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SUBLEVEL SETS OF CERTAIN EXTREMAL
FUNCTIONS
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1. Introduction

Let D be a domain in Cn. An upper semicontinuous function u : D →
[−∞,∞) is called plurisubharmonic if the restriction of u to each complex
line is subharmonic (we allow the constant function −∞ to be plurisubhar-
monic). The set of plurisubharmonic functions onD is denoted by PSH (D).
Let E be a subset of D and a ∈ D. The relative extremal function uE,D , the
Green function ga,D with pole at a and the global extremal (also called Siciak
extremal) function VE of E are defined as follows

uE,D(z) = sup{v(z) : v ∈ PSH (D), v ≤ 0, v|E ≤ −1},(1)

ga,D(z) = sup{v(z) : v ∈ PSH (D), v < 0,(2)

v(ξ) = log |ξ − a| +O(1), when ξ → a},
VE(z) = sup{v(z) : v ∈ L (Cn), v|E ≤ 0},(3)

where L (Cn) contains all plurisubharmonic functionu on Cn satisfyingu(z) ≤
log+ |z|+cu, where cu is some constant depending on u. These extremal func-
tions are important objects of pluripotential theory, in particular, in connection
with problems of determining capacity of sets and approximation of holo-
morphic functions. See [7], [13] and [16] for more details. We should remark
that, in higher dimensions, it is virtually impossible to compute precisely uE,D ,
ga,D and VE , even for simply looking sets. Thus it may be of interest to study
the geometry of the sublevel sets of these functions. Recall also that a subset
X of Cn is said to be convex if for every pair z,w ∈ E, the line segment
connecting z and w also belongs to E. The following results are known.

Theorem 1.1 ([3], [9]). Let D be an open convex domain in Cn and E
compact convex subset of D. Then for every t ∈ (−1, 0), the sublevel set
{z ∈ D : uE,D(z) < t} is convex.
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Theorem 1.2 ([8], [10]). LetE be a compact convex subset set in Cn. Then
for every t > 0, the sublevel set {z ∈ D : VE(z) < t} is convex.

Theorem 1.3 ([8]). Let D be a convex domain in Cn and a ∈ D. Then for
every t < 0, the sublevel set {z ∈ D : ga,D(z) < t} is convex.

The original proofs of the above theorems are complicated and require
lengthy preparation. More precisely, Theorems 1.2 and 1.3 are proved by us-
ing Lempert’s powerful machinery of constructing extremal disks on convex
domains, Theorem 1.1 is proved in [9] via Poletsky’s theory on holomorphic
disks and in [3] by considering the structure of the polynomially convex hull
of sets with convex fibers over the unit circle.

The goal of this paper is to present a unified approach to the problem of
determining convexity of sublevel sets for uE,D, VE, ga,D . More precisely, we
will give different proofs to the above theorems, which are based on the product
properties for these extremal functions. This approach will also enable us to
study the geometry of sublevel sets of extremal plurisubharmonic functions
on complex varieties. In this more general context, the notion of convexity
is replaced by a notion of connectivity. See the next section for the precise
definition. The last section includes a proof of the product property for the
relative extremal functions on complex varieties.

Acknowledgements. This paper is an expanded version of the master
thesis of the second named author. Our work is supported by the National
Research Program in Natural Sciences of Viet Nam.

2. Geometry of sublevel sets of uE,D, VE, ga,D

We start off by giving a proof of Theorem 1.3, this will enable us to see the
connection between the product property of Green functions and geometry of
its sublevel sets.

Proof of Theorem 1.3. Fix z,w ∈ D such thatga,D(z) < t, ga,D(w) < t .
By the product formula (see Theorem 2 in [6]) we have

g(a,a),D×D(z,w) = max(ga,D(z), ga,D(w)) < t.

By (2) we have for all λ ∈ (0, 1)

ga,D(λz+ (1 − λ)w) ≤ g(a,a),D×D(z,w).

