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ON THE SIZE OF THE NON-COINCIDENCE SET OF
PARABOLIC OBSTACLE PROBLEMS WITH

APPLICATIONS TO AMERICAN OPTION PRICING

TEITUR ARNARSON and JONATAN ERIKSSON∗

Abstract

The following paper is devoted to the study of the positivity set U = {L φ > 0} arising in
parabolic obstacle problems. It is shown that U is contained in the non-coincidence set with a
positive distance between the boundaries uniformly in the spatial variable if the boundary of U
satisfies an interior C1-Dini condition in the space variable and a Lipschitz condition in the time
variable. We apply our results to American option pricing and we thus show that the positivity
set is strictly contained in the continuation region, which means that the option should not be
exercised in U or on the boundary of U .

1. Introduction

The problem of pricing American contingent claims is the same as finding a
sufficiently regular solution to the obstacle problem

L f ≤ 0,(1.1)

f ≥ φ,(1.2)

(f − φ)(L f ) = 0(1.3)

in some open set � ⊂ Rn+1 with some appropriate boundary conditions on
the parabolic boundary of �. Here φ = φ(x, t) is the pay-off function (the
obstacle) and L is the differential operator

L f =
n∑

i,j=1

aijfij +
n∑
i=1

bifi + cf − ft .

The non-coincidence set C = {f > φ} is in option pricing called the continu-
ation region, and in this set the option price is a solution to L f = 0. On the
parabolic boundary of C we have continuity so that f = φ and on the lateral
boundary we have the so-called principle of smooth fit ∇x(f − φ) = 0. The
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positivity set is defined as the set where the obstacle is a strict subsolution
to L , that is U = {L φ > 0}, and it is always a subset of the continuation
region. In the present paper we show that this inclusion must be strict in the
sense that there is δ(t) > 0 such that the distance dist(∂Ct , ∂Ut ) ≥ δ(t), where
Ct = {x | (x, t) ∈ C } and Ut = {x | (x, t) ∈ U}, and δ(t) depends only on
L , φ, n and �.

2. Notation

We will use the following notation throughout the paper.

K,K0,Kn, . . . generic constants

D A domain in Rn

QT A cylindrical domain {(x, t) ∈ Rn+1 | x ∈ D, 0 ≤ t ≤ T }
� A domain in Rn+1

(x ′, t) A point (x ′, t) = (x2, x3, . . . , xn, t) ∈ Rn−1 × R
(x, t) A point (x, t) = (x1, x2, . . . , xn, t) ∈ Rn+1

Rn+ {x ∈ Rn | x1 > 0}
Br(x) {y ∈ Rn | |y − x| < r}
B+
r (x) Br(x) ∩ Rn+
Br , B+

r Br(0), B+
r (0)

Cr(x, t), C+
r (x, t) Br(x)× (t − r2, t + r2), B+

r (x)× (t − r2, t + r2)

Cr , C+
r Cr(0, 0), C+

r (0, 0)

A(x, t) A n× n matrix-valued function with elements aij (x, t)

Ã The (n− 1)× (n− 1) matrix-valued function obtained by
removing the first row and column from A.

3. Assumptions, technical tools and known results

In this section we make all the necessary assumptions and we gather some
technical tools and known results that will be useful in proving the main result.

Definition 3.1. A modulus of continuity α is called a Dini modulus of
continuity if

∫
0+

α(r)

r
dr < ∞ and a function h is called Dini continuous if

h has a Dini modulus of continuity. We define the function spaces CD,α(�)
which consists of all functions h : � → R such that h is Dini continuous with
modulus of continuity α, and Ck,lD,α(�) as the space of functions h : � → R
such that Dm1

x h ∈ CD,α(�) and Dm2
t h ∈ CD,α(�) for every multi-index m1

and every positive integer m2 such that |m1| ≤ k and m2 ≤ l.

Consider the operator L f = ∑n
i,j=1 aij (x, t)fij + ∑n

i=1 bi(x, t)fi+ c(x, t)f − ft mentioned in Section 1. We make the following assumptions
regarding the regularity of the coefficients of the operator.



150 teitur arnarson and jonatan eriksson

Assumption 3.2. The lower order coefficients satisfy bi, c ∈ L∞
loc(R

n+1)

and the real symmetric matrixA(x, t) is uniformly positive definite uniformly
in x and t and the L∞

loc-norm of A is finite and A is C1,0
D on compact subsets in

the parabolic norm. That is we assume that |aij (x, t)−aij (y, s)| ≤ α(|(x, t)−
(y, s)|) and

∣∣ ∂aij (x,t)
∂xi

− ∂aij (y,s)

∂xi

∣∣ ≤ α′(|(x, t)− (y, s)|) where α and α′ are two
Dini moduli of continuity and the norm |(x, t)| on the right hand side is the
parabolic norm.

