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A GENERALIZED POINCARÉ-LELONG FORMULA

MATS ANDERSSON∗

Abstract

We prove a generalization of the classical Poincaré-Lelong formula. Given a holomorphic section
f , with zero set Z, of a Hermitian vector bundle E → X, let S be the line bundle over X \ Z
spanned by f and let Q = E/S. Then the Chern form c(DQ) is locally integrable and closed in
X and there is a current W such that ddcW = c(DE)− c(DQ)−M, where M is a current with
support on Z. In particular, the top Bott-Chern class is represented by a current with support on
Z. We discuss positivity of these currents, and we also reveal a close relation with principal value
and residue currents of Cauchy-Fantappiè-Leray type.

1. Introduction

Let f be a holomorphic (or meromorphic) section of a Hermitian line bundle
L → X, and let [Z] be the current of integration over the divisor Z defined by
f . The Poincaré-Lelong formula states that

ddc log(1/|f |) = c1(DL)− [Z],

where c1(DL) is the first Chern form associated with the Chern connectionDL

onL, i.e., c1(DL) = ℵ�L, where�L is the curvature; here and throughout this
paper ℵ = i/2π and dc = ℵ(∂̄ − ∂) so that

ddc = i

π
∂∂̄ = 2ℵ∂∂̄.

If U is the meromorphic section of the dual bundle L∗ such that U · f = 1,
then R = ∂̄U is a (0, 1)-current, and we have the global factorization

(1.1) [Z] = R ·DLf/2πi.

If A = −2ℵ∂ log(1/|f |), then clearly dA = ∂̄A = c1(DL) − [Z], and it is
easily checked that A = U · DLf/2πi. In this paper we consider analogous
formulas for a holomorphic section f of a higher rank bundle, and our main
result is the following generalization of the Poincaré-Lelong formula.
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Theorem 1.1. Let f be a holomorphic section of the Hermitian vector
bundle E → X of rank m. Let Z = {f = 0}, let S denote the (trivial) line
bundle over X \ Z generated by f , and let Q = E/S, equipped with the
induced Hermitian metric.

(i) The Chern form c(DQ) is locally integrable inX and its natural extension
to X is closed. Moreover, the forms log |f |c(DQ) and

(1.2) |f |2λ ℵ∂|f |2 ∧ ∂̄|f |2
|f |4 ∧ c(DQ), λ > 0,

are locally integrable in X, and

(1.3) M = lim
λ→0+

λ|f |2λ ℵ∂|f |2 ∧ ∂̄|f |2
|f |4 ∧ c(DQ) = ddc(log |f |c(DQ))1Z

is a closed current of order zero with support on Z. If codimZ = p, then

M = Mp +Mp+1 + · · · +Mmin(m,n),

where Mk has bidegree (k, k), and

Mp =
∑

αj [Z
p

j ],

where Zpj are the irreducible components of codimension precisely p, and αj
are the Hilbert-Samuel multiplicities of f .

(ii) There is a current W of bidegree (∗, ∗) and order zero in X which is
smooth in X \ Z, and with logarithmic singularity at Z, such that

(1.4) ddcW = c(DE)− C(DQ)−M,

where C(DQ) denote the natural extension of c(DQ).

Here c(D) denotes the Chern form with respect to the Chern connectionD
associated to the Hermitian structure, i.e., c(D) = det(ℵ�+I ), where� = D2

is the curvature tensor. We let ck(D) denote the component of bidegree (k, k).
For an explicit expression for W , see Definition 4.4 in Section 4. If Wk

denotes the component of bidegree (k, k), then (1.4) means that

(1.5) ddcWk−1 = ck(DE)− ck(DQ)−Mk.

Since Q has rank m− 1, cm(DQ) = 0, and therefore

ddcWm−1 = cm(DE)−Mm,
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which means that the current Mm represents the top degree Bott-Chern class
ĉm(E). It also follows that the Bott-Chern class ĉk(E) is equal to ĉk(Q) if
k < p.

If E is a line bundle, then, see Definition 4.4, W = W0 = log(1/|f |), so
(1.5) is the then usual Poincaré-Lelong formula.

In [8] Bott and Chern developed a method of transgression which in par-
ticular gives a form w in X \ Z such that ddcw = c(DE) − c(DQ). It is not
unexpected that one can extend this construction acrossZ by a careful analysis
of the occurring singularities at Z. In the recent paper [17], Meo proves (1.5)
for k = p. Previously this formula was proved in [7] in the case when f defines
a complete intersection, i.e., p = m. A variety of analogous formulas for d
rather than ddc are constructed in quite general (non-holomorphic) situations
in [12], [13], [14], and [15].

Clearly Mp is always a positive current. It follows from (1.3) that Mk is
positive if ck−1(DQ) is a positive form. For an even more precise formula for
M , see Proposition 7.5.

Let us say that E is positive if E∗ is Nakano negative.

Theorem 1.2. Assume that E is positive. Then c(DE) is a positive form,
C(DQ) and M are positive currents, and (one can choose W such that) W is
positive where |f | ≤ 1.

If A = −2ℵ∂W we have, cf., (1.4),

(1.6) ∂̄A = dA = c(DE)− c(DQ)−M.

In [1] we introduced a residue current R = Rp + · · · + Rmin(m,n), associated
with f , with support on Z, where Rk is a (0, k)-current with values in �kE∗,
and a principal value currentU = U1 +· · ·+Um such that (δf − ∂̄)U = 1−R,
where δf denotes contraction with f . When E is a line bundle, then U = 1/f
and R = ∂̄(1/f ). In analogy to (1.1) we can factorize Mp as

Mp = Rp · (DEf )
p/p!;

this was proved in [2]. We have a similar, but somewhat more involved, formula
for the whole currentM , see (6.4) in Section 6. In a similar way we can express
A and c(DQ), see (6.5) and (6.6), in terms of the current U .

Remark 1. Let f1, . . . , fr be holomorphic sections of E and let Z be the
analytic set where they are linearly dependent. Moreover, let S be the trivial
rank r-subbundle of E over X \ Z generated by fj and let Q = E/S. Then
c(DQ) has a natural current extension C(DQ) across Z and there is a closed
current M of bidegree (∗, ∗) with support on Z and a current A such that

(1.7) dA = ∂̄A = c(DE)− C(DQ)−M.
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This can be proved by a small modification of the argument in this paper; in
the case Z has generic dimension such a formula was proved already in [14],
and the general case should be contained in [15]. It follows from (1.7) that the
current Mk is a representative for ck(DE) for k > m− r .

