is
convergent.



242 gerd herzog

Theorem 2. Let D ⊆ X, let f : D → X be a function, let μ ∈ R, and
let F : D × R → Y be defined by F(x, ξ) = (f (x), μξ). Then f is one-
sided Lipschitz continuous with constant μ if and only if F is quasimonotone
increasing. Moreover if f is one-sided Lipschitz continuous with constant μ,
then F is one-sided Lipschitz continuous with constant μ.

Proof. Consider � ∈ Y ∗ defined by �((x, ξ)) = ξ . Obviously ‖�‖ = 1.
We prove that

‖(x, ξ)‖ = q((x, ξ)) := inf{�((y, η)) : −(y, η) ≤ (x, ξ) ≤ (y, η)}

for each (x, ξ) ∈ Y .
Let −(y, η) ≤ (x, ξ) ≤ (y, η), that is

‖y − x‖ ≤ η − ξ, ‖y + x‖ ≤ η + ξ.

Thus η ≥ |ξ | and 2η ≥ ‖y − x‖ + ‖y + x‖ ≥ 2‖x‖, hence η ≥ ‖(x, ξ)‖.
Therefore q((x, ξ)) ≥ ‖(x, ξ)‖.

On the other hand, if ‖x‖ ≤ |ξ | then (x, ξ) ≥ 0 or −(x, ξ) ≥ 0. In this case
q((x, ξ)) = |ξ | = ‖(x, ξ)‖. If ‖x‖ > |ξ |, then an easy calculation shows

−
(

ξ

‖x‖x, ‖x‖
)

≤ (x, ξ) ≤
(

ξ

‖x‖x, ‖x‖
)

,

and therefore q((x, ξ)) ≤ ‖x‖ = ‖(x, ξ)‖.
Next, note that

m+[(x, ξ), (y, η)] = lim
h→0+

1

h

(
max{‖x + hy‖, |ξ + hη|} − max{‖x‖, |ξ |})

=

⎧⎪⎨
⎪⎩

m+[x, y] if ‖x‖ > |ξ |,
m+[ξ, η] if ‖x‖ < |ξ |,
max{m+[x, y], m+[ξ, η]} if ‖x‖ = |ξ |.

Now, let f be one-sided Lipschitz continuous with constant μ, and let (x, ξ) ≤
(y, η). Then m+[η− ξ, μ(η− ξ)] = μ(η− ξ). Thus, if ‖y −x‖ < η− ξ , then

m+[(y, η) − (x, ξ), F ((y, η)) − F((x, ξ))] = m+[η − ξ, μ(η − ξ)]

= μ(η − ξ)

= �(F((y, η)) − F((x, ξ))),
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and if ‖y − x‖ = η − ξ , then m+[y − x, f (y) − f (x)] ≤ μ(η − ξ) and
therefore

m+[(y, η) − (x, ξ), F ((y, η)) − F((x, ξ))]

= max{m+[y − x, f (y) − f (x)], m+[η − ξ, μ(η − ξ)]}
= μ(η − ξ)

= �(F((y, η)) − F((x, ξ))).

According to Theorem 1 F is quasimonotone increasing.
If F is quasimonotone increasing then by Theorem 1

m+[(y, η) − (x, ξ), F ((y, η)) − F((x, ξ))] = μ(η − ξ),

if (x, ξ) ≤ (y, η). Let x, y ∈ X and choose ξ, η ∈ R such that ‖y−x‖ = η−ξ .
Then

max{m+[y − x, f (y) − f (x)], m+[η − ξ, μ(η − ξ)]} = μ(η − ξ)

and therefore

m+[y − x, f (y) − f (x)] ≤ μ(η − ξ) = μ‖x − y‖.
Finally, if f is one-sided Lipschitz continuous with constant μ, then

m+[(y, η) − (x, ξ), F ((y, η)) − F((x, ξ))] ≤ μ‖(y, η) − (x, ξ)‖
for all (y, η), (x, ξ) ∈ Y follows by the above representation of m+ in Y by
m+ in X and m+ in R.

4. Defect inequalities

As a first application we consider Volkmann’s monotonicity theorem [12,
Satz 1], in our setting.

Let D ⊆ X, T > 0, let f : (0, T ] × D → X be one-sided Lipschitz
continuous with function μ : (0, T ] → R, and let F : (0, T ] × (D × R) → Y

be defined by F(t, (x, ξ)) = (f (t, x), μ(t)ξ). According to Theorem 2 F is
quasimonotone increasing. Thus, if

v = (x, ξ) : [0, T ] → D × R, w = (y, η) : [0, T ] → D × R

are continuous, differentiable on (0, T ] and such that

v(0) � w(0), v′(t) − F(t, v(t)) � w′(t) − F(t, w(t)) (t ∈ (0, T ])



244 gerd herzog

then v(t) � w(t) (t ∈ [0, T ]). This means, that we have the following result
on defect inequalities: If

‖y(0) − x(0)‖ < η(0) − ξ(0),

and

‖y ′(t) − f (t, y(t)) − (x ′(t) − f (t, x(t)))‖
< η′(t) − μ(t)η(t) − (ξ ′(t) − μ(t)ξ(t)) (t ∈ (0, T ]),

then ‖y(t) − x(t)‖ < η(t) − ξ(t) (t ∈ [0, T ]).