Under these assumptions it is shown in [5] that a weak solution of L u =
g has a continuous and locally bounded gradient for any g ∈ L∞

loc(R
n+1).

Notice that since A has continuous partial derivatives we may write L in
divergence form instead. In this case L f = ∇ · (

A(x, t)(∇f (x, t))T ) +
B(x, t) · (∇f (x, t))T + cf − ∂f

∂t
where the ith component of the vector B

is bi(x, t) − ∑n
j=1

∂aij (x,t)

∂xj
. This will come in handy later, when we change

variables to flatten the boundary locally, because in the new coordinates (y, s)
the coefficient Ay(y, s) of the operator L need not be differentiable in y.

3.1. Local representations

Given a set� and a point (x0, t0) on its boundary, we say thath : Rn−1×R → R
is a local representation of� at (x0, t0) if there are constants δ > 0 andK1 > 0
such that after suitable rotation

� ∩ Cδ(x0, t0) = {(x, t) ∈ Rn+1|x1 > h(x ′, t)} ∩ Cδ(x0, t0)

and

|h(x ′
1, t1)− h(x ′

2, t2)| ≤ K1(|x ′
1 − x ′

2| + |t1 − t2|1/2) in Cδ(x
0, t0).

Note that if h is local representation of � at (x0, t0) then (x0, t0) must be a
lateral boundary point of�. The boundary of� is said to beC1-Dini at (x0, t0)

if there is a Dini modulus of continuity ω such that the local representation h
of ∂� satisfies

|∇x ′h(x ′
1, t1)− ∇x ′h(x ′

2, t2)| ≤ ω(|x ′
1 − x ′

2|)+ ω(|t1 − t2|1/2)(3.1)

|h(x ′, t1)− h(x ′, t2)| ≤ K2|t1 − t2|.(3.2)

(see for instance [3] for more details on local representations). A set � is said
to have an interior C1-Dini property at (x0, t0) if there is a set �′ ⊂ � such
that ∂� ∩ ∂�′ = {(x0, t0)} and if ∂�′ is C1-Dini at (x0, t0) and it is simply
said to have an interior C1-Dini property if all boundary points of � has an
interior C1-Dini property.
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3.2. Straightening out the boundary and a change of variables

Assume that the set � is C1-Dini at a lateral boundary point (x0, t0). The
boundary may now be straightened out with a C1 change of variables. Namely
if we put

(3.3)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1 = x1 − h(x ′, t)

y2 = x2 − x0
2

...
yn = xn − x0

n

s = t − t0

then the boundary is flat in a neighborhood of (x0, t0) in the new coordinate
system (y, s). That is, for some δ′ > 0 possibly smaller than δ there is Cδ′
such that in the new coordinate system (y, s), � ∩Cδ′ = {(y, s) ∈ Rn+1|y1 >

0} ∩ Cδ′ .
In view of this maneuvere the analysis of solutions to L f = g in a neigh-

borhood of a boundary point (x0, t0) may as well be carried out in the (y, s)
coordinates in the neighborhood � ∩ Cδ′ of (0, 0) with the boundary being
{y1 = 0} × (−(δ′)2, (δ′)2) in a neighborhood of (0, 0). The change of co-
ordinates affects the operator L as well and it will in general be much more
complicated in the new coordinates. The explicit expression can be obtained
as follows. Define a matrix function Ay(y, s) and a vector function By(y, s)
by

(3.4) Ay(y, s) = A(x(y, s), t (s))+
( ∇y ′h · (A∇y ′h) −(∇y ′h)Ã

−Ã(∇y ′h)T 0

)

andBy(y, s) = (
B1 −B ·∇yh+ ∂h

∂s
, B ′) whereB = (B1, B

′). HereXT denotes
the transpose of the matrixX and we substitute the expression for y according
to (3.3) instead of x. The operator expressed in the coordinates (y, s) becomes

LyF (y, s) = ∇ · (
Ay(y, s) · ∇F(y, s))

+ By(y, s) · ∇F(y, s)+ Cy(y, s)F − ∂F

∂s
,

where ∇ = ∇y is the gradient with respect to the y-variables. Then if f is a
solution to L f = g in � ∩ Cδ(x0, t0) then F(y, s) = f (y1 + h(y ′, s), y ′, s)
is a solution to LyF (y, s) = G(y, s) in � ∩ Cδ′ in the (y, s) coordinates.