However, we have no analogous formula for ddc.

As indicated above, the proof of Theorem 1.1 relies on the construction in
[8], combined with a careful control of the singularities at Z. To begin with
one constructs a form v in X \ Z such that

ddcv = c(DE)− c(DS)c(DQ).

By Hironaka’s theorem and toric resolutions, following [4] and [18], we can
prove that this equality has meaning in the current sense across Z. Here a
crucial point is an explicit formula for the Chern form c(DQ) (Proposition 4.2)
from which it is easy to conclude that c(DQ) has a smooth extension across
the singularity after an appropriate blow-up. By the usual Poincaré-Lelong
formula, c(DS) − 1 = ddc log(1/|f |) outside Z, and we can conclude that
(1.4) holds (if the capitals denote the natural extensions across Z) with

W = log(1/|f |)C(DQ)− V,

andM = ddc(log |f |C(DQ))1Z . Theorem 1.2 follows essentially by applying
ideas in [8].

In Section 7 we discuss the positivity and prove Theorem 1.2, essentially
by applying ideas from [8]. The paper is concluded by some examples.

2. Preliminaries

We first recall the differential geometric definition of Chern classes. Let E →
X be any differentiable complex vector bundle over a differential manifoldX,
with connection D: Ek(X,E) → Ek+1(X,E) and curvature tensor D2 = � ∈
E2(X,EndE). The connectionD = DE induces in a natural way a connection
DEndE on the bundle EndE by the formula Dg · ξ = D(g · ξ)− g ·Dξ , and
in a similar way there is a natural connection DE∗ on the dual bundle E∗, etc.
In particular we have Bianchi’s identity

(2.1) DEndE� = 0.

If I denotes the identity mapping on E, then c(D) = det(ℵ� + I ) is a
welldefined differential form whose terms have even degrees, which is called
the Chern form ofD. It is a basic fact that c(D) is a closed form. Moreover its
de Rham cohomology class is independent ofD and is called the (total) Chern
class c(F ) of the bundle F .
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To prove this, one can consider a smooth one-parameter family Dt of con-
nections of F with D0 = D. If E′ is the pull-back of E to X × [0, 1], then
D′ = Dt + dt is a connection on E′ and its curvature tensor is

�′ = �t + dt ∧ Ḋt

where Ḋt= dDt/dt . It is readily checked that it is an element in E1(X,End(F )).
Since (d + dt ) det(ℵ�′ + I ) = 0 we have that

dζ

∫ 1

0
det(ℵ�′ + I ) = −

∫ 1

0
dt det(ℵ�′ + I ) = c(D)− c(D1).

In order to make the computation more explicit we introduce the exterior
algebra bundle � = �(T ∗(X)⊕ F ⊕ F ∗). Any section ξ ∈ Ek(X, F ) corres-
ponds to a section ξ̃ of �; if ξ = ξ1 ⊗ e1 + · · · + ξm ⊗ em in a local frame ej ,
then we let ξ̃ = ξ1 ∧ e1 + · · · + ξm ∧ em. In the same way, a ∈ Ek(X,EndE)
can be identified with

ã =
∑
jk

ajk ∧ ej ∧ e∗k ,

if e∗j is the dual frame, and a = ∑
jk ajk ⊗ ej ⊗ e∗k with respect to these

frames. A given connectionD = DF on F extends in a unique way to a linear
mapping E (X,�) → E (X,�) which is a an anti-derivation with respect to
the wedge product in �, and such that it acts as the exterior differential d on
the T ∗(X)-factor. It is readily seen that

D̃Eξ = Dξ̃,

if ξ is a form-valued section of E. In the same way we have

Lemma 2.1. If a ∈ Ek(X,EndE), then

(2.2) ˜DEndEa = Dã.

Proof. If ξ ∈ Ek(X,E) and η ∈ E (X,E∗), then

DEndE(ξ ⊗ η) = DEξ ⊗ η + (−1)kξ ⊗DE∗η,

and thus the snake of DEndE(ξ ⊗ η) is equal to

D̃Eξ ∧ η + (−1)k+1ξ̃ ∧ D̃E∗η = D(ξ̃ ∧ η)
as claimed.
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Since DEndEI = 0, (I = IE) we have from (2.1) and Lemma 2.1 that

(2.3) D�̃ = 0 and DĨ = 0.

We let Ĩm = Ĩ m/m! and use the same notation for other forms in the sequel.
Any form ω with values in� can be written ω = ω′ ∧ Ĩm+ω′′ uniquely, where
ω′′ has lower degree in ej , e∗k . If we define∫

e

ω = ω′,

then this integral is of course linear and moreover

(2.4) d

∫
e

ω =
∫
e

Dω.

In fact, since DĨm = 0,∫
e

Dω =
∫
e

dω′ ∧ Ĩm +Dω′′ = dω′ = d

∫
e

ω.

Observe that

(2.5) c(D) =
∫
e

(ℵ�̃+ Ĩ )m =
∫
e

eℵ�̃+Ĩ .

Lemma 2.1 and (2.3) together imply that the Chern form c(D) is closed. Fur-
thermore, following the outline above, we get the formula

(2.6) d

∫ 1

0

∫
e

ℵ˜̇D ∧ eℵ�̃t+Ĩ = c(D1)− c(D0),

thus showing that c(D0) and c(D1) are cohomologous.
Recall that if the connection D is modified to D1 = D − γ , where γ ∈

E1(X,EndE)), then �1 = � − DEndEγ + γ ∧ γ . If we form the explicit
homotopy Dt = D − tγ , therefore

(2.7) �t = �− tDEndEγ + t2γ ∧ γ
and hence, by Lemma 2.1,

(2.8) �̃t = �̃− tDγ̃ + t2 ˜γ ∧ γ .



a generalized poincaré-lelong formula 201

3. Bott-Chern classes

From now on we assume thatE is a holomorphic Hermitian bundle and thatDE

is the Chern connection andD′
E is its (1, 0)-part. Then the induced connection

DE∗ on E∗ is the Chern connection on E∗ etc. In particular, our mapping D
on � is of type (1, 0), i.e., D = D′ + ∂̄ .