Now, let f : [0, T ] × X → X be continuous and one-sided Lipschitz
continuous with function μ ∈ C([0, T ], R), and let F : [0, T ] × Y → Y

be defined by F(t, (x, ξ)) = (f (t, x), μ(t)ξ). Then F is continuous, quasi-
monotone increasing, and moreover F is one-sided Lipschitz continuous with
the same function μ : [0, T ] → R. Since μ is bounded, the comparison the-
orem above holds for C1-functions with � replaced by ≤ everywhere, see [1,
Theorem 5.4]. Thus we have proved:

Theorem 3. Let f : [0, T ] × X → X be continuous and one-sided
Lipschitz continuous with function μ ∈ C([0, T ], R), and let (x, ξ), (y, η) ∈
C1([0, T ], Y ) be such that

‖y(0) − x(0)‖ ≤ η(0) − ξ(0),

and

‖y ′(t) − f (t, y(t)) − (x ′(t) − f (t, x(t)))‖
≤ η′(t) − μ(t)η(t) − (ξ ′(t) − μ(t)ξ(t)) (t ∈ [0, T ]).

Then ‖y(t) − x(t)‖ ≤ η(t) − ξ(t) (t ∈ [0, T ]).

In particular we can compare y with a solution x of x ′(t) = f (t, x(t)). By
setting ξ = 0 we obtain that ‖y(0)−x(0)‖ ≤ η(0) and ‖y ′(t)−f (t, y(t))‖ ≤
η′(t)−μ(t)η(t) on [0, T ] imply ‖y(t)−x(t)‖ ≤ η(t) on [0, T ]. In this form our
result is in the spirit of the classical defect estimates for systems of differential
equation, see [14, Chapter 11, Theorem 1].

5. On Martin’s existence theorem

Let us say that a function g : [0, T ] × E → E is of at most linear growth, if
‖g(t, x)‖ ≤ a‖x‖ + b ((t, x) ∈ [0, T ] × E), for some constants a, b ∈ R. To
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avoid technical difficulties we state Martin’s existence Theorem [9, Chapter 6,
Theorem 4.3], for such functions:

Theorem 4. Let f : [0, T ] × X → X be continuous, of at most linear
growth, and one-sided Lipschitz continuous with function μ ∈ C([0, T ], R).
Then, the initial value problem

(3) x ′(t) = f (t, x(t)), x(0) = x0

is uniquely solvable on [0, T ] for each x0 ∈ X.

We give here a proof of Theorem 4 by using the existence theorem of
Lemmert, Schmidt and Volkmann [7]:

Theorem 5. Let the Banach space E be ordered by any regular cone with
nonempty interior. Let g : [0, T ] × E → E be continuous, quasimonotone
increasing and of at most linear growth. Then u′(t) = g(t, u(t)), u(0) = u0

is solvable on [0, T ] for each u0 ∈ E.

Remark. In [7] this result is stated under the assumption that g is bounded.
Theorem 5 follows by minor changes in the original proof.

Proof of Theorem 4. First note that application of Theorem 3 proves that
any two solutions of (3) coincide on their common domain of definition. Next,
consider F : [0, T ]×Y → Y defined by F(t, (x, ξ)) = (f (t, x), μ(t)ξ). Now,
F is continuous, quasimonotone increasing, and of at most linear growth:

‖F(t, (x, ξ))‖ ≤ (a + ||μ||∞)‖(x, ξ)‖ + b ((x, ξ) ∈ Y ).

Since the cone K is regular and has nonempty interior, Theorem 5 proves the
existence of a solution u = (x, ξ) : [0, T ] → Y of the initial value problem

u′(t) = F(t, u(t)), u(0) = (x0, 0).

The associated function x : [0, T ] → X is the solution of (3).

6. Second order defect inequalities

We say that μ : (0, 1) → R has property (P ) if the second order differential
inequality

λ′′(t) + μ(t)λ(t) < 0

has a positive solution λ : [0, 1] → (0, ∞), which is continuous and two times
differentiable on (0, 1), compare [5].