Proposition 3.3. The operator Ly is well-defined and the coefficients sat-
isfy (By)i, C ∈ L∞(�∩Cδ′) and the real matrixAy(y, s) is uniformly positive
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definite uniformly in y and s and the L∞(�∩Cδ′)-norm ofAy is finite andAy
is in CD(� ∩ Cδ′).

Proof. We need to verify thatBy is bounded and thatAy is Dini continuous
in � ∩ Cδ′ and since all components except for the first in the vector b is
unchanged we only need to investigate (By)1. From (3.2) it follows that∣∣∣∣∂h(y, s)∂s

∣∣∣∣ ≤ K2.

It follows that (By)1 is bounded in � ∩ Cδ′ . Next we verify that Ay is Dini
continuous in � ∩ Cδ′ . The first term on the right hand side of Equation 3.4
is A((y1 + h(y ′, s), y ′ + (x0)′), s + t0) and a direct calculation shows that
2
√

2K1α is a Dini modulus of continuity for this term in the variables (y, s).
The second term involves the product of two Dini-continuous functions and we
can find another constantK3 such that 2

√
2K1α+K3(α+ω) is a Dini modulus

of continuity for Ay and the constant K3 depends only on K1, sup�∩Cδ′ |∇h|
and sup�∩Cδ′ |A|.
4. Local existence and regularity of solutions to variational

inequalities
In this section we give some existence and regularity results of local character
for the obstacle problem (1.1)–(1.3) from Section 1. The proof of existence and
regularity is standard, and by combining results on continuity of the gradient
of weak solutions from [5] with results from [6] on existence of solution with
weak derivatives to Cauchy-Dirichlet problems when the top-order coefficient
is only continuous, we can use the method of penalization (see for instance [2])
to obtain a unique solution with a locally uniformly continuous spatial gradient
and weak second order derivative in space and weak first order derivative in
time.

Theorem 4.1. Assume that the coefficients of the operator L satisfies
Assumption (3.2). Then for any cylinder bounded QT and for any function
g ∈ C2,1 on QT such that g ≥ φ and g(x, 0) = φ(x, 0) there is a unique
solution of

L f ≤ 0,(4.1)

f ≥ φ,(4.2)

(f − φ)(L f ) = 0,(4.3)

f |∂pQT
= g|∂pQT

.(4.4)

Moreover, the solution is in W 2,1
p (QT ) for any 1 < p < ∞ and ∇xf is

uniformly continuous on QT .
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Proof. The idea is identical to the one in proof of Theorem 3.2 in [2] and
we use the penalization method implemented there. That is we take a C∞
function βε(t) satisfying

β ′
ε(t) ≥ 0,

βε(t) → −∞ if t < 0, ε → 0,

βε(t) → 0 if t ≥ 0, ε → 0,

βε(t) ≤ C,

βε(0) ≥ −C,
whereC is a constant independent of ε, and we study solutions to the penalized
problem

L f − βε(f − φ) = 0 in QT ,(4.5)

f |∂pQT
= g|∂pQT

.(4.6)

We claim that there exists a solution fε to to Equation (4.5) with boundary
value (4.6). If we put βε,N(t) = max{min{βε(t), N},−N} it follows from
Theorem 9.1, Ch. 4 in [6] that for each q > 1 and for each h ∈ Lq(QT ) there
is a W 2,1

q (QT ) solution f = fε,N to

L f − βε,N(h− φ) = 0 in QT ,(4.7)

f |∂pQT
= g|∂pQT

.(4.8)

Moreover, the solution satisfies |f |W 2,1
q (QT )

≤ K for some constant K inde-
pendent of h. Since the right hand side is bounded for each N it follows from
[5] that ∇xfε,N is uniformly continuous onQT for eachN and each ε. From a
corollary to Theorem 9.1, Ch. 4 in [6] we know that f is Hölder continuous,
which means that βε,N(f − φ) is Hölder continuous. We shall try to estim-
ate this function. Therefore we put ξ(x, t) = βε,N(f − φ)(x, t) and suppose
that (x0, t0) is the minimum point of ξ and that μ = ξ(x0, t0) and μ ≤ 0,
μ < βε(0). If (x0, t0) ∈ ∂pQT then μ = βε,N(g(x0, t0)− φ(x0, t0)) ≥ βε(0).
Hence (x0, t0) ∈ QT , and since βε,N(t) is monotone in t , f − φ must have a
non-positive minimum at (x0, t0). Hence L (f (x0, t0)− φ(x0, t0)) ≥ 0 and it
follows from Equation (4.7) that ξ(x0, t0) ≥ L φ(x0, t0) ≥ −C̃ for some con-
stant C̃ independent of N and ε. Thus,