Let E → X be a Hermitian vector bundle with Chern connection DE . The
Bott-Chern class ĉ(E) is the equivalence class of the Chern form c(DE) in

⊕kEk,k(X) ∩ Ker d

⊕kddcEk,k(X)
.

Lemma 3.1. LetD be a connection depending smoothly on a real parameter
t . Moreover, assume that L ∈ E (X,End(E)) depends smoothly on t and that

(3.1) D′
EndEL = Ḋ.

Also assume that �t has bidegree (1, 1) for all t . If

v = −1

2

∫ 1

0

∫
e

L̃t ∧ eℵ�̃t+Ĩ dt,

then −2ℵ∂v = b, where

b =
∫ 1

0

∫
e

ℵ˜̇Dt ∧ eℵ�̃t+Ĩ dt.

This lemma as well as the other material in this section is taken from [8].
However, we use a somewhat different formalism, and for the reader’s con-
venience we supply some simple proofs.

Proof. In view of (2.4) we have that (suppressing the index t)

d

∫
e

L̃ ∧ eℵ�̃+Ĩ =
∫
e

DL̃ ∧ eℵ�̃+Ĩ ,

and by identifying bidegrees we get that

∂

∫
e

L̃ ∧ eℵ�̃+Ĩ =
∫
e

D′L̃ ∧ eℵ�̃+Ĩ =
∫
e

˜̇D ∧ eℵ�̃+Ĩ .

Since db = c(D1)− c(D0), cf., (2.6), we thus have

(3.2) −ddcv = c(D1)− c(D0).
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By deforming the metric one can use this lemma to show that ĉ(E) is
independent of the Hermitian structure onE, see [8]. However we are interested
in a somewhat different situation. Assume that we have the short exact sequence
of Hermitian vector bundles

(3.3) 0 −→ S
j−→ E

g−→ Q −→ 0,

whereQ and S are equipped with the metrics induced by the Hermitian metric
of E. Then

(3.4) j ∗ ⊕ g:E → S ⊕Q

is a smooth vector bundle isomorphism. If DS and DQ are the Chern connec-
tions on S and Q respectively, then

(3.5) DE ∼
(
DS −β∗
β DQ

)

with respect to the isomorphism (3.4), where β ∈ E1,0(X,Hom(S,Q)) is the
second fundamental form, see [10]. We shall now modify the connectionD =
DE toDb = D− γb, where γb = D′

EndEjj
∗. It turns out that γ = g∗ ◦ β ◦ j ∗,

thus γ ∧ γ = 0, and that DEndEγ = ∂̄γ . Moreover, it follows that

Db ∼
(
DS ∗
0 DQ

)

and hence

(3.6) �b ∼
(
�S ∗
0 �Q

)
,

so that c(Db) = c(DS)c(DQ). IfDt = D− tγb we have�t = �− t ∂̄γb; thus
it has bidegree (1, 1). If we let

(3.7) b =
∫ 1

0

∫
e

ℵγ̃b∧eĨ+ℵ�̃−tℵ∂̄ γ̃b =
∑
�≥0

∫
e

ℵγ̃b∧eĨ+ℵ�̃∧ 1

(�+ 1)!
(−ℵ∂̄ γ̃b)�

it follows from (2.6) that db = c(DE) − c(DS)c(DQ). Moreover, if L =
jj ∗/(1 − t), then (3.1) holds. In fact, Ḋ = −γb, and [jj ∗, g∗ ◦ β ◦ j ∗] =
g∗ ◦ β ◦ j ∗, so that

(3.8) D′
EndE,tL = D′

EndEL− t[γb, L] = 1

1 − t
γb − t

1 − t
γb = γb.
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Proposition 3.2. If

(3.9) v =
m−1∑
�=1

(−1)�

2�

∫
e

j̃j ∗ ∧ (Ĩ + ℵ�̃− ℵ∂̄ γ̃b)m−�−1 ∧ (−ℵ∂̄ γ̃b)�,

then −2ℵ∂v = b.

Proof. Observe that

∂

∫ 1−ε

0

∫
e

j̃j ∗

1 − t
∧ eĨ+ℵ�1dt =

∫ 1−ε

0

∫
e

D1j̃j ∗

1 − t
∧ eĨ+ℵ�1dt = 0,

since D1j̃j ∗ = ˜DEndE,1jj ∗ = 0 in view of Lemma 2.1 and (3.8). Therefore,

ℵ∂
∫ 1−ε

0

∫
e

j̃j ∗ ∧ eĨ+ℵ�̃−tℵ∂̄ γ̃b − eĨ+ℵ�̃−ℵ∂̄ γ̃b

1 − t
dt =

∫ 1−ε

0

∫
e

ℵγ̃b ∧ eĨ+ℵ�̃−tℵ∂̄ γ̃b .

The proposition now follows by letting ε → 0 and computing the t-integral
on the left hand side.

Altogether we therefore have that −ddcv = c(DE)−c(DS)c(DQ) and thus
ĉ(E) = ĉ(S)ĉ(Q).

4. Proof of the main formula

Let f be a nontrivial holomorphic section of E, Z = {f = 0}, and let S be
the trivial subbundle of E over X \ Z, generated by the f . We then have the
short exact sequence (3.3) overX \Z, where g:E → Q = E/Q is the natural
projection. Let σ be the section of the dual bundleE∗ with minimal norm such
σ · f = 1. Then clearly

(4.1) j̃j ∗ = f ∧ σ.
Observe that the natural conjugate-linear isometry E � E∗, η �→ η∗,

defined by
η∗ · ξ = 〈ξ, η〉, ξ ∈ E (X,E),

extends to an isometry on the space of form-valued sections.

Lemma 4.1. If φ = −∂ log |f |2, then D′σ = φ ∧ σ.
Proof. Observe thatσ = f ∗/|f |2. SinceD = DE is the Chern connection,

D′f ∗ = (∂̄f )∗ = 0, so we have

D′σ = D′(f ∗/|f |2) = ∂
1

|f |2 ∧ f ∗ = −∂ log |f |2 ∧ σ.
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Following Section 3 we let γb = D′
EndE(jj

∗). By Lemma 4.1 and (4.1) we
then have

(4.2) γ̃b = (Df − f ∧ φ) ∧ σ
and

(4.3) ∂̄γ̃b = (Df − f ∧ φ) ∧ ∂̄σ + (�f + f ∧ ∂̄φ) ∧ σ.
The following formula is the key point in the analysis of the singularities of
c(DQ).