It follows that {ga,D < t} is convex for all t < 0

Before formulating a variation on Theorem 1.2, it seems appropriate to
recall some elements of global extremal functions on complex varieties. Let
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D be a complex subvariety of pure dimension k in a domain � in Cn and
G be an open subset of D. An upper semicontinuous function u on G is
called plurisubharmonic if u ◦ f is subharmonic on the unit disk � ⊂ C
for every holomorphic mapping f : � → G. Denote by PSH (G) the set of
plurisubharmonic functions onG. By a deep result of Fornaess and Narasimhan
in [5], u ∈ PSH (G) if and only if near every point a ∈ G,u is the restriction
to G of a plurisubharmonic function on some neighbourhood of a (in �).
FollowingW. Stoll (see [14] and [16]), we call a continuous exhaustion function
g ∈ PSH (D) with values in (−∞,∞) a parabolic potential if g satisfies, in
the sense of currents, the complex Monge-Ampère equation (ddcg)k = 0 on
D \ g−1(−∞), where d = ∂ + ∂, dc = i(∂ − ∂). Let Lg(D) denote the set of
u ∈ PSH (D) such that

u(z) ≤ cu + g+(z), ∀z ∈ D,
where g+ = max(g, 0). Now we define for each bounded subset E of D the
function

VE(z) = sup{v(z) : v ∈ Lg(D), v|E ≤ 0}, ∀z ∈ D.
In the case, D = � = Cn, and g(z) = log |z|, we recover the global extremal
function ofE defined in (3). For more details on these matters, the reader may
consult Section 3 of [16].

We also denote by A (�) the set of all families � := {ϕλ}0≤λ≤1, where
ϕλ : �×� → � is holomorphic and the function λ 	→ ϕλ(z,w) is continuous
when z,w are fixed. Moreover,

ϕ0(z, w) = z, ϕ1(z, w) = w, ∀(z, w) ∈ �×�.

A subset X of � is called �-connected for some � ∈ A (�) if for all λ ∈
[0, 1], ϕλ(X×X) = X. Again, ifD = � = Cn and ϕλ(z,w) = λz+(1−λ)w,
then �-connectivity of X is equivalent to its convexity.

Theorem 2.1. Let D be a locally irreducible complex subvariety of pure
dimension in a domain � in Cn, and E a compact subset of D. Assume that
there is a parabolic potential g on D and � ∈ A (�) such that the following
conditions are satisfied

(a) D and E are �-connected.

(b) g+(ϕλ(z,w)) ≤ max(g+(z), g+(w)) for all (z, w, λ) ∈ D×D× [0, 1].

Then for all t > 0 the set {z ∈ D : VE(z) < t} is �-connected.

Proof. Set

g̃(z, w) = max(g(z), g(w)), ∀(z, w) ∈ D ×D.
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By Proposition 3.4 and Example 3.5 in [16], g̃ is a parabolic potential for the
complex subvarietyD×D of�×�. Now we fix t > 0 and two points z,w in
D such that VE(z) < t, VE(w) < t . Using the product formula (Theorem 4.5
in [16]) we have

VE×E(z,w) = max(VE(z), VE(w)) < t,

where VE×E is the global extremal function of E × E with respect to the
potential g̃. Observe that for every λ ∈ (0, 1), by (a) and (b) we have

VE(ϕλ(z,w)) ≤ VE×E(z,w).

It follows that {VE < t} is �-connected for all t > 0.

Remark. In the case where D = Cn and g = log |z|, we may apply a
more elementary version of the product formula (see Proposition 5.9 in [13])
to reach the same conclusion.

