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SPACES OF ABSOLUTELY SUMMING POLYNOMIALS

J. A. BARBOSA, G. BOTELHO, D. DINIZ and D. PELLEGRINO∗

Abstract
This paper has a twofold purpose: to prove a much more general Dvoretzky-Rogers type theorem
for absolutely summing polynomials and to introduce a more convenient norm on the space of
everywhere summing polynomials.

1. Introduction

Since Pietsch [16], several nonlinear generalizations of absolutely summing
operators have been investigated. Multilinear mappings/polynomials which are
absolutely summing at a given point – and also everywhere – were introduced
by M. Matos [9] and developed in [3], [7], [13], [14].

It is known that a Dvoretzky-Rogers-like theorem holds for everywhere
summing polynomials (see [9]) but does not hold for summing polynomials
(at the origin), so it is natural to ask whether or not such a theorem holds
for polynomials which are absolutely summing at a point a �= 0. Proving in
Section 3 a Dvoretzky-Rogers type theorem for absolutely summing polyno-
mials at a given point a �= 0, we provide a substantial improvement of Matos’
Dvoretzky-Rogers type theorem [9]. We also prove that summability at any
point implies summability at the origin.

The norm that has been used in the space of everywhere summing polyno-
mials (defined in [9]) has two inconvenients: (i) it is not a normalized ideal
norm, in the sense that the everywhere summing norm of the polynomial
x −→ xn, x ∈ K = scalar field, is not always equal to 1; (ii) it makes compu-
tations quite difficult. In Section 4 we introduce another norm which happens to
be equivalent to the original one and repairs the aforementioned inconvenients.
The multilinear case is also investigated.

2. Background and notation

Recall that, if E and F are Banach spaces over K = R or C and p ≥ q ≥ 1,
a continuous linear operator u : E −→ F is absolutely (p; q)-summing
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(or (p; q)-summing) if (u(xj ))
∞
j=1 is absolutely p-summable in F whenever

(xj )
∞
j=1 is weakly q-summable in E. For the theory of absolutely summing

operators we refer to the book by Diestel-Jarchow-Tonge [4].
The multilinear theory of absolutely summing operators was introduced

by Pietsch [16] and has been developed by several authors. There are various
natural possible generalizations of the linear concept of absolute summability
to polynomial/multilinear mappings (see [1], [5], [7], [10], [15]). If u is a
linear operator, to estimate (u(a + xj ) − u(a))∞j=1 is the same as to estimate
(u(xj ))

∞
j=1. However, for polynomials, in general, P(a + x) �= P(a) + P(x),

as well as for multilinear mappings and hence, in the nonlinear case it makes
sense to study absolute summabilitily with respect to a point a �= 0. This idea
is credited to Richard Aron, appeared for the first time in M. Matos [8] and
was developed in [9] and in the doctoral thesis [12] of the fourth named author
under supervision of Professor M. Matos.

As usual, the Banach space of all continuous n-homogeneous polynomials
from E into F , with the sup norm, is represented by P(nE; F). The sequence
spaces �p(E) and �u

p(E) are defined by:

�p(E) =
{
(xj )

∞
j=1 ∈ EN; ‖(xj )

∞
j=1‖p :=

( ∞∑
j=1

‖xj‖p

) 1
p

< ∞
}
,

�w
p (E) =

{
(xj )

∞
j=1 ∈ EN; ‖(xj )

∞
j=1‖w,p := sup

ϕ∈BE′

( ∞∑
j=1

|ϕ(xj )|p
) 1

p

< ∞

and lim
k→∞ ‖(xj )

∞
j=k‖w,p = 0

}
.

A polynomial P ∈ P(nE; F) is (p; q)-summing at a ∈ E if
(
P(a + xj ) −

P(a)
)∞
j=1 ∈ �p(F ) for every (xj )

∞
j=1 ∈ �u

q(E). It is not hard to prove that the
class of all n-homogeneous polynomials from E into F that are absolutely
summing at a given point is a subspace of P(nE; F). The space formed by the
n-homogeneous polynomials that are (p; q)summing at a ∈ E will be denoted
by P

(a)

as(p;q)(
nE; F). The n-homogeneous polynomials that are (p; q)-summing

at a = 0 will be simply called (p; q)-summing and the vector space of all
(p; q)-summing n-homogeneous polynomials from E into F is represented
by Pas(p;q)(

nE; F).
The space composed by the n-homogeneous polynomials that are (p; q)-

summing at every point is denoted by P ev
as(p;q)(

nE; F). Note that

P ev
as(p;q)(

nE; F) =
⋂
a∈E

P
(a)

as(p;q)(
nE; F).
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If P ∈ P ev
as(p;q)(

nE; F) we say that P is everywhere (p; q)-summing. The
space of all continuous n-linear mappings from E1 × · · · × En into F (with
the sup norm) is denoted by L (E1, . . . , En; F) (L (nE; F) if E1 = · · · =
En = E). We say that T ∈ L (E1, . . . , En; F) is (p; q1, . . . , qn)-summing at
a = (a1, . . . , an) ∈ E1 × · · · × En if(

T (a1 + x
(1)
j , . . . , an + x

(n)
j ) − T (a1, . . . , an)

)∞
j=1 ∈ �p(F )

for every (x
(r)
j )∞j=1 ∈ �u

qr
(Er), r = 1, . . . , n. As it happens for polynomi-

als, it is easy to verify that the class of all n-linear mappings from E1 ×
· · · × En into F which are (p; q1, . . . , qn)-summing at a, represented by
L

(a)

as(p;q1,...,qn)
(E1, . . . , En; F), is a subspace of L (E1, . . . , En; F). The space

formed by the n-linear mappings from E1 × · · · × En into F which are
(p; q1, . . . , qn)-summing at every point is denoted by L ev

as(p;q1,...,qn)
(E1, . . . ,

En; F). If T ∈ L ev
as(p;q1,...,qn)