∣∣βε,N(f − φ)
∣∣ ≤ max{C, C̃} := C1,

which is independent of N and ε. Hence, for N large enough we have that
βε,N(f − φ) = βε(f − φ) and it follows that for N large enough f = fε,N
is a solution to Equation (4.5) with boundary value (4.6) and which satisfies
|f |W 2,1

q (QT )
≤ C1. By weak compactness we can find a subsequence εk such

that εk → 0 as k → ∞ and fεk converges weakly in W 2,1
q (QT ). Call the limit
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function f . Both fε and ∇xfε are uniformly continuous on QT and it follows
that fε converges uniformly to f onQT and that ∇xf is uniformly continuous
on QT . Moreover, since |βε(fε − φ)| ≤ C1 we deduce that f ≥ φ, and since
βε(fε − φ) → 0 on {f > φ} the equation L f = 0 holds on {f > φ}. By
the definition of βε we can also conclude that lim supε→0 βε(fε − φ) ≤ 0
and thus that L f ≤ 0. The function f is the desired solution to the obstacle
problem and f ∈ W 2,1

q (QT ) for any q ∈ (1,∞). Moreover, ∇xf is uniformly

continuous on QT .

5. A Hopf-type lemma for parabolic operators

In this section we show that the interior ball condition needed in the proof of
the classical Hopf boundary point lemma (see for instance [1]) is unnecessarily
strong. In fact it is enough if the boundary is C1

D for the lemma to hold. The
main argument uses Theorem 1.5.10 in [5] and the maximum principle.

Lemma 5.1. Assume that u ≥ 0 is a weak solution to the equation L u =
h ≤ 0 and u > 0 in the interior of � ∩ Cδ(x0, t0) and that u(x0, t0) = 0.
Assume also that� isC1

D at (x0, t0). Let n be the inward unit normal at (x0, t0)

for ∂�. Then the following holds

∂u(x0, t0)

∂n
≥ C > 0

for some constant C.

Proof. In view of the flattening of the boundary described in the previous
section we may assume that �∩Cδ = {x1 > 0} ∩Cδ for some δ > 0. Denote
this set by �δ . Let η0 be as in Theorem 1.5.10 in [5] and take η ≤ η0 such
that η ≤ min(η0, δ). By a shift in time and space we can consider Theorem
1.5.10 in Iη = Bη/2(x0) × [−η2/2, η2/2] where x0 = (η/2, 0, 0, . . . , 0). Let
0 < K < ∞ be a constant such that K infη/4≤|x−x0|≤3η/4 u(x,−η/2) ≥ 1.
Such a constant can be found since u is continuous and positive for x in the
compact set η/4 ≤ |x − x0| ≤ 3η/4. Take a C∞

0 (R
n) function θ with the

support of θ being a subset of |x− x0| ∈ (η/4, 3η/4) and such that 0 ≤ θ ≤ 1
and θ = 1 for |x − x0| ∈ (3η/8, 5η/8) and put η(x, t) = θ(x). Take v to be
the solution to

L v = Kh in Iη(5.1)

v|∂pIη = |∂pIη .(5.2)

By the maximum principle the inequalityKu≥ v holds in Iη. HenceK ∂u
∂x1
(0, 0)

= lim infh→0
Ku(h,0,...,0,0)

h
≥ lim infh→0

v(h,0,...,0,0)
h

= ∂v
∂x1
(0, 0) ≥ C > 0
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according to Theorem 1.5.10 in [5] where C is independent of t and x. Thus
it follows that ∂u(0,0)

∂x1
≥ C/K which means that for some constant C ′(K) we

have ∂u(x0,t0)

∂n
≥ C ′ in the original coordinate system.

6. Uniform distance between the continuation region and the
positivity set

The positivity set U = {L φ > 0} is a subset of the continuation region,
but can the boundaries coincide? Given a pay-off function φ ∈ C

2,1
D (�) the

following theorem holds.