Now we move to a variation of Theorem 1.1, which is in the same spirit as
Theorem 2.1. At this point, some background on relative extremal functions
on complex varieties is necessary. Let D be a locally irreducible complex
subvariety of a domain� ⊂ Cn andE ⊂ D then the relative extremal function
uE,D is defined, in analogy with (1), as follows

(4) uE,D(z) = sup{v(z) : v ∈ PSH (D), v ≤ 0, v|E ≤ −1},
We say that E is regular if uE,D is plurisubharmonic on D. Moreover, E is
strongly regular ifE is regular, uE,D is continuous onD and limξ→∂D uE,D(ξ)

= 0. Observe that the condition on strong regularity of E implies that D
admits a negative continuous plurisubharmonic exhaustion function. For more
background on relative extremal functions on complex varieties, the reader
may consult [15].

The result below gives a sufficient condition for the regularity of a given
compact set.

Proposition 2.2. Let D be a locally irreducible complex subvariety of a
bounded domain � in Cn. Assume that E is a compact subset of D satisfying
the following condition

(a) For every a ∈ ∂E (relative to D), there exists a holomorphic map ϕ :
� → �, where � is the open unit disk in C such that ϕ(0) = a and
ϕ(�) intersects E0, the interior of E (relative to D) in a continuous
curve terminating at a.

ThenE is regular. Moreover,E is strongly regular if, in addition, the following
conditions are fullfiled
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(b) For every point a ∈ D \ E, there exists ua ∈ PSH (D), ua < 0 such
that −∞ < supE ua < ua(a).

(c) � is hyperconvex i.e., there exists a negative continuous plurisubhar-
monic exhaustion function on �.

Remarks. (i) In caseD is a domain in Cn, the condition (a) is nothing more
than a slight improvement of the well known analytic accessibility condition
due to Plesinak. See [7], p. 201.

(ii) If K and L are two compact sets of complex subvarietiesD1 andD2 in
domains �1 ⊂ Cn,�2 ⊂ Cp. Assume that K and L satisfy the condition (a)
(resp. (a) and (b)) thenK×L also satisfies the condition (a) (resp. (a) and (b)).

(iii) If D is a hyperconvex domain in Cn and E is a compact convex subset
ofD with E0 
= ∅ then E satisfies (a) and (b). Thus E is strongly regular with
respect to D.

Proof. By Theorem 1.5 in [15], the function u∗
E,D is plurisubharmonic on

D. Clearly u∗
E,D ≡ −1 on E0. It follows from (a) and the classical fact that

every point of a continuous curve in C is non thin, that u∗
E,D ≡ −1 on ∂E. Thus

u∗
E,D ≡ −1 on E. Therefore uE,D is plurisubharmonic on D, so E is regular.

Now, assume, in addition, that conditions (b) and (c) hold. It follows from (4)
that limξ→∂D uE,D(ξ) = 0. Further, by Theorem 1.7 in [15], uE,D is continuous
on D. It remains to show that uE,D > −1 outside E. For this, fix a ∈ D \ E.
Choose ua ∈ PSH (D), ua < 0 such that −∞ < λa := supE ua < ua(a).
Set va = max

(− ua
λa
,−1

)
. Then from (3.3) we infer uE,D(a) ≥ va(a) > −1.

We are done.

Now we come to an analogue of Theorem 1.1 in the setting of complex
varieties.

Theorem 2.3. Let D be a locally irreducible complex subvariety of a
pseudoconvex domain� in Cn. LetE be a compact subset ofD satisfying con-
ditions (a) and (b) in Proposition 2.2. Assume that D and E are �-connected
for some � ∈ A (�). Then for every t ∈ (−1, 0), the set {uE,D < t} is also
�-connected.

Proof. Fix two points z,w ∈ D such that uE,D(z) < t, uE,D(w) < t . By
applying the product formula (see Theorem 3.1 in the next section) we get

uE×E,D×D(z,w) = max(uE,D(z), uE,D(w)) < t.

By (3.3) we have for each λ ∈ (0, 1)

uE,D(ϕλ(z,w)) = uϕλ(E×E),ϕλ(D×D)(ϕλ(z,w)) ≤ uE×E,D×D(z,w) < t.
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This implies that {uE,D < t} is �-connected.