(E1, . . . , En; F) we say that T is everywhere
(p; q1, . . . , qn)-summing. The n-linear mappings that are (p; q1, . . . ,qn)-sum-
ming at a = 0 will be simply called (p; q1, . . . , qn)-summing and the vector
space of all (p; q1, . . . , qn)-summing n-linear mappings from E1 × · · · × En

into F is represented by Las(p;q1,...,qn)(E1, . . . , En; F).
If p = q = q1 = · · · = qn, instead of (p; p) or (p; p, . . . , p)-summing

we say that the mapping is p-summing. In this case we write P (a)
as,p(nE; F),

Pas,p(nE; F) and P ev
as,p(nE; F) for polynomials, and the adaptations for mul-

tilinear mappings are obvious.
Nachbin’s concept of holomorphy type [11] was generalized in a natural way

in [3] in the following fashion: a global holomorphy type PH is a subclass of
the class of all continuous homogeneous polynomials between Banach spaces
such that for every natural n and every Banach spaces E and F , the component
PH (nE; F) := P(nE; F) ∩ PH is a linear subspace of P(nE; F) which is a
Banach space when endowed with a norm denoted by P → ‖P ‖H , and

(i) PH (0E; F) = F , as a normed linear space for all E and F .

(ii) There is σ ≥ 1 such that for every Banach spaces E and F , n ∈ N,
k ≤ n, a ∈ E and P ∈ PH (nE; F), d̂kP (a) ∈ PH (kE; F) and∥∥∥∥ 1

k!
d̂kP (a)

∥∥∥∥
H

≤ σn‖P ‖H‖a‖n−k,

where d̂kP (a) is the k-th differential of P at a (see [6], [11]).

3. Dvoretzky-Rogers type theorems

Two questions are treated in this section. The first question concerns a very
useful result in the theory of summing linear operators, which happens to be a
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weak version of the celebrated Dvoretzky-Rogers Theorem and asserts that if
p ≥ 1 and E is a Banach space, then

E is finite dimensional ⇐⇒ Las,p(E; E) = L (E; E).

For polynomials and multilinear mappings, Matos [9] proved that if n > 1 and
p ≥ 1, then

E is finite dimensional ⇐⇒ P ev
as,p(nE; E) = P(nE; E)

⇐⇒ L ev
as,p(nE; E) = L (nE; E).

On the other hand, for polynomials/multilinear mappings summing at the origin
this result is not valid in general: for example, from [2, Theorems 2.2 and 2.5]
we know that Pas,1(

nE; E) = P(nE; E) and Las,1(
nE; E) = L (nE; E) for

every n ≥ 2 and every space E of cotype 2. The question is obvious: are there
results of this type for polynomials and multilinear mappings summing at a
point a �= 0?

The second question arises from the well known fact that summability at
the origin does not imply summability at a point a �= 0 in general (see [9,
Example 3.2]). Again the question is obvious: is it true that summability at
some point a �= 0 implies summability at the origin?

We solve these two questions in the affirmative. The multilinear and poly-
nomial cases demand different reasonings.

Multilinear case

We start by showing some connections between L
(a)

as(p;q) and L
(b)

as(p;q) for a �=
b. Some terminology is welcome. Given T ∈ L (E1, . . . , En; F) and a =
(a1, . . . , an) ∈ E1 × · · · × En, we denote by Ta1 the (n − 1)-linear mapping
from E2 × · · · × En into F given by

Ta1(x2, . . . , xn) = T (a1, x2, . . . , xn).

Analogously we define the (n − 1)-linear mappings Ta2 , . . . , Tan
, the (n − 2)-

linear mappings Ta1a2 = T (a1, a2, ·, . . . , ·), . . . , Tan−1an
= T (·, . . . , ·, an−1,

an) and the linear mappings Ta1,...,an−1 = T (a1, . . . , an−1, ·), . . . , Ta2,...,an
=

T (·, a2, . . . , an).

Proposition 3.1. Let a = (a1, . . . , an) ∈ E1 × · · · × En and T ∈
L

(a)

as(p;q1,...,qn)
(E1, . . . , En; F). Then:

(a)Taj1 ,...,ajr
is (p; qk1 , . . . qks

)-summing at the origin whenever {1, . . . , n} =
{j1, . . . , jr}∪ {k1, . . . , ks}, k1 ≤ . . . ≤ ks and {j1, . . . , jr}∩ {k1, . . . , ks} = ∅.

(b) T ∈ L
(b)

as(p;q1,...,qn)
(E1, . . . , En; F) for every b ∈ {(λ1a1, . . . , λnan);

λj ∈ K, j = 1, . . . , n}.
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So, the set of all points b such that T is (p; q1, . . . , pn)-summing at b contains
a linear subspace of E1×· · ·×En. In particular, T is (p; q1, . . . , qn)-summing
at the origin.

Proof. (a) For the linear operator Ta1...an−1 it is enough to observe that

Ta1...an−1

(
x

(n)
j

) = T
(
a1+0, a2+0, . . . , an−1+0, an+x

(n)
j

)−T (a1, a2, . . . , an).

The cases of Ta1...an−2an
, . . . , Ta2...an

are analogous. For the bilinear mapping
Ta1...an−2 , observe that

Ta1...an−2

(
x

(n−1)
j , x

(n)
j

)
= [

T
(
a1 + 0, a2 + 0, . . . , an−2 + 0, an−1 + x

(n−1)
j , an + x

(n)
j

)
− T (a1, . . . , an)

] − T
(
a1, a2, . . . , an−1, x

(n)
j

)
− T

(
a1, a2, . . . , an−2, x

(n−1)
j , an

)
= [

T
(
a1 + 0, a2 + 0, . . . , an−2 + 0, an−1 + x

(n−1)
j , an + x

(n)
j

)
− T (a1, . . . , an)

] − Ta1,...,an−1

(
x

(n)
j

) − Ta1,...,an−2an

(
x

(n−1)
j

)
.

T is (p; q1, . . . , qn)-summing at a by assumption and by the previous case
we also know that Ta1,...,an−1 is (p; qn)-summing and Ta1,...,an−2an

is (p; qn−1)-
summing, so it follows that Ta1...an−2 is (p; qn−1, qn)-summing at the origin.
The other cases of bilinear mappings are analogous. Proceeding in this line,
the proof can be completed.