Proposition 4.2. In X \ Z we have the explicit formula

(4.4) c(DQ) =
∫
e

f ∧ σ ∧ eĨ+ℵ�̃−ℵDf∧∂̄σ .

Proof. Since �b = �− ∂̄γb we have by (4.3) that

�̃b = �̃− (
(Df − f ∧ φ) ∧ ∂̄σ + (�f + f ∧ ∂̄φ) ∧ σ )

.

For any section A of End(E),

(4.5)
∫
e

f ∧ σ ∧ Ãm−1 =
∫
e

f ∧ σ ∧ eÃ

is the determinant of the restriction ofA toQ, that is, the determinant of gAg∗.
In view of (3.6) therefore the expression on the right hand side of (4.4) is equal
to det(IQ + ℵ�Q) = c(DQ).

Now, let v and b be the forms in X \ Z defined by (3.7) and (3.9).

Proposition 4.3. (i) The forms v, b, c(DQ), and c(DS)∧c(DQ) are locally
integrable in X.

(ii) If the natural extensions are denoted by capitals, then

(4.6) −2ℵ∂V = B,

and

(4.7) −ddcV = c(DE)− C(DS)C(DQ).

Proof. This is clearly a local question at Z. Locally we can write f =
f1ej + · · · + fmem, where ej is a local holomorphic frame for E. In a small
neighborhood U of a given point in X, Hironaka’s theorem provides an n-
dimensional complex manifold Ũ and a proper mapping �: Ũ → U which is



a generalized poincaré-lelong formula 205

a biholomorphism outside �−1({f1 · · · fν = 0}), and such that locally on Ũ
there are holomorphic coordinates τ such that �∗fj = ujτα−1

1 · · · ταnn , where
uj nonvanishing; i.e., roughly speaking �∗fj are monomials. By a resolution
over a suitable toric manifold, following [3] and [18], we may assume in the
same way that one of the functions so obtained divides the other ones. For
simplicity we will make a slight abuse of notation and suppress all occurring
�∗ and thus denote these functions by fj as well. We may therefore assume
that f = f0f

′ where f0 is a holomorphic function and f ′ is a non-vanishing
section. Since σ = f ∗/|f |2, it follows that σ = σ ′/f0 where σ ′ is smooth,
and hence

j̃j ∗ = f ∧ σ = f ′ ∧ σ ′

is smooth in this resolution. Moreover,Df ∧ ∂̄σ = Df ′ ∧ ∂̄σ ′ + · · ·, where · · ·
denote terms that contain some factor f ′ or σ ′. In view of Proposition 4.2 it
follows that (the pullback of) c(DQ) is smooth, and therefore locally integrable.
Since the push-forward of a locally integrable form is locally integrable we
can conclude that c(DQ) is locally integrable.

It follows that also γ̃b = D′(f ∧ σ) and ∂̄ γ̃b are smooth. Since (4.6) and
(4.7) hold inX\Z and c(DE) is smooth, it follows that all the forms are smooth
in the resolution. We can conclude that all the forms are locally integrable in
X and that (4.6) and (4.7) hold.

The presence of the factor j̃j ∗ = f ∧ σ implies that, cf., (3.9),

(4.8) v =
m−1∑
�=1

(−1)�

2�

∫
e

f ∧σ∧(Ĩ+ℵ�̃−ℵDf ∧∂̄σ )m−1−�∧(−ℵDf ∧∂̄σ )�.

Definition 4.4. We define the current W as

(4.9) W = log(1/|f |)c(DQ)− V

= log(1/|f |)
∫
e

f ∧ σ ∧ (ℵ�̃+ Ĩ − ℵDf ∧ ∂̄σ )m−1

−
m−1∑
�=1

(−1)�

2�

∫
e

f ∧ σ ∧ (Ĩ + ℵ�̃− ℵDf ∧ ∂̄σ )m−1−� ∧ (−ℵDf ∧ ∂̄σ )�.

In particular, if E is a line bundle, i.e., m = 1, then V = 0, and since
σ ·f = 1 we have thatW = log(1/|f |). It is now a simple matter to conclude
the proof of Theorem 1.1.

Proof of Theorem 1.1. Consider a resolution of singularities in which
f = f0f

′ with f ′ non-vanishing, as in the proof of Proposition 4.3. Then we
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know that c(DQ) is smooth, and therefore log |f |c(DQ) is locally integrable
there. Moreover, since log |f | = log |f0| + log |f ′| we have that

λ|f |2λ ℵ∂|f |2 ∧ ∂̄|f |2
|f |4 ∧ c(DQ)

= λ|f0|2λ|f ′|2λℵ
(
df0

f0
+ ∂|f ′|2

|f ′|2
)

∧
(
df̄0

f̄0
+ ∂̄|f ′|2

|f ′|2
)

∧ c(DQ).

This form is locally integrable for λ > 0 and tends to

[f0 = 0] ∧ c(DQ) = ddc(log |f |c(DQ))1{f0=0}

when λ → 0, where [f0 = 0] is the current of integration over the divisior
defined by f0. Thus M is a closed current of bidegree (∗, ∗) and order zero
in X with support on Z. Thus, see, e.g., [10], Mk = 0 for k < p = codimZ

and Mp = ∑
j αjZ

p

j for some numbers αj . To see that αj is precisely the
multiplicity of f onZpj we can locally deform the Hermitian metric to a trivial
metric. Then � = 0 and a straight-forward computation, see [2], reveals that
cp−1(DQ) = (ddc log |f |)p−1. Therefore, M = ddc(log |f |(ddc log |f |)p−1)

which is equal to the multiplicity times [Zpj ] according to King’s formula,
see [11] and [10]. Thus part (i) of the theorem is proved. Since c(DS) − 1 =
c1(DS) = ddc log(1/|f |) we have

ddc(log(1/|f |)c(DQ)) = C(DS)∧C(DQ)−C(DQ)−ddc(log |f |c(DQ))1Z.

Now part (ii) follows from Proposition 4.3, cf, (4.9).