Remark. IfD is a domain in Cn then we can apply the product formula in
[4] to reach the same conclusion.

As an application of Theorem 2.3, we have

Proposition 2.4. Let p, q be two norms in Cn. Assume that E := {q ≤ 1}
is a compact subset of D := {p < 1}. Then for every t ∈ (−1, 0), every
λ ∈ (0, 1) and every k ≥ 1 we have

uE,D(z) < t, uE,D(w) < t ⇒ uE,D(λ
kz+ (1 − λ)w) < t.

Proof. Fix k ≥ 1. Consider the family � := {ϕλ}0≤λ≤1, where

ϕλ(z,w) := λkz+ (1 − λ)w, ∀(z, w, λ) ∈ Cn × Cn × [0, 1].

Since p, q are norms in Cn, we can check that � ∈ A (D) and E is �-
connected. Notice that E is convex and contains the origin, thus E satisfies
(a), (b), (c) of Proposition 2.2. The desired conclusion now follows from The-
orem 2.3.

3. Product property for uE,D

The following result, in the case where D1,D2 are domains in complex Eu-
clidean spaces, was proved in more general contexts in [1] and [4]. See also
Theorem 1.1 in [11] for an earlier (also weaker) result.

Theorem 3.1. Let D1,D2 be locally irreducible complex subvarieties of
pure dimension in domains �1 ⊂ Cn,�2 ⊂ Cp and E1 ⊂ D1, E2 ⊂ D2 be
compact sets. Assume that E1 (resp. E2) satisfies condition (a) (resp. (a) and
(b)) in Proposition 2.2 and �2 is pseudoconvex. Then we have
(5)
uE1×E2,D1×D2(z, w) = max(uE1,D1(z), uE2,D2(w)), ∀ (z, w) ∈ D1 ×D2.

The proof that follows is strongly inspired by Theorem 2 in [6]. We need the
following lemma, which is probably of independent interest. See also Lemma 5
in [6].

Lemma 3.2. LetD be a locally irreducible complex subvariety of a domain
� in Cn and u be a plurisubharmonic function onD×�. Assume that for each
z ∈ D, the subharmonic function u(z, ·) depends only on |λ|. Then for every
negative plurisubharmonic function v on D, the function ϕ(z) = u(z, ev(z))

belongs to PSH (D).
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Proof. Since for each z ∈ D, the function λ 	→ u(z, λ) depends only on
|λ|, we infer that this function is increasing and convex function of log |λ|.
It is then easy to check that ϕ is upper semicontinuous on D. Now we fix
z0 ∈ D, choose a small ball U around z0 in � such that v is the restriction to
U ∩D of a plurisubharmonic ṽ on U . Let U ′ be another ball around z0 which
belongs compactly to U . Select a sequence {vj }j≥1 of negative continuous
plurisubharmonic functions on neighbourhoods of U ′ such that vj ↓ v on
U ′ ∩D. Set

ϕj (z) = u(z, evj (z)), ∀ z ∈ U ′.

Since ϕj ↓ ϕ on U ′ ∩ D, it is enough to show that ϕj is plurisubharmonic
on U ′ ∩ D. Fix j ≥ 1, using a classical theorem of Bremermann (see The-
orem 9 in [12]), we can approximate vj uniformly on U ′ by a sequence of
plurisubharmonic functions

vj,k = 1

mk
max(log |f1,j |, . . . , log |fmk,j |),

where f1,j , . . . , fmk,j are holomorphic functions on a U and mk is a posit-
ive integer. Thus, it suffices to show that for every positive integer m, every
holomorphic function f on U satisfying supU ′ |f | < 1, the function

ψ(z) = u(z, |f (z)|1/m)
is plurisubharmonic on U ′ ∩D. By perturbing f slightly, we may assume that