(b) Let b = (λ1a1, . . . , λnan). If λj �= 0 for every j , it suffices to observe
that

( ∞∑
j=1

∥∥T
(
λ1a1 + x

(1)
j , . . . , λnan + x

(n)
j

) − T (λ1a1, . . . , λnan)
∥∥p

) 1
p

=
( ∞∑

j=1

∥∥∥∥T

(
λ1a1 + λ1

λ1
x

(1)
j , . . . , λnan + λn

λn

x
(n)
j

)
−T (λ1a1, . . . , λnan)

∥∥∥∥
p)1

p

= λ1 . . . λn

( ∞∑
j=1

∥∥∥∥T

(
a1 + 1

λ1
x

(1)
j , . . . , an + 1

λn

x
(n)
j

)
−T (a1, . . . , an)

∥∥∥∥
p)1

p

.

Now we use (a) to deal with the case in whichλj = 0 for some j . The casen = 3
illustrates the reasoning: T is (p; q1, q2, q3)-summing at a = (a1, a2, a3) by
assumption, and from (a) we know that, at the origin, T is (p; q1, q2, q3)-
summing, Ta1 is (p; q2, q3)-summing, Ta2 is (p; q1, q3)-summing, Ta3 is (p; q1,
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q2)-summing, Ta1a2 is (p; q3)-summing, Ta1a3 is (p; q2)-summing and Ta2a3 is
(p; q1)-summing.

• Case λ1 �= 0, λ2 �= 0 and λ3 = 0: follows from

T (λ1a1 + xj , λ2a2 + yj , zj ) − T (λ1a1, λ2a2, 0)

= λ1λ2

[
T

(
a1 + xj

λ1
, a2 + yj

λ2
, zj

)
− T (a1, a2, 0)

]

= λ1λ2

[
T (a1, a2, zj ) + T

(
xj

λ1
, a2, zj

)

+ T

(
a1,

yj

λ2
, zj

)
+ T

(
xj

λ1
,

yj

λ2
, zj

)]

= λ1λ2

[
Ta1a2(zj ) + Ta2

(
xj

λ1
, zj

)
+ Ta1

(
yj

λ2
, zj

)
+ T

(
xj

λ1
,

yj

λ2
, zj

)]
.

• Cases λ1 = 0, λ2 �= 0, λ3 �= 0 and λ1 �= 0, λ2 = 0, λ3 �= 0 are analogous.
• Case λ1 �= 0, λ2 = λ3 = 0: follows from

T (λ1a1 + xj , yj , zj ) − T (λ1a1, 0, 0) = λ1

[
T

(
a1 + xj

λ1
, yj , zj

)]

= λ1

[
T

(
a1, yj , zj

)
+ T

(
xj

λ1
, yj , zj

)]
.

• Cases λ2 �= 0, λ1 = λ3 = 0 and λ3 �= 0, λ2 = λ1 = 0 are analogous.
• Case λ1 = λ2 = λ3 = 0: we already know that T is (p; q1, q2, q3)-

summing at the origin.

The following result is a significant improvement of Matos’ Dvoretzky-
Rogers type theorem for multilinear mappings:

Theorem 3.2. Let E be a Banach space, n ≥ 2 and p ≥ 1. The following
assertions are equivalent:

(a) E is infinite-dimensional.

(b) L (a)
as,p(nE; E) �= L (nE; E) for every a = (a1, . . . , an) ∈ En with either

ai �= 0 for every i or ai = 0 for only one i.

(c) L (a)
as,p(nE; E) �= L (nE; E) for some a = (a1, . . . , an) ∈ En with either

ai �= 0 for every i or ai = 0 for only one i.

Proof. Since (b) ⇒ (c) is obvious and (c) ⇒ (a) is a direct consequence of
[9, Theorem 6.3], we just have to prove (a) ⇒ (b): let a = (a1, . . . , an) ∈ En

with either ai �= 0 for every i or ai = 0 for only one i. We can fix k ∈ {1, . . . , n}
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such that ai �= 0 for every i �= k. For each i �= k choose ϕi ∈ E′ so that
ϕi(ai) = 1 and define T ∈ L (nE; E) by

T (x1, . . . , xn) = ϕ1(x1) · · · ϕk−1(xk−1)ϕk+1(xk+1) · · · ϕn(xn)xk.

Since Ta1...ak−1ak+1...an
(x) = T (a1, . . . , ak−1, x, ak+1, . . . , an) = x for every

x ∈ E, we have that Ta1...ak−1ak+1...an
is not p-summing. From Proposition 3.1

it follows that T is not p-summing at a.

From Proposition 3.1 we know that L (a)
as,p(nE; E) = L (nE; E) �⇒

Las,p(nE; E) = L (nE; E). It is interesting to point out that Theorem 3.2
guarantees that much more holds in the bilinear case:

Corollary 3.3. Let E be an infinite-dimensional Banach space, a =
(a1, . . . , an) ∈ En, n ≥ 2 and p ≥ 1. If L (a)

as,p(nE; E) = L (nE; E), then
card{i : ai = 0} ≥ 2. In particular, if L (a)

as,p(2E; E) = L (2E; E) then a is
the origin.

Remark 3.4. The condition ai �= 0 for every i or ai = 0 for only one
i is essential in Theorem 3.2: for example, it is not difficult to check that
L

(a)
as,1(

n�1; �1) = L (n�1; �1) for every a = (x, 0, 0, . . . , 0) with 0 �= x ∈ �1

and every n ≥ 3.

Polynomial case

The theory of summing polynomials at a given point has some specific tech-
nical difficulties and deserves a precise examination. Despite the results we
obtain for polynomials are analogous to the multilinear ones, the proofs of the
multilinear results cannot be adapted to polynomials. For example, a polyno-
mial version of Proposition 3.1 cannot be obtained following the lines of its
proof. Such an adaptation would prove that if P : E −→ F is (p; q)-summing
at a ∈ E, a �= 0, then P is (p; q)-summing at every λa, λ �= 0. Indeed, this
implication follows from

P(λa + xj ) − P(λa) = P

(
λa + λ

λ
xj

)
− P(λa)

= λn

(
P

(
a + 1

λ
xj

)
− P(a)

)
.