Theorem 6.1. Assume, in addition to Assumption 3.2, that the coefficients
bi and c all are in C0,0

D (�). Then if the lateral part of ∂U is C1
D at each point,

there is δ(t) > 0 depending on L , φ, n andQ such that dist(∂Ut , ∂Ct ) ≥ δ(t)

for each t ∈ (0, T ].

Proof. Suppose that the theorem is false. Then there exist sequences of
coefficients amij , bmi , cm satisfying Assumption 3.2 uniformly in m and such

that bi and c all are in C0,0
D (�) uniformly in m, a sequence of solutions f m

to Lmf
m = 0 in the set Cm = {f m > φ} such that dist(∂Um

t , ∂Cm
t ) ≤ 1

m
.

Moreover, eachUm has a local representation at each point that isC1
D uniformly

in m, and for each m, f m is a W 2,1
q -solution to

Lmf
m ≤ 0,(6.1)

f m ≥ φ,(6.2)

(f m − φ)(Lmf
m) = 0.(6.3)

On each compact K ⊂ �, the families amij , bmi , cm are equicontinuous so
by Arzela-Ascoli there exist subsequences that converge uniformly to some
a0
ij , b

0
i , c

0 satisfying the Dini conditions above on K . Thus, the subsequence
Lmφ → L0φ uniformly and Um → U . Moreover, f m is locally uniformly
bounded and since the coefficients Am, Bm and Cm satisfies Assumption 3.2
uniformly in m and also the extra continuity condition of the theorem, the
spatial gradient of f m is uniformly continuous on K uniformly in m. Thus by
the Arzela-Ascoli theorem we may extract a subsequence from fm such that
this sequence converges uniformly on K to a function f 0 ∈ W 2,1

q (�) for any
1 ≤ q < ∞ and such that ∇f m → ∇f 0 weakly in Lq(K). Moreover, by
Sobolev embedding ∇f 0 is uniformly continuous onK . We need to prove that
f 0 is a solution to the obstacle problem

L0f
0 ≤ 0,(6.4)

f 0 ≥ φ,(6.5)

(f 0 − φ)(L0f
0) = 0.(6.6)
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Since the convergence is uniform it is evident that f 0 ≥ φ so we proceed by
showing that f 0 satisfies the equation L0f

0 = 0 in the set C := {f 0 > φ}. Let
(x0, t0) ∈ {f 0 > φ}. By the maximum principle we can find r > 0 such that
f 0 −φ > 1

2 (f
0((x0, t0)−φ(x0, t0)) inCr(x0, t0). By uniform convergence we

can find anM > 0 such that ifm > M then f m−φ > f 0 −φ− 1
4 (f

0(x0, t0)−
φ(x0, t0)) > 0 for all (x, t) ∈ Cr(x0, t0). HenceCr(x0, t0) ⊂ {f m > φ} ifm >

M so on Cr(x0, t0) we may take the limit in the equation to obtain L0f
0 = 0

on Cr(x0, t0). Thus f 0 solves the equation L0f
0 = 0 on {f 0 > φ}. Next we

take a smooth positive test functionψ with compact support inK and integrate∫
K
(Lmf

m)ψ dx dt ≤ 0. By weak convergence and partial integration we can
proceed to the limit to obtain

∫
K
(L0f

0)ψ dx dt ≤ 0. Thus f 0 is the desired
solution to the obstacle problem and the smooth fit condition ∇xf

0 = ∇xφ is
valid on ∂{f 0 > φ} ∩ K . To finish the proof we observe that the sets U and
C must have at least one common boundary point. Take such a point and call
it (x0, t0). At this point both f 0 = φ and ∇(f 0 − φ) = 0 and since U ⊂ C

this contradicts the Hopf boundary point lemma from Section 5. Hence, the
sequence above cannot exist and there has to be a uniform distance for each t
between ∂U and ∂C .

7. Applications to mathematical finance

Arbitrage valuation of American options in the Black-Scholes framework give
rise to the obstacle problem (1.1)–(1.3) (see [7] chapter 8 for an introduction on
American option valuation). In this setting the functionf is the option price and
φ is the payoff of the option at the expiration date T and the non-coincidence
set is called the continuation region, since the option is not optimally exercised
in this region.

AnAmerican option is a contract between two parties which gives the holder
the following rights: At any time τ before the maturity time T the holder may
exercise the option, receiving the stochastic amount φ(Sτ , τ ) from the seller.
The seller has the obligation to pay φ(Sτ , τ ) if the holder wants to exercise the
option.