5. A direct approach to (1.6)

We use the same notation as in the previous section. In [6], Berndtsson intro-
duced the deformation Da = D − γa of D on E, where

(5.1) γ̃a = Df ∧ σ,

in order to construct Koppelman formulas for ∂̄ on manifolds. He proved
formula (5.7) below for k = m (i.e., ∂̄am = dam = cm(E)). For the general
case first we must understand the geometric meaning of Da . Since Daf = 0,
we have that Daξ is in S if ξ is a section of S. Moreover, if ξ is a section of
S⊥, then Daξ = DEξ . Now

(5.2) gξ �→ g(Daξ)
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is a well-defined connection on Q, and we claim that it is actually the Chern
connection DQ. In fact, if η = gξ , then

DQη = g(DE(g
∗η)) = g(Da(g

∗η)) = g(Daξ).

It follows that �Qη = g(�aξ), and since �aξ = 0 if ξ takes values in S, we
have that

(5.3) ℵ�a ∼
(

0 ∗
0 ℵ�Q

)

with respect to the smooth isomorphism (3.4). Therefore,

ℵ�a + IE ∼
(
IS ∗
0 IQ + ℵ�Q,

)
,

and taking the determinant, we find that

(5.4) c(DQ) = c(Da).

Proposition 5.1. If γa is defined by (5.1), then

(5.5) −tDγ̃a + t2 ˜γa ∧ γa = −t (Df ∧ ∂̄σ +�f ∧σ)+ (t − t2)Df ∧φ∧σ.

Proof. A simple computation yields

Dγ̃a = �f ∧ σ +Df ∧ ∂̄σ +Df ∧ φ ∧ σ
and ˜γa ∧ γa = Df ∧ σ ·Df ∧ σ,
where the dot means the natural contraction of E and E∗ so that ξ · (α ∧ η) =
α(ξ · η) if ξ and η are sections of E and E∗, respectively, and α is a form.
Since σ ·Df = −D′σ · f = φ we get the desired formula.

Proposition 5.2. If

(5.6) a =
∫
e

ℵDf ∧ σ ∧ eĨ+ℵ�̃ ∧
∞∑
�=0

(−ℵDf ∧ ∂̄σ )�
(�+ 1)!

then

(5.7) ∂̄a = da = c(DE)− c(DQ)

in X \ Z.
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Proof. We choose the homotopy Dt = D − tγa between D = D0 and
D1 = Da .

In view of (2.6), (2.1), and Proposition 5.1 we have that

a =
∫
e

∫ 1

0
ℵDf ∧ σ ∧ eĨ+ℵ�̃−tℵ(�f∧σ+Df∧∂̄σ )−(t−t2)Df∧φ∧σ dt

satisfies the second equality in (5.7) in X \ Z. Noticing that σ ∧ σ = 0, a
computation of the t-integral yields (5.6). Since a has bidegree (∗, ∗ − 1) and
da has bidegree (∗, ∗) it follows that ∂̄a = da.

The forms a and b are related in the following way.

Proposition 5.3. In X \ Z we have that

(5.8) b = a + ℵ∂ log |f |2 ∧ c(DQ)

Proof. Starting with (3.7) we have

b =
∫
e

ℵ(Df − f ∧ φ) ∧ σ ∧ eĨ+ℵ�̃ ∧
∞∑
�=0

(−ℵDf + ℵf ∧ φ)�
(1 + �)!

∧ (∂̄σ )�

= −
∫
e

eĨ+ℵ�̃ ∧
∞∑
�=0

(−ℵDf + ℵf ∧ φ)�+1

(�+ 1)!
∧ σ ∧ (∂̄σ )�

= −
∫
e

eĨ+ℵ�̃−ℵDf+ℵf∧φ ∧
∞∑
�=0

σ ∧ (∂̄σ )�

= −
∫
e

eĨ+ℵ�̃−ℵDf ∧ (1 + ℵf ∧ φ) ∧
∑
�

σ ∧ (∂̄σ )�.

In view of (6.3) and (6.6), recalling that φ = −∂ log |f |2, we now get (5.8).

By a resolution of singularities as in the proof of Proposition 4.3 above
one can see that a is locally integrable. Let A denote its natural extension.
By such a resolution one can also verify that the formal computation (using
Proposition 5.3)−2ℵ∂(log(1/|f |)c(DQ)−V ) = B−ℵ∂ log |f |2∧C(DQ) = A

is ligitimate, and thus we have

(5.9) A = −2ℵ∂W.

As a consequence we get that ∂̄A = dA = c(DE)− c(DQ)−M .
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6. Factorization of currents

Since a and c(DQ) are locally integrable, |f |2λa and |f |2λc(DQ) are well-
defined currents for Re λ > −ε and we have

(6.1) A = |f |2λa|λ=0 and C(DQ) = |f |2λc(DQ)|λ=0.

It also follows that

(6.2) M = −d|f |2λ ∧ a|λ=0 = −∂̄|f |2λ ∧ a|λ=0.

Now consider the expression (5.6) for a. Since each term in exp(Ĩ + ℵ�̃) has
the same degree in ej and e∗k it must be multiplied by terms with the same
property in order to get a product with full degree. Therefore we can rewrite a
as

(6.3) a = −
∫
e

eĨ+ℵ�̃−ℵDf ∧
∞∑
0

σ ∧ (∂̄σ )�.

In [1] we introduced the currents

U = |f |2λ σ

1 − ∂̄σ

∣∣∣∣
λ=0

= |f |2λ ∧ σ ∧
∑
�

(∂̄σ )�−1

∣∣∣∣
λ=0

and

R = ∂̄|f |2λ ∧ σ

1 − ∂̄σ

∣∣∣∣
λ=0

= ∂̄|f |2λ ∧ σ ∧
∑
�

(∂̄σ )�−1

∣∣∣∣
λ=0

.

It is part of the statement that the right hand sides are current valued holo-
morphic functions for λ > −ε, evaluated at λ = 0. In general U and R are not
locally integrable. The current R is supported on Z,

R = Rp + · · · + Rmin(m,n),

where Rk is the component of bidegree (0, k) taking values in �kE∗, and
(δf − ∂̄)U = 1−R. In view of (6.3), (6.1), and (6.2) we have the factorization
formulas

M =
∫
e

eℵ�̃+Ĩ−ℵDf ∧ R,(6.4)

A = −
∫
e

eℵ�̃+Ĩ−ℵDf ∧ U,(6.5)
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and moreover, cf. (4.4),

(6.6) C(DQ) =
∫
e

f ∧ σ ∧ eℵ�̃+Ĩ−ℵDf∧∂̄σ =
∫
e

eℵ�̃+Ĩ−ℵDf ∧ f ∧ U.