But we need more: we want to prove that if P is (p; q)-summing at a �= 0,
then P is (p; q)-summing at the origin. By P̌ we mean the unique symmetric
continuous n-linear mapping associated to the n-homogeneous polynomial P .
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Proposition 3.5. Let P ∈ P(nE; F) and a ∈ E. P is (p; q)-summing at
a if and only if P̌ is (p; q, . . . , q)-summing at (a, . . . , a) ∈ En.

Proof. Using the polarization formula, the case a = 0 is immediate. We
can suppose a �= 0. Note that if P̌ is (p; q, . . . , q)-summing at (a, . . . , a) it
is plain that P is (p; q)-summing at a. The proof of the other implication is
divided in two cases: n odd and n even.

• First case: n is odd. In this case the polarization formula is decisive:
(3.1)

n!2n
[
P̌

(
a + x

(1)
j , . . . , a + x

(n)
j

) − P̌ (a, . . . , a)
]

=
∑

εi=±1

ε1 · · · εnP
(
ε1(a + x

(1)
j ) + · · · + εn(a + x

(n)
j )

)

−
∑

εi=±1

ε1 · · · εnP (ε1a + · · · + εna)

=
∑

εi=±1

ε1 · · · εn

[
P

(
(ε1a + · · · + εna) + (ε1x

(1)
j + · · · + εnx

(n)
j )

)

− P(ε1a + · · · + εna)
]
.

Since n is odd, (ε1 + · · · + εn) �= 0. P is (p; q)-summing at a by assumption,
so according to what we did above it follows that P is (p; q)-summing at each
(ε1a + · · · + εna). Thus (3.1) yields that P̌ is (p; q)-summing at (a, . . . , a).

• Second case: n is even. Choose ϕ ∈ E′ so that ϕ(a) = 1 and define
Q ∈ P(n+1E; F) by Q(x) = ϕ(x)P (x). Using that P ∈ P

(a)

as(p;q)(
nE; F), it

is easy to check that Q is (p; q)-summing at a. But (n + 1) is odd, so the
previous case can be invoked in order to conclude that Q̌ is (p; q)summing at
(a, . . . , a). Since Q̌a and ϕ are (p; q)-summing at the origin (the case of Q̌a

follows from Proposition 3.1), from

Q̌a(x, . . . , x) = Q̌(a, x, . . . , x) = (n − 1)

n
P̌ (a, x, . . . , x)ϕ(x) + 1

n
P (x)

we conclude that P is (p; q)-summing at the origin as well. Now, the po-
larization formula can be invoked as in (3.1) in order to conclude that P̌ is
(p; q)-summing at (a, . . . , a) and the proof is done.

Applying Proposition 3.1 once and Proposition 3.5 twice we have:

Corollary 3.6. Let P ∈ P(nE; F) be (p; q)-summing at a ∈ E. Then P

is (p; q)-summing at λa for every λ ∈ K. In particular, P is (p; q)-summing
at the origin.

Now we obtain the Dvoretzky-Rogers type theorem for polynomials sum-
ming at a point a �= 0.
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Theorem 3.7. Let E be a Banach space, n ≥ 2 and p ≥ 1. The following
assertions are equivalent:

(a) E is infinite-dimensional.

(b) P (a)
as,p(nE; E) �= P(nE; E) for every a ∈ E, a �= 0.

(c) P (a)
as,p(nE; E) �= P(nE; E) for some a ∈ E, a �= 0.

Proof. As in the proof of Theorem 3.2, we just have to prove (a) ⇒ (b):
let a ∈ E, a �= 0. Choose ϕ ∈ E′ so that ϕ(a) = 1 and define P ∈ P(nE; E)

by P(x) = ϕ(x)n−1x. Assume that P is p-summing at a. By Proposition 3.5
we have that P̌ is p-summing at (a, . . . , a). Defining Pa ∈ L (E; E) by
Pa(x) = P̌ (a, . . . , a, x), from

Pa(x) = P̌ (a + 0, . . . , a + 0, a + x) − P̌ (a, . . . , a) for every x ∈ E,

we conclude that Pa is p-summing. From

Pa(x) = (n − 1)

n
ϕ(x)a + 1

n
x for every x ∈ E,

it follows that the identity operator on E is p-summing. This contradiction
completes the proof.

4. Norms on spaces of everywhere summing polynomials

In order to define a norm on the space P ev
as(p;q)(

nE; F) of everywhere
(p; q)-summing polynomials, Matos [9], in a clever argument, for each P ∈
P ev

as(p;q)(
nE; F) considered the polynomial

�p;q(P ): �u
q(E) −→ �p(F ); (xj )

∞
j=1 �−→ (P (x1), (P (x1 + xj ) − P(x1))

∞
j=2)

and showed that the the correspondence P −→ ‖�p;q(P )‖ defines a norm
on P ev

as(p;q)(
nE; F). We shall denote this norm by ‖P ‖ev(1)(p;q). Matos proved

that this norm is complete and that (P ev
as(p;q), ‖·‖ev(1)(p;q)) is a global holo-

morphy type. Matos’ argument was recently adapted to multilinear mappings
in [3] (henceforth we whall write L ev

as(p;q) instead of L ev
as(p;q,...,q)): given T ∈

L ev
as(p,q)(E1, . . . , En; F), consider the multilinear mapping ξp;q(T ): �u

q(E1)×
· · · × �u

q(En) −→ �p(F ) given by
((

x
(1)
j

)∞
j=1, . . . ,

(
x

(n)
j

)∞
j=1

)
�−→

(
T (x

(1)
1 , . . . , x

(n)
1 ),

(
T (x

(1)
1 + x

(1)
j , . . . , x

(n)
1 + x

(n)
j ) − T (x

(1)
1 , . . . , x

(n)
1 )

)∞
j=2

)
.