Let f : (0, 1)×X → X be one-sided Lipschitz continuous with function μ

having property (P ), and let F : (0, 1)×Y → Y be defined by F(t, (x, ξ)) =
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(f (t, x), μ(t)ξ). Then F is quasimonotone increasing, and F is one-sided
Lipschitz continuous with the same function μ : (0, 1) → R. Thus we can
apply [5, Theorem 3] on second order differential inequalities:

Let
v = (x, ξ) : [0, 1] → Y, w = (y, η) : [0, 1] → Y

be continuous, two times differentiable on (0, 1), and such that

v(0) ≤ w(0), v(1) ≤ w(1),

v′′(t) + F(t, v(t)) ≥ w′′(t) + F(t, w(t)) (t ∈ (0, 1)).

Then v(t) ≤ w(t) (t ∈ [0, 1]).
Transcription to a result on defect inequalities reads:

Theorem 6. Let f : (0, 1) × X → X be one-sided Lipschitz continuous
with function μ : (0, 1) → R having property (P ), and let (x, ξ), (y, η) :
[0, 1] → Y be continuous and two times differentiable on (0, 1) such that

‖y(0) − x(0)‖ ≤ η(0) − ξ(0), ‖y(1) − x(1)‖ ≤ η(1) − ξ(1)

and

‖x ′′(t) + f (t, x(t)) − (y ′′(t) + f (t, y(t)))‖
≤ ξ ′′(t) + μ(t)ξ(t) − (η′′(t) + μ(t)η(t)) (t ∈ (0, 1)).

Then ‖y(t) − x(t)‖ ≤ η(t) − ξ(t) (t ∈ [0, 1]).

Remark. In particular, under the assumptions of Theorem 6 the boundary
value problem x ′′(t) + f (t, x(t)) = 0, x(0) = x0, x(1) = x1 has at most one
solution in C([0, 1], X) ∩ C2((0, 1), X) for each choice of x0, x1 ∈ X.

7. An existence Theorem for systems of BVPs

Let us say that μ ∈ C([0, 1], R) has property (P ′) if

λ′′(t) + μ(t)λ(t) ≤ 0

has a positive solution λ ∈ C2([0, 1], (0, ∞)). For example μ has property
(P ′) if μ(t) ≤ π2 on [0, 1] and μ �= π2, but there are functions having
property (P ′) with even arbitrarily large maximum, see [2] and the references
given there.

We have (P ′) ⇒ (P ), and the following existence theorem [2, Theorem 1]
for the finite dimensional case is valid.
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Theorem 7. Let the finite dimensional Banach space E be ordered by a
cone with nonempty interior, and let g : [0, 1] × E → E be continuous,
quasimonotone increasing, and one-sided Lipschitz continuous with function
μ ∈ C([0, 1], R)having property (P ′). Thenu′′(t)+g(t, u(t)) = 0, u(0) = u0,
u(1) = u1 has a unique solution in C2([0, 1], E) for each choice of u0, u1 ∈ E,
and the solution depends increasingly on u0 and u1.

Now, by means of Theorem 2, Theorem 7 implies the same assertion without
the assumption of quasimonotonicity:

Theorem 8. Let dim X < ∞, and let f : [0, 1] × X → X be continuous
and one-sided Lipschitz continuous with function μ ∈ C([0, 1], R) having
property (P ′). Then

(4) x ′′(t) + f (t, x(t)) = 0, x(0) = x0, x(1) = x1

has a unique solution in C2([0, 1], X) for each choice of x0, x1 ∈ X. Moreover
if y ∈ C2([0, 1], X) is the solution of y ′′(t) + f (t, y(t)) = 0, y(0) = y0,
y(1) = y1, and if δ ∈ C2([0, 1], R) is the solution of δ′′ + μ(t)δ(t) = 0,
δ(0) = ‖y0 − x0‖, δ(1) = ‖y1 − x1‖, then

(5) ‖y(t) − x(t)‖ ≤ δ(t) (t ∈ [0, 1]).

Proof. Let F : [0, 1] × Y → Y be defined by F(t, (x, ξ)) = (f (t, x),

μ(t)ξ). Now, F is continuous, quasimonotone increasing, and one-sided Lip-
schitz continuous with the same function μ ∈ C([0, 1], R). By Theorem 7 the
boundary value problem

u′′(t) + F(t, u(t)) = 0, u(0) = (x0, 0), u(1) = (x1, 0)

has a unique solution u = (x, ξ) ∈ C2([0, 1], Y ). The associated function
x : [0, 1] → X is the unique solution of (4). Finally, (5) follows by comparing
u with the solution v = (y, δ) of

v′′(t)+F(t, v(t)) = 0, v(0) = (y0, ‖y0 −x0‖), v(1) = (y1, ‖y1 −x1‖).

Remarks. The proof of Theorem 7 in [2] uses an existence theorem of
Nagumo type (upper and lower solutions) from [3]. Mawhin [11, Chapter V]
obtained results related to Theorem 8 for inner product spaces by degree meth-
ods.
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