7. Positivity

Let E → X be a Hermitian holomorphic bundle as before and let ej be an
orthonormal local frame. A section

A = i
∑
jk

Ajk ⊗ ej ⊗ e∗k

of T ∗
1,1(X)⊗ End(E) is Hermitian if Ajk = −Akj . It then induces a Hermitian

form a on T 1,0(X)⊗ E∗ by

a(ξ ⊗ e∗j , η ⊗ e∗k ) = Ajk(ξ, η̄),

if ξ, η are (1, 0)-vectors. We say thatA is (Bott-Chern) positive,A ≥B 0, if the
form a is positively semi-definite. In the same way any HermitianA induces a
Hermitian form a′ on T 1,0(X)⊗ E and it is called Nakano positive, A ≥N 0,
if a′ is positively semi-definite.

Notice that ℵ� is Hermitian; it is said to be Nakano positive if ℵ� ≥N 0.
Analogously we say that E is positive, E ≥B 0, if ℵ� ≥B 0. Neither of these
positivity concepts implies the other one unless m = 1.

Since �jk(E∗) = −�jk(E) it follows that E is positive in our sense if and
only if E∗ is Nakano negative. The next proposition explains the interest of
Bott-Chern positivity in this context.

Proposition 7.1. Let

(7.1) 0 → S → E → Q → 0

be a short exact sequence of Hermitian holomorphic vector bundles. Then
E ≥B 0 implies that Q ≥B 0.

Proof. It is well-known, see for instance [10], that E ≤N 0 implies that
S ≤N 0. From the sequence (7.1) above we get the exact sequence 0 → Q∗ →
E∗ → S∗ → 0. Since E∗ ≤N 0 implies Q∗ ≤N 0, it follows that E ≥B 0
implies Q ≥B 0.

The next simple lemma reveals that our definition of Bott-Chern positivity
coincides with the one used in [8].
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Lemma 7.2.A ≥B 0 if and only if there are sections f� of T ∗
1,0(X)⊗E such

that

(7.2) A = i
∑
�

f� ⊗ f ∗
� .

Observe that iff� = ∑
f �j ⊗ej , thenf ∗

� = ∑
f̄ �j ⊗e∗j since ej is ortonormal.

Proof. If (7.2) holds, then

a(ξ, ξ) =
∑
�

f�(ξ)f
∗
� (ξ

∗) =
∑

|f�(ξ)|2 ≥ 0

for all ξ in T 1,0 ⊗E∗. Conversely, if a is positive, it is diagonalizable, and so
there is a basis f� for T ∗

1,0 ⊗ E such that (7.2) holds.

If we identify f� with
∑
f �j ∧ ej as before, then (7.2) means that

(7.3) Ã = −i
∑
�

f� ∧ f ∗
� .

IfB = ∑
Bjkej⊗e∗j is a scalar-valued section of EndE, then it is Hermitian

if and only if Bjk = B̄kj and it is positively semi-definite if and only if

B =
∑
�

g� ⊗ g∗
�

for some sections g� of E; or equivalently,

(7.4) B̃ =
∑
�

g� ∧ g∗
� .

Proposition 7.3. Assume that Aj are (1, 1)-form-valued Hermitian sec-
tions of E and Bk scalarvalued sections, such that Aj ≥B 0 and Bk ≥ 0.
Then

(7.5)
∫
e

Ã1 ∧ . . . ∧ Ãr ∧ B̃r+1 ∧ . . . ∧ B̃m

is a positive (r, r)-form.
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Proof. In view of (7.3) and (7.4), we see that (7.5) is a sum of terms like∫
e

(−i)rf1 ∧ f ∗
1 ∧ . . . ∧ fr ∧ f ∗

r ∧ gr+1 ∧ g∗
r+1 ∧ . . . ∧ gm ∧ g∗

m

= (−i)rcm−r
∫
e

f1 ∧ . . . fr ∧ . . . gm ∧ f ∗
1 ∧ . . . ∧ f ∗

r ∧ . . . g∗
m

= (−i)rcm−r
∫
e

ω ∧ e1 ∧ . . . ∧ em ∧ ω̄ ∧ e∗1 ∧ . . . ∧ e∗m,

where ω is an (r, 0)-form and cp = (−1)p(p−1)/2 = ip(p−1). By further simple
computations,

(−i)rcm−r (−1)mr
∫
e

ω ∧ ω̄ ∧ e1 ∧ . . . ∧ em ∧ e∗1 ∧ . . . ∧ e∗m
= (−i)rcm−r (−1)mrcmω ∧ ω̄ = ir

2
ω ∧ ω̄,

the proposition follows, since the last form is positive.

Proposition 7.4. If E ≥B 0 (or E ≥N 0), then the Chern forms ck(DE)

are positive for all k.

Proof. Since α� ≥B 0 by assumption, and clearly I ≥ 0, it follows from
Proposition 7.3 that

ck(DE) =
∫
e

(ℵ�̃)k ∧ Ĩm−k

is positive.

Proof of Theorem 1.2. We have just seen that c(DE) ≥ 0. From (1.3) it
follows that the current Mk is positive if ck−1(DQ) is positive. From (4.4) we
have that

ck−1(DQ) =
∫
e

f ∧ σ ∧ (ℵ�̃− ℵDf ∧ ∂̄σ )k−1 ∧ Ĩm−k(7.6)

=
k−1∑
j=1

∫
e

f ∧ σ ∧ (ℵ�̃)k−1−j ∧ (−ℵDf ∧ ∂̄σ )j ∧ Ĩm−k.

If s = f ∗ as before, then σ = s/|f |2, and therefore we have

(7.7) ck−1(DQ) =
k−1∑
j=1

∫
e

f ∧ s
|f |2 ∧

(−ℵDf ∧ ∂̄s
|f |2

)
j

∧ (ℵ�̃)k−1−j ∧ Ĩm−k.

Since ∂̄s = (Df )∗ it now follows immediately from Proposition 7.3 that
ck(DQ) is positive if ℵ� ≥B 0.
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It remains to see that one can chooseW so that it is positive where |f | < 1.
Notice that if some of the Aj in (7.5) are replaced by A′

j ≥B Aj , then the
resulting form will be larger; this follows immediately from the proof. Now,
log(1/|f |)c(DQ) is positive when |f | < 1. From (4.8) we have that

vk =
k∑
�=1

(−1)�

2�

∫
e

f ∧ σ ∧ (ℵ�̃− ℵDf ∧ ∂̄σ )k−� ∧ (−ℵDf ∧ ∂̄σ )� ∧ Ĩm−k−1.