In [3] it is proved that the correspondence T −→ ‖ξp,q(T )‖ defines a complete
norm on L ev

as(p;q)(
nE; F), which we shall denote by ‖T ‖ev(1)(p;q). So, in P ev

as(p;q)
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another natural norm is defined by ‖P ‖ev(I)(p;q) := ‖P̌ ‖ev(1)(p;q). In [3] it is
shown that with this norm P ev

as(p;q) is also a global holomorphy type.
We will see that these ideal norms on P ev

as(p;q) and L ev
as(p;q) are non-normal-

ized in general and present quite serious difficulties concerning computations,
even for very simple mappings. Our aim in this section is to introduce normal-
ized ideal norms on P ev

as(p;q) and L ev
as(p;q) which happen to be equivalent to the

original norms and make computations quite easier.
Next two theorems are adaptations of Matos’ argument.

Theorem 4.1. The following assertions are equivalent for T ∈ L (E1, . . . ,

En; F):

(a) T ∈ L ev
as(p;q)(E1, . . . , En; F).

(b) There exists C such that

( ∞∑
j=1

∥∥T (b1 + x
(1)
j , . . . , bn + x

(n)
j ) − T (b1, . . . , bn)

∥∥p

) 1
p

≤ C
(
‖b1‖ + ∥∥(

x
(1)
j

)∞
j=1

∥∥
w,q

)
. . .

(
‖bn‖ + ∥∥(

x
(n)
j

)∞
j=1

∥∥
w,q

)

for every (b1, . . . , bn) ∈ E1 ×· · ·×En and (x
(k)
j )∞j=1 ∈ �u

q(Ek), k = 1, . . . , n.
Moreover, the infimum of all C for which (b) holds defines a complete norm
on L ev

as(p;q) denoted by ‖·‖ev(2)(p;q).

Proof. Since (b) ⇒ (a) is obvious we just have to prove (a) ⇒ (b): define
Gk = Ek ×�u

q(Ek), k = 1, . . . , n, and consider the n-linear mapping 	p;q(T ):
G1 × · · · × Gn −→ �p(F ) given by
((

a1,
(
x

(1)
j

)∞
j=1

)
, . . . ,

(
an,

(
x

(n)
j

)∞
j=1

))

�−→
(
T (a1 + x

(1)
j , . . . , an + x

(n)
j ) − T (a1, . . . , an)

)∞
j=1

.

Following the lines of the proofs of [3, Propositions 9.3 and 9.4] it can be proved
that 	p;q(T ) is continuous and that the correspondence T −→ ‖	p;q(T )‖ :=
‖T ‖ev(2)(p;q) defines a complete norm on L ev

as(p;q)(E1, . . . , En; F).

Theorem 4.2. The following assertions are equivalent for P ∈ P(nE; F):

(a) P ∈ P ev
as(p;q)(

nE; F).

(b) There exists C such that

(4.1)

( ∞∑
j=1

∥∥P(a + xj ) − P(a)
∥∥p

) 1
p

≤ C
(
‖a‖ + ∥∥(xj )

∞
j=1

∥∥
w,q

)n
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for every a ∈ E and (xj )
∞
j=1 ∈ �u

q(E). Moreover, the infimum of all C

for which (b) holds defines a complete norm on P ev
as(p;q)(

nE; F) denoted
by ‖.‖ev(2)(p;q).

Proof. Again we just have to prove (a) ⇒ (b): define G = E × �u
q(E) and

consider the polynomial

ηp;q(P ): G −→ �p(F ); (
a, (xj )

∞
j=1

) �−→ (
P(a + xj ) − P(a)

)∞
j=1 .

Following the lines of the proofs of [9, Theorem 7.2 and Proposition 7.4] it
can be proved that ηp;q(P ) is continuous and that the correspondence P −→
‖ηp;q(P )‖ := ‖P ‖ev(2)(p;q) defines a complete norm on P ev

as(p;q)(
nE; F).

We can also consider the norm on P ev
as(p,q) defined by ‖P ‖ev(II)(p;q) :=

‖P̌ ‖ev(2)(p;q). So we have four norms on P ev
as(p,q), namely ‖·‖ev(1)(p;q),

‖·‖ev(2)(p;q), ‖·‖ev(I)(p;q) and ‖·‖ev(II)(p;q). We will show that: (i) these four norms
are distinct in general but equivalent; (ii) the ideal (P ev

as(p,q), ‖·‖ev(2)(p;q)) is
normalized; (iii) the ideal (P ev

as(p,q), ‖·‖ev(1)(p;q)) is non-normalized in gen-
eral; (iv) the norm ‖·‖ev(2)(p;q) is easier for computations; (v) these four norms
make P ev

as(p,q) a global holomorphy type. In our opinion these facts show that
‖·‖ev(2)(p;q) is the most convenient norm on P ev

as(p,q) and justify its introduction.

Multilinear case

Given n ∈ N, by An: Kn −→ K we mean the canonical n-linear mapping
given by An(x1, . . . , xn) = x1 · · · xn. According to the usual axiomatization, a
Banach ideal of multilinear mappings (M, ‖ · ‖M) must satisfy the condition
‖An‖M = 1 for every n.

Proposition 4.3. Let n ∈ N.

(a) ‖An‖ev(2)(p;q) = 1 for every p ≥ q ≥ 1.

(b) ‖An‖ev(1)(p;1) = 1 for every p ≥ 1.

(c) ‖An‖ev(1)(p;q) ≥ 2
1

q∗ , where 1
q

+ 1
q∗ = 1, for every p ≥ q > 1. In

particular, ‖An‖ev(1)(p;q) > 1 whenever q > 1.

(d) limn→∞ ‖An‖ev(1)(p;q) = ∞ for every p ≥ q > 1.

Proof. By definition it is obvious that ‖An‖ev(1)(p;q) ≥ ‖An‖as(p;q) = 1
and ‖An‖ev(2)(p;q) ≥ ‖An‖as(p;q) = 1.