S := {z ∈ U ′ ∩D : f (z) = 0}
is nowhere dense in D. Notice that ψ is upper semicontinuous on U ′ ∩ D.
Moreover, by the assumptions made on u, we have ψ is plurisubharmonic on
D \ S. By the removable singularity theorem for plurisubharmonic functions
on complex varieties (Theorem 1.7 in [2]), ψ extends to a plurisubharmonic
function ψ̃ on U ′ ∩D. Finally, using the plurisubharmonicity of the function
z 	→ u(z, 0) on U ′ ∩ D, and monotonicity of t 	→ u(z, t), for every z∗ ∈ S

we have

ψ(z∗) = lim sup
z→z∗,z∈(U ′∩D)\S

u(z, 0) ≤ lim sup
z→z∗,z∈(U ′∩D)\S

u(z, |f (z)|1/m)

= ψ̃(z∗) ≤ ψ(z∗).

Thus ψ = ψ̃ on S. This completes the proof of the lemma.
The next lemma is presumably well known, although we have not been able

to find it in the literature in this form.
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Lemma 3.3. LetD be a complex subvariety of pure dimension in a domain
� in Cn. Let u and v be plurisubharmonic functions onD. Assume that u ≤ v

a.e. on D∗, the smooth locus of D. Then u ≤ v everywhere on D.

Proof. By the theory of plurisubharmonic functions on open sets in Cn

we have u ≤ v on D∗. Now fix a point a ∈ D \ D∗. Select a holomorphic
mapping f : � → D such that f (0) = a, f (�) 
⊂ D \D∗. It follows that 0
is an isolated boundary point of f −1(D∗). Since u ◦ f is subharmonic on �,
we have

u(a) = (u ◦ f )(0) = lim sup
t→0,t 
=0

(u ◦ f )(t) ≤ lim sup
t→0,t 
=0

(v ◦ f )(t) ≤ v(a).

This completes the proof.

Proof of Theorem 3.1. The proof is divided into two steps.
Step 1. We will show that it is enough to prove (3.3) in the case where

E2 = �′ := {z : log |z| ≤ −1} and D2 = � := {z : |z| < 1}. For this
purpose, we assume that (3.3) holds with E2 = �′ and D2 = �. Consider
sequences of bounded domain �j1 ↑ �1, �

j

2 ↑ �2 where �j2 are hyperconvex
for all j ≥ 1. It is easy to check that

u
E1,D1∩�j1 ↓ uE1,D1 , uE2,D2∩�j2 ↓ uE2,D2;
u
E1×E2,(D1×D2)∩(�j1×�j2) ↓ uE1×E2,D1×D2 .

Thus we may assume further that �1, �2 are bounded and that �2 is hyper-
convex. By Proposition 2.2 and the remark following it, we have uE1×E2,D1×D2

and uE2,D2 are plurisubharmonic onD1 ×D2 andD2, respectively. Moreover,
the latter one is a continuous negative exhaustion function forD2 and satisfies
(ddcuE2,D2)

k = 0 on D2 \ E2, where k = dimD2.
For z ∈ D1, ξ ∈ H := {t : −1 < Re t < 0} we set

(6) u(z, ξ) = sup
{
uE1×E2,D1×D2(z, w) : uE2,D2(w) < Re ξ

}
.

It follows from (4) that

(7) uE1,D1(z) ≤ u(z, log |λ|), ∀ (z, λ) ∈ D1 × (� \�′).

Moreover, since uE1×E2,D1×D2 is plurisubharmonic on D1 × D2, by Corol-
lary 6.10 in [2], the function ξ 	→ u(z, ξ) is continuous subharmonic onH for
every z ∈ D1. It follows that u is upper semicontinuous on D1 ×H . Next, by
Theorem 6.11 in [2], we conclude that ddcu ≥ 0 onD1 ×H in the sense of dis-
tributions. Thus u is plurisubharmonic on the smooth locus ofD1 ×H . So by
Theorem 1.7 in [2], there is ũ ∈ PSH (D1×H) such that ũ ≤ u onD1×H and
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ũ = u on the smooth locus of D1 ×H . It follows that v(z, λ) := ũ(z, log |λ|)
is plurisubharmonic on D1 × (� \�′) and coincides almost everywhere with
u(z, log |λ|). Combining this with (7), by Lemma 3.3 we get

(8) uE1,D1 ≤ v on D1 × (� \�′).