Since this is an alternating sum of positive terms it has no sign. If we replace
each factor −ℵDf ∧ ∂̄σ by ℵ�̃− ℵDf ∧ ∂̄σ , then we get a larger form which
in addition is closed, since it is just a certain constant times ck(DQ), cf., (7.6).
Therefore, for a suitable constant νk −v′

k = −vk+νkck(DQ) is a positive form
and dv′

k = dvk . Thus the current

W ′
k = −Vk + νkCk(DQ)+ log(1/|f |)Ck(DQ)

will have the stated property.

The modification of v in last part of the proof is precisely as in [8] but
with our notation, and for an arbitrary k rather than just k = m − 1. It is not
necessary to consider each vk separately. By the same argument one can see
directly that −v′ = −v+ νc(DQ) is positive if ν is appropriately chosen, and
dv′ = dv.

One can prove that if we multiply (7.7) with λ∂|f |2 ∧ ∂̄|f |2/|f |2 and let
λ → 0+, then all terms with j < p − 1 will disappear; see for instance the
proof of Theorem 1.1 in [1]. We thus have

Proposition 7.5. If p = codim{f = 0}, then

Mk = lim
λ→0+

λ|f |2λℵ
∂|f |2 ∧ ∂̄|f |2

|f |2

∧
k−1∑

j=p−1

∫
e

f ∧ s
|f |2 ∧

(−ℵDf ∧ ∂̄s
|f |2

)
j

∧ (ℵ�̃)k−1−j ∧ Ĩm−k.

From this formula it is apparent that Mk vanishes if k < p, and that Mp is
positive, regardless of ℵ�. One can also derive this formula from (6.4).

Remark 2. When k > p, Mk depends on the metric, but there is still a
certain uniqueness: Let Zk be the union of the irreducible components Zkj of
Z of codimension k. One can verify, see [2], that the restriction ofMk to Zk is
a sum ∑

j

αkj [Zkj ],
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whereαkj are nonnegative numbers that are independent of the metric. However
the geometric meaning of these numbers is not clear to us.

8. Some examples

The first two examples suggest that not only the componentMp of the current
M is of interest.

Example 1. Let us assume that X is compact, and that we have sections
fj of rank mj bundles Ej → X, such that

∑
mj = n. If E = ⊕Ej and f =

(f1, . . . , fr), then the intersection number ν of the varieties Zj = {fj = 0} is
equal to the integral of

cn(E) = cm1(E1) ∧ . . . ∧ cmr (Er)
over X. Since Mn represents the cohomology class cn(E), we thus get the
representation

ν =
∫
X

Mn,

i.e., an integral over the set-theoretic intersection Z = ∩Zj . If E is positive
then Mn is positive. If Z is discrete, i.e., f is a complete intersection, then
Mn = [Z], and in this case thus we just get the sum of the points in Z counted
with multiplicities, as expected.

Example 2. LetX be a compact Kähler manifold with metric form ω, and
let f be a holomorphic section ofE → X. If moreoverE ≥B 0, then we know
that c(DE), M , and c(DQ)0 are all positive. Because of (1.4), we therefore
have that∫
X

Mk∧ωn−k =
∫
X

ck(DE)∧ωn−k−
∫
X

ck(DQ)∧ωn−k ≤
∫
X

ck(DE)∧ωn−k.

Thus we get an upper bound of the total mass ofMk in terms of the Chern class
ck(E). Taking k = p = codimZ we get the estimate

area(Zp) =
∫
X

[Zp] ≤
∫
X

cp(E) ∧ ωn−p.

Example 3. Now assume that X = Pn, let

ω = ℵ∂∂̄ log |z|2 = ddc log |z|
denote the Fubini-Study metric and notice that∫

Pn
ωn = 1,
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that is, the total area of Pn is 1/n!.
Assume that F1, . . . , Fm are polynomials in Cn which form a complete

intersection. If Fj has degree dj (depending on z′ = (z′1, . . . , z′n)) then the

the homogenization fj (z) = z
dj
0 F(z

′/z0) is a dj -homogeneous polynomial in
Cn+1 and hence corresponds to a section of the line bundle O (dj ) → Pn. Thus
f = (f1, . . . , fm) is a section of E = ⊕O (dj ). If E is equipped with the
natural metric, i.e.,

‖h([z])‖2 =
∑
j

|h(z)|2
|z|2dj

for a section h = ⊕hj of E (here [z] denotes the point on Pn corresponding
to the point z ∈ Cn+1 \ {0} under the usual projection), then it is easy to check
that E ≥B 0. Therefore Mm ≥ 0, and since moreover,

Mm|Cn = [Z],

if Z here denotes the zero variety {F = 0} in Cn, then

area(Z) =
∫
Cn

[Z] ∧ ωn−m ≤
∫

Pn
Mm ∧ ωn−m =

∫
Pn
cm(DE) ∧ ωn−m,

since cm(DQ) = 0. Here “area” refers to the projective area of course. How-
ever, c(DE) = (1 + d1ω) ∧ . . . ∧ (1 + dmω), and so

cm(DE) = d1 · · · dmωm.
Hence

area(Z) ≤ d1 · · · dm 1

(n−m)!
.

We also notice that the deviation from equality is precisely the total mass of
Mm on the hyperplane at infinity. If m = n we get Bezout’s theorem

#{F = 0} ≤ d1 · · · dn.