(a) We just have to prove that ‖An‖ev(2)(p;q) ≤ 1. The case n = 3 is illus-
trative: given a1, a2, a3 ∈ K and (x1

j ), (x2
j ), (x3

j ) ∈ �q = �u
q(K), since p ≥ q
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we have
( ∞∑

j=1

|A3(a1 + x1
j , a2 + x2

j , a3 + x3
j ) − A3(a1, a2, a3)|p

) 1
p

=
( ∞∑

j=1

|a1a2x
3
j + a1a3x

2
j + a1x

2
j x3

j + a2a3x
1
j + a2x

1
j x3

j + a3x
1
j x2

j + x1
j x2

j x3
j |p

) 1
p

≤ |a1a2|
( ∞∑

j=1

|x3
j |q

)1
q

+ |a1a3|
( ∞∑

j=1

|x2
j |q

)1
q

+ |a1|
( ∞∑

j=1

|x2
j x3

j |q
)1

q

+ |a2a3|
( ∞∑

j=1

|x1
j |q

)1
q

+ |a2|
( ∞∑

j=1

|x1
j x3

j |q
) 1

q

+ |a3|
( ∞∑

j=1

|x1
j x2

j |q
) 1

q

+
( ∞∑

j=1

|x1
j x2

j x3
j |q

) 1
q

≤ |a1a2|
( ∞∑

j=1

|x3
j |q

) 1
q

+ |a1a3|
( ∞∑

j=1

|x2
j |q

) 1
q

+ |a1|
[( ∞∑

j=1

|x2
j |q

)( ∞∑
j=1

|x3
j |q

)] 1
q

+ |a2a3|
( ∞∑

j=1

|x1
j |q

) 1
q

+ |a2|
[( ∞∑

j=1

|x1
j |q

)( ∞∑
j=1

|x3
j |q

)] 1
q

+ |a3|
[( ∞∑

j=1

|x1
j |q

)( ∞∑
j=1

|x2
j |q

)] 1
q

+
[( ∞∑

j=1

|x1
j |q

)( ∞∑
j=1

|x2
j |q

)( ∞∑
j=1

|x3
j |q

)] 1
q

=
(

|a1| +
( ∞∑

j=1

|x1
j |q

)1
q
)(

|a2| +
( ∞∑

j=1

|x2
j |q

)1
q
)(

|a3| +
( ∞∑

j=1

|x3
j |q

)1
q
)

− |a1a2a3|

≤ (|a1| + ‖(x1
j )‖q

)(|a2| + ‖(x2
j )‖q

)(|a3| + ‖(x3
j )‖q

)
= (|a1| + ‖(x1

j )‖w,q

)(|a2| + ‖(x2
j )‖w,q

)(|a3| + ‖(x3
j )‖w,q

)
proving that ‖A3‖ev(2)(p;q) ≤ 1.

(b) In essence, the same argument of (a). Use that p ≥ 1 implies ‖·‖p ≤ ‖·‖1

and in the case q = 1, the last line of the above computation coincides with
∥∥(a1, (x

1
j ))

∥∥
w,1

· ∥∥(a2, (x
2
j ))

∥∥
w,1

· ∥∥(a3, (x
3
j ))

∥∥
w,1

.

(c) We know that

(4.2)

(
|a1 · · · an|p +

∞∑
j=1

|(a1 + x1
j ) · · · (an + xn

j ) − a1 · · · an|p
) 1

p

≤ ‖An‖ev(1)(p;q)

(
|a1|q +

∞∑
j=1

|x1
j |q

) 1
q

· · ·
(

|an|q +
∞∑

j=1

|xn
j |q

) 1
q

,

for every ak ∈ K and (xk
j )∞j=1 ∈ �q, k = 1, . . . , n. Choosing a1 = · · · =
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an−1 = 0, an = 1 and (xk
j )∞j=1 = (1, 0, 0, . . .) for k = 1, . . . , n, we have

2 ≤ ‖An‖ev(1)(p;q)2
1
q , so ‖An‖ev(1)(p;q) ≥ 21− 1

q = 2
1

q∗ .
(d) Making a1 = · · · = an = 1 and (xk

j )∞j=1 = (1, 0, 0, . . .) for k =
1, . . . , n, in (4.2) we obtain

(
1 + (2n − 1)p

) 1
p ≤ ‖An‖ev(1)(p;q)2

n
q .

So,

‖An‖ev(1)(p;q) ≥
(
1 + (2n − 1)p

) 1
p

2
n
q

−→ ∞ if n −→ ∞.

Polynomial case

Given n ∈ N, by Pn: K −→ K we mean the canonical n-homogeneous poly-
nomial given by Pn(x) = xn. According to the usual axiomatization, a Banach
ideal of homogeneous polynomials (Q, ‖ · ‖Q) must satisfy the condition
‖Pn‖Q = 1 for every n.

Proposition 4.4. Let n ∈ N.

(a) ‖Pn‖ev(2)(p;q) = 1 for every p ≥ q ≥ 1.

(b) ‖Pn‖ev(1)(p;1) = 1 for every p ≥ 1.

(c) limn→∞ ‖Pn‖ev(1)(p;q) = ∞ for every p ≥ q > 1.

Proof. By definition it is obvious that ‖Pn‖ev(1)(p;q) ≥ ‖Pn‖as(p;q) = 1 and
‖Pn‖ev(2)(p;q) ≥ ‖Pn‖as(p;q) = 1.