Since ũ ≤ u on D1 ×H , for a given (z0, λ0) ∈ D1 × ∂�′, we have

(9)

lim sup
(z,λ)→(z0,λ0)

v(z, λ) ≤ lim sup
(z,λ)→(z0,λ0)

u(z, log |λ|)

≤ sup
w∈E2

uE1×E2,D1×D2(z0, w)

≤ uE1,D1(z0).

Set

ṽ(z, λ) =
{
v(z, λ) (z, λ) ∈ D1 × (� \�′)

uE1,D1(z) (z, λ) ∈ D1 × (Int�′).

It follows from (8) and (9) that ṽ ∈ PSH (D1 × �). Obviously v ≤ −1
on E1 × �′. So we must have ṽ ≤ uE1×�′,D1×� on D1 × �. Thus there
is a subset S of D1 × (� \ �′) of Lebesgue measure zero such that for all
(z, λ) ∈ (D1 × (� \�′)) \ S we have

u(z, log |λ|) ≤ uE1×�′,D1×�(z, λ).

Since for each z fixed, the function u(z, ·) is subharmonic on H , an easy ap-
plication of Fubini theorem implies that there exists S ′ ⊂ D1 having Lebesgue
measure 0 such that for all (z, λ) ∈ (D1 \ S ′)× (� \�′) we have

u(z, log |λ|) ≤ uE1×�′,D1×�(z, λ) = max(uE1,D1(z), log |λ|),
where the last equality comes from the assumption made at the beginning of
the proof. In view of (6) we then get

(10) uE1×E2,D1×D2(z, w) ≤ max(uE1,D1(z), uE2,D2(w)),

∀ (z, w) ∈ (D1 \ S ′)×D2.

By the plurisubharmonicity of uE1×E2,D1×D2 and Lemma 3.3, we deduce that
(10) holds for all (z, w) ∈ D1 × D2. Since the reverse inequality in (10) is
trivial, the desired equality (3.3) follows.

Step 2. We will show that holds withE2 = �′,D2 = �. By Proposition 2.2
and the remark following it, the function uE1×�′,D1×� is plurisubharmonic on
D1 × �. We also deduce from that for each z ∈ D1, the function λ 	→
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uE1×�′,D1×�(z, λ) depends only on |λ|. Thus, using Lemma 3.2 we infer that
the function

ω(z) := uE1×�′,D1×�(z, e
uE1 ,D1 (z))

is plurisubharmonic onD1. Clearlyω ≤ 0 onD1 andω ≤ −1 onE1. It follows
that ω ≤ uE1,D1 onD1. Let z0 ∈ D1. By the maximum principle applied to the
subharmonic function

λ 	→ uE1×�′,D1×�(z0, λ)

and the closed disk �z0 := {|λ| ≤ euE1 ,D1 (z0)} we obtain

uE1×�′,D1×�(z0, λ) ≤ max(uE1,D1(z0), log |λ|), ∀ λ ∈ �z0 .

We get the same inequality on the annulus�\�z0 , by applying on this annulus,
the maximum principle to the subharmonic function

λ 	→ uE1×�′,D1×�(z0, λ)− log |λ|.
Summing up, we have shown that

uE1×�′,D1×�(z, λ) ≤ max(uE1,D1(z), log |λ|), ∀ (z, λ) ∈ D1 ×�.

Thus we are done, since the reverse inequality is obvious.

Remark. It is of interest to see whether the method in [4] can be extended
to prove, in the most general possible form, the product property for relative
extremal plurisubharmonic functions on complex varieties.
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