Example 4. If f is a complete intersection, i.e., p = m, andWm−1 denotes
the component of bidegree (m− 1,m− 1), then

ddcWm−1 = cm(DE)− [Z];
this means that Wm−1 is a Green current for the cycle Z = ∑

αjZj .
In the case when E = L1 ⊕ · · · ⊕ Lm for some line bundles Lk , hence

cm(DE) = c1(DL1) ∧ . . . ∧ cm(DLm), and f = (f1, . . . , fm), where fj are
holomorphic sections of Lj , such a Green current was obtained already in [3].
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Example 5. LetX be a compact manifold such that there is a holomorphic
section η of some vector bundle H → X × X that defines the diagonal � ⊂
X×X; for instanceX can be complex projective space. From Theorem 1.1 we
get a current Wn such that ddcW = cn(DH)− [�]. If we let K(ζ, z) = −Wn

and P(ζ, z) = cn(DH), then

ddcK = [�] − P,

and this leads to the Koppelman type formula

(8.1) φ(z)−
∫
P(ζ, z) ∧ φ(ζ ) = ddc

∫
X

K ∧ φ

− d

∫
X

K ∧ dcφ + dc
∫
X

K ∧ dφ +
∫
X

K ∧ ddcφ

for the ddc-operator. In particular, if φ is closed (k, k)-form such that dφ = 0,
then dcφ = 0 as well, and thus

v =
∫
X

K ∧ φ

is an explicit solution to ddcv = φ − ∫
P ∧ φ. However if X is non-compact

one gets boundary integrals. It would be desirable to refine the construction to
include somehow an appropriate line bundle with a metric that vanishes at the
boundary, in order to obtain ddc-formulas for, say, domains in Cn.

Example 6. Assume that f is a holomorphic section of some Hermitian
bundle E → X with zero variety Z. If f is locally a complete intersection we
have seen that the currentWm−1 from Theorem 1.1 is a Green current for [Z].
In general we have that ddcWp−1 = cp(DE)−cp(DQ)− [Zp] so we only get a
currentw such that ddcw = [Zp]−γ , where γ is locally integrable. However,
there is another and simpler way to find such a current w, due to Meo, [17].

Proposition 8.1 (Meo). Let f be a holomorphic section of a Hermitian
vector bundle E → X. The forms

w = log |f |((ddc log |f |)p−11X\Z
)

and
γ = −(ddc log |f |)p1X\Z

are locally integrable on X and

(8.2) ddcw = [Zp] − γ.
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For the reader’s convenience we provide a simple proof based on Hironaka’s
theorem.

Sketch of proof. Let f = f0f
′ be as before, i.e., f0 is holomorphic and

f ′ is a non-vanishing section. Then log |f | = log |f0| + log |f ′|, and hence
ddc log |f ′| is smooth and ddc log |f0| = [f0 = 0] has support on the inverse
image Z̃ of Z in the resolution. Thus

w = (log |f0| + log |f ′|)(ddc log |f ′|)p−1, γ = (ddc log |f ′|)p

are both locally integrable in the resolution and hence also on the original
manifold. Moreover,

ddcw = [f0 = 0] ∧ (ddc log |f ′|)p−1 + γ,

in particular (ddcw)1Z̃ is closed, and hence T = (ddcw)1Z is a closed current
on X of order zero. Therefore T = ∑

αj [Z
p

j ], and since we can deforme the
metric into a trivial metric locally, it follows from King’s formula, [11], that
αj are precisely the multiplicities of f on Zpj .

Assume now that X is a compact manifold such that there exists a holo-
morphic section η of some Hermitian bundle H → X × X as in Example 5
above. If furthermore the kernel K is reasonably regular we can assume that

ddc
∫
ζ

K(ζ, z) ∧ ψ(ζ ) = ψ(z)−
∫
ζ

P (ζ, z) ∧ ψ(ζ )

for any (k, k)-current ψ . We then have the explicit solution

g = w +
∫
ζ

K(ζ, z) ∧ γ (ζ )

to the Green equation ddcg = [Zp] − α, where α is the smooth form

α =
∫
ζ

P (ζ, z) ∧ γ (ζ ).

The last example will be elaborated in a forthcoming paper.

REFERENCES

1. Andersson, M., Residue currents and ideals of holomorphic functions, Bull. Sci. Math. 128
(2004), 481–512.

2. Andersson, M., Residue currents of holomorphic sections and Lelong currents, Ark. Mat. 43
(2005), 201–219.



218 mats andersson

3. Berenstein, C., and Yger, A., Green currents and analytic continuation, J. Anal. Math. 75
(1998), 1–50.

4. Berenstein, C. A., Gay, R., Vidras, A., and Yger, A., Residue Currents and Bezout Identities,
Prog. Math. 114 (1993).

5. Berenstein, C., and Yger, A., Analytic residue theory in the non-complete intersection case,
J. Reine Angew. Math. 527 (2000), 203–235.

6. Berndtsson, B., Cauchy-Leray forms and vector bundles, Ann. Sci. Éc. Norm. Sup. 24 (1991),
319–337.

7. Bismut J.-M., Gillet, H., and Soulé, Ch., Complex immersions and Arakelov geometry, The
Grothendieck Festschrift, Vol. I, 249–331, Progr. Math. 86 (1990).

8. Bott, R., and Chern, S.-S., Hermitian vector bundles and the equidistribution of the zeroes of
their holomorphic sections, Acta Math. 114 (1965), 71–112.

9. Chern, S.-S., Transgression in associated bundles, Internat. J. Math. 2 (1991), 383–393.
10. Demailly, J-P, Complex Analytic and Differential Geometry, Monograph Grenoble (1997)
11. King, J. R., A residue formula for complex subvarieties, Proc. Carolina conf. on holomoprhic

mappings and minimal surfaces, Univ. of North Carolina, Chapel Hill (1970), 43–56.
12. Harvey, R., and Semmes, S., Zero divisors of atomic functions, Ann. of Math. 135 (1992),

567–600.
13. Harvey, R., and Lawson, B., A theory of characteristic currents associated with a singular

connection, Astérisque No. 213 (1993), 268 pp.
14. Harvey, R., and Lawson, B., Geometric residue theorems, Amer. J. Math. 117 (1995), 829–

873.
15. Harvey, R., and Lawson, B., Singularities and Chern-Weil theory. II. Geometric atomicity,

Duke Math. J. 119 (2003), 119–158.
16. Meo, M., Résidus dans le cas non nécessairment intersection complète, C. R. Acad. Sci. Paris

Sér I Math. 333 (2001), 33–38.
17. Meo, M., Courants résidus et formule de King, Preprint (2003), Ark. Mat. 44 (2006), 149–165.
18. Passare, M., Tsikh, A., and Yger, A., Residue currents of the Bochner-Martinelli type, Publ.

Mat. 44 (2000), 85–117.

DEPARTMENT OF MATHEMATICS
CHALMERS UNIVERSITY OF TECHNOLOGY AND THE UNIVERSITY OF GÖTEBORG
S-412 96 GÖTEBORG
SWEDEN
E-mail: matsa@math.chalmers.se