(a) We just have to prove that ‖Pn‖ev(2)(p;q) ≤ 1. Given a ∈ K and (xj ) ∈ �q ,
since p ≥ q we have

( ∞∑
j=1

|Pn(a + xj ) − Pn(a)|p
) 1

p

=
( ∞∑

j=1

|(a + xj )
n − an|p

) 1
p

=
( ∞∑

j=1

∣∣∣∣nan−1xj +
(

n

2

)
an−2x2

j + · · · +
(

n

2

)
a2xn−2

j + naxn−1
j + xn

j

∣∣∣∣
p) 1

p

≤ n|a|n−1

( ∞∑
j=1

|xj |q
) 1

q

+
(

n

2

)
|a|n−2

( ∞∑
j=1

|xj |2q

) 1
q

+

· · · + n|a|
( ∞∑

j=1

|xj |(n−1)q

) 1
q

+
( ∞∑

j=1

|xj |nq

) 1
q
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≤ n|a|n−1

( ∞∑
j=1

|xj |q
) 1

q

+
(

n

2

)
|a|n−2

( ∞∑
j=1

|xj |q
) 2

q

+

· · · + n|a|
( ∞∑

j=1

|xj |q
) n−1

q

+
( ∞∑

j=1

|xj |q
) n

q

≤
(

|a| +
( ∞∑

j=1

|xj |q
) 1

q
)n

= (|a| + ‖(xj )‖q

)n = (|a| + ‖(xj )‖w,q

)n
,

proving that ‖Pn‖ev(2)(p;q) ≤ 1.
(b) Essentially the same proof of (a) with q = 1, using that (|a|+‖(xj )‖w,1)

= ‖(a, (xj ))‖w,1.
(c) Repeating the multilinear argument, making a = 1 and (xj )

∞
j=1 =

(1, 0, 0, . . .) we obtain

‖Pn‖ev(1)(p;q) ≥
(
1 + (2n − 1)p

) 1
p

2
n
q

−→ ∞ if n −→ ∞.

Next examples show that the four norms on P ev
as(p;q) are different in general.

Example 4.5. From Propositions 4.3 and 4.4 we already know that, in most
cases, ‖ · ‖ev(1)(p;q) �= ‖ · ‖ev(2)(p;q)

for multilinear mappings and for polynomials. In particular, for appropriate n,
p and q, since An = (Pn)

∨ we have

‖Pn‖ev(1)(p;q) �= ‖Pn‖ev(2)(p;q)

and

‖Pn‖ev(I)(p;q) = ‖An‖ev(1)(p;q) �= ‖An‖ev(2)(p;q) = ‖Pn‖ev(II)(p;q).

Example 4.6. Let us see that, for polynomials, ‖ · ‖ev(2)(p;q) �= ‖ · ‖ev(II)(p;q)

in general. Let Q2 be the 2nd Nachbin polynomial, that is

Q2: (C2, ‖ · ‖�1) −→ C : Qn

(
x, y)

) = xy.

So, (Q2)
∨: C2 × C2 −→ C is given by (Q2)

∨(
x1, y1), (x2, y2)

) = x1y2+x2y1

2 .
We shall prove that

‖Q2‖ev(2)(1;1) = 1

4
<

1

2
= ‖(Q2)

∨‖ev(2)(1;1) = ‖Q2‖ev(II)(1;1).
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Given a = (a1, a2), b = (b1, b2) ∈ C2 and (xj ) = ((x1
j , x2

j )), (yj ) =
((y1

j , y2
j )) ∈ �1(C2) = �u

1(C
2),

∞∑
j=1

∣∣(Q2)
∨(a + xj , b + yj ) − (Q2)

∨(a, b)
∣∣

=
∞∑

j=1

∣∣∣∣ (a1 + x1
j )(b2 + y2

j ) + (a2 + x2
j )(b1 + y1

j )

2
− (a1b2 + a2b1)

2

∣∣∣∣

= 1

2

∞∑
j=1

∣∣a1y
2
j + b2x

1
j + a2y

1
j + b1x

2
j + x1

j y2
j + x2

j y1
j

∣∣

≤ 1

2

( ∞∑
j=1

|a1y
2
j | +

∞∑
j=1

|b2x
1
j | +

∞∑
j=1

|a2y
1
j |

+
∞∑

j=1

|b1x
2
j | +

∞∑
j=1

|x1
j y2

j | +
∞∑

j=1

|x2
j y1

j |
)

≤ 1

2

[
|a1|

∞∑
j=1

|y2
j | + |b2|

∞∑
j=1

|x1
j | + |a2|

∞∑
j=1

|y1
j | + |b1|

∞∑
j=1

|x2
j |

+
( ∞∑

j=1

|x1
j |

)( ∞∑
j=1

|y2
j |

)
+

( ∞∑
j=1

|x2
j |

)( ∞∑
j=1

|y1
j |

)]

≤ 1

2

(
|a1| + |a2| +

∞∑
j=1

|x1
j | +

∞∑
j=1

|x2
j |

)(
|b1| + |b2| +

∞∑
j=1

|y1
j | +

∞∑
j=1

|y2
j |

)

= 1

2

(
‖a‖ +

∞∑
j=1

‖xj‖
)(

‖b‖ +
∞∑

j=1

‖yj‖
)

= 1

2
(‖a‖ + ‖(xj )‖1)(‖b‖ + ‖(yj )1‖),

proving that ‖(Q2)
∨‖ev(2)(1;1) ≤ 1

2 . Making

a = (0, 0), b = (1, 0), (xj ) = ((0, 1), (0, 0), (0, 0), . . .)

and
(yj ) = ((0, 0), (0, 0), (0, 0), . . .),

we obtain ‖(Q2)
∨‖ev(2)(1;1) ≥ 1

2 . So ‖(Q2)
∨‖ev(2)(1;1) = 1

2 .



234 j. a. barbosa, g. botelho, d. diniz and d. pellegrino

Let (a, b) ∈ C2 and ((xj , yj )) ∈ �1(C2) = �u
1(C

2).

0 ≤
(

|a| − |b| +
∞∑

j=1

|xj | −
∞∑

j=1

|yj |
)2

= |a|2 + |b|2 − 2|ab| + 2|a|
∞∑

j=1

|xj | − 2|a|
∞∑

j=1

|yj | − 2|b|
∞∑

j=1

|xj |

+ 2|b|
∞∑

j=1

|yj | − 2

( ∞∑
j=1

|xj |
)( ∞∑

j=1

|yj |
)

+
( ∞∑

j=1

|xj |
)2

+
( ∞∑

j=1

|yj |
)2

.

Adding 4|a| ∑j |yj | + 4|b| ∑j |xj | + 4
(∑

j |xj |
)(∑

j |yj |
)

in both sides, it
follows that

4

( ∞∑
j=1

|Q2((a, b) + (xj , yj )) − Q2((a, b))|
)

= 4

( ∞∑
j=1

|ayj + bxj + xjyj |
)

≤ 4

(
|a|

∞∑
j=1

|yj | + |b|
∞∑

j=1

|xj | +
∞∑

j=1

|xjyj |
)

≤ 4

(
|a|

∞∑
j=1

|yj | + |b|
∞∑

j=1

|xj | +
( ∞∑

j=1

|xj |
)( ∞∑

j=1

|yj |
))

≤ |a|2 + |b|2 − 2|ab| + 2|a|
∞∑

j=1

|xj | + 2|a|
∞∑

j=1

|yj | + 2|b|
∞∑

j=1

|xj |

+ 2|b|
∞∑

j=1

|yj | + 2

( ∞∑
j=1

|xj |
)( ∞∑

j=1

|yj |
)

+
( ∞∑

j=1

|xj |
)2

+
( ∞∑

j=1

|yj |
)2

≤ |a|2 + |b|2 + 2|ab| + 2|a|
∞∑

j=1

|xj | + 2|a|
∞∑

j=1

|yj | + 2|b|
∞∑

j=1

|xj |

+ 2|b|
∞∑

j=1

|yj | + 2

( ∞∑
j=1

|xj |
)( ∞∑

j=1

|yj |
)

+
( ∞∑

j=1

|xj |
)2

+
( ∞∑

j=1

|yj |
)2

=
(

|a| + |b| +
∞∑

j=1

|xj | +
∞∑

j=1

|yj |
)2

= (‖(a, b)‖ + ‖((xj , yj ))‖1
)2

,
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proving that ‖Q2‖ev(2)(1;1) ≤ 1
4 . Making (a, b) = (1, 0), (xj ) = (0, 0, . . .) and

(yj ) = (1, 0, 0, . . .), we obtain ‖Q2‖ev(2)(1;1) ≥ 1
4 . So ‖Q2‖ev(2)(1;1) = 1

4 .

Once we know that the four norms on P ev
as(p;q) are different in general, we

would like to prove that they are equivalent. There is no hope for them to be
uniformly equivalent on n, because from Propositions 4.3(d) and 4.4(c) we
know that, for q > 1, there is neither a constant C such that

‖Pn‖ev(1)(p;q) ≤ C‖Pn‖ev(2)(p;q) for every n,

nor a constant C such that

‖Pn‖
ev(I )(p;q)

≤ C‖Pn‖ev(II)(p;q) for every n.

Proposition 4.7. For every natural n, real numbers 1 ≤ q ≤ p, Banach
spaces E and F and P ∈ P ev

as(p;q)(
nE; F),

‖P ‖ev(2)(p;q) ≤ ‖P ‖ev(1)(p;q), ‖P ‖ev(2)(p;q) ≤ ‖P ‖ev(II)(p;q) ≤ en‖P ‖ev(2)(p;q)

and ‖P ‖ev(1)(p;q) ≤ ‖P ‖ev(I)(p;q) ≤ en‖P ‖ev(1)(p;q).

Proof. Given P ∈ P ev
as(p;q)(

nE; F), a ∈ E and (xj ) ∈ �u
q(E), from

(4.3)

( ∞∑
j=1

‖P(a + xj ) − P(a)‖p

) 1
p

≤
(

‖P(a)‖p +
∞∑

j=1

‖P(a + xj ) − P(a)‖p

) 1
p

≤ ‖P ‖ev(1)(p;q) sup
‖ϕ‖≤1

(
|ϕ(a)|q +

∞∑
j=1

|ϕ(xj )|q
) n

q

≤ ‖P ‖ev(1)(p;q)

(
sup

‖ϕ‖≤1
|ϕ(a)|q + sup

‖ϕ‖≤1

∞∑
j=1

|ϕ(xj )|q
) n

q

= ‖P ‖ev(1)(p;q)

(‖a‖q + ‖(xj )‖q
w,q

) n
q

≤ ‖P ‖ev(1)(p;q)

(‖a‖ + ‖(xj )‖w,q

)n
,

we conclude that ‖P ‖ev(2)(p;q) ≤ ‖P ‖ev(1)(p;q).
For every P ∈ P ev

as(p;q)(
nE; F) we know that

P̌ ∈ L ev
as(p;q)(

nE; F), ‖P ‖ev(2)(p;q) = ‖ηp;q(P )‖
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and

‖P ‖ev(II)(p;q) = ‖P̌ ‖ev(2)(p;q) = ‖	p;q(P̌ )‖ = ‖(ηp;q(P ))∨‖,
because 	p;q(P̌ ) is symmetric and (	p;q(P̌ ))∧ = ηp;q(P ). From the classical
estimates ‖ηp;q(P )‖ ≤ ‖(ηp;q(P ))∨‖ ≤ en‖ηp;q(P )‖
we obtain ‖P ‖ev(2)(p;q) ≤ ‖P ‖ev(II)(p;q) ≤ en‖P ‖ev(2)(p;q).

The remaining inequalities are analogous.

Corollary 4.8. Given n ∈ N, 1 ≤ q ≤ p, Banach spaces E and F , the
norms ‖ · ‖ev(1)(p;q), ‖ · ‖ev(2)(p;q), ‖ · ‖ev(I)(p;q) and ‖ · ‖ev(II)(p;q) are equivalent
on P ev

as(p;q)(
nE; F).

Proof. Just combine the Open Mapping Theorem with the inequalities of
Proposition 4.7.

Proposition 4.9. For K = C, given 1 ≤ q ≤ p, P ev
as(p;q) is a global

holomorphy type with either‖·‖ev(1)(p;q), ‖·‖ev(2)(p;q), ‖·‖ev(I)(p;q) or‖·‖ev(II)(p;q).

Proof. From [9, Proposition 7.8],
(
P ev

as(p;q), ‖ · ‖ev(1)(p;q)

)
is a global holo-

morphy type (with constant 2e) and an adaptation of [9, Proposition 7.8]
provides that

(
P ev

as(p;q), ‖ · ‖ev(2)(p;q)

)
is a global holomorphy type. Combining

these facts with the inequalities we proved in Proposition 4.7, we obtain that
the other two norms also generate global holomorphy types.
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