The stochastic process St describes the time-evolution of the stock price and
thus, Sτ is the stock price at time τ . Two important questions in mathematical
finance are what the value of such a contact is and when to exercise the option
optimally. It is not obvious that it is optimal to exercise the option prior to the
maturity time T . For instance if φ(s) = (s − K)+, i.e. φ is the pay-off of an
American call option and if there is no dividends payed and if the volatility of
the stock behaves “well” one should not exercise the option early (see Merton
[4]).

The problem of pricing the option can either be approached from a stochastic
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point of view, by solving the optimal stopping problem which gives the price
and the optimal exercise time, or by solving an obstacle problem and determine
the non-coincidence set. Either of the approaches are in general difficult and
one often has to rely on numerical results. However, we can say when not to
exercise the option by studying the positivity set of the pay-off function. This
set is contained in the continuation region and since the boundaries never coin-
cide (under suitable regularity assumptions) we know also that when crossing
the boundary of the positivity set one should hold the option at least a “little
longer”.

The financial model that we use is Black-Scholes model and it looks as fol-
lows: We assume that the stock-price process is an n-dimensional Itô-process
St = (S1

t , . . . S
n
t ) driven by an n-dimensional Brownian motionWt . The volat-

ility σ(s, t) := (σ (s, t))ij and the risk-free rate of return c(s, t) are determin-
istic matrix and real valued functions of current stock-price and time respect-
ively. The drift of the underlying stock-price process under the risk-neutral
measure will be denoted by B(s, t) := (b1(s, t), . . . , bn(s, t)) and is a vector
valued function of current stock-price and time only. Notice that one usually
has B(s, t) = c(s, t)s under this measure but by being a little more gen-
eral we allow for dividends (e.g. that B(s, t) = (c(s, t) − δ(s, t))s for some
dividend function δ(s, t)). Thus we assume that σ : Rn × R → Rn×n and
B : Rn × R → Rn and c : Rn × R → R, and to ensure uniqueness and exist-
ence of the process St as a solution to a stochastic differential equation we also
assume that ‖B(s1, t)− B(s2, t)‖ ≤ K ‖s1 − s2‖, that ‖σ(s1, t)− σ(s2, t)‖ ≤
K ‖s1 − s2‖ and that ‖σ(s, t)‖+‖B(s, t)‖ ≤ K(1+‖s‖). We assume that the
ith asset Sit is a solution to

dSit = bi(St , t)dt + Sit

n∑
j=1

σij (St , t)dW
j
t

which by the assumptions we know is possible. The money-market (i.e. the
bank-account) is given by

Bt = B0e
∫ t

0 c(Su,u)du.

Then the parabolic Black-Scholes operator associated with this process (ap-
plied to a function f : Rn × R → R) is defined by

L f = 1

2

n∑
i,j=1

sisj (σ (s, t)σ
T (s, t))ij

∂2f

∂si∂sj
+

n∑
i=1

bi(s, t)
∂f

∂si
−c(s, t)f + ∂f

∂t

and the option price f is a C1-solution to the obstacle problem (1.1)–(1.3)
with terminal condition f (s, T ) = φ(s, T ) (notice the changed direction of
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time). In the continuation region C = {(s, t); f (s, t) > φ(s, t)} the equation
L f = 0 is satisfied and the first optimal time to exercise the option is the first
time the process (St , t) hits the boundary of C (see [8] for a nice treatment
of option pricing by variational inequalities). Generally closed formulas for
solutions to problems of this type are not known and one usually has to rely
on numerical results. By recalling the results from previous section we can
at least say that if φ and if the coefficients of the Black-Scholes operator are
sufficiently smooth, then it is not optimal to exercise the option when (St , t)
hits the boundary of the positivity set U and we should in fact continue to
hold the option a little longer. That is, the boundary of the positivity set can
be used as an upper (or lower) bound of the free boundary. To illustrate our
point we show in the graphs below how the boundaries of the sets C and U
are situated in some particular cases. In these calculations the model used
for the stock-price is one-dimensional geometric Brownian motion (so that
σ is constant) and the pay-off functions used are φ(s, t) = max{0,K − s},
φ(s, t) = max{0,K − (1 − t/2)s} and φ(s, t) = (K − s)2 + t2 respectively.
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Figure 1. Free boundary and the positivity set boundary for the obstacle φ =
max{0,K − s}.



on the size of the non-coincidence set of parabolic . . . 159

0
5

10
15 0

0.5

1

2

4

t

Option value

S

va
lu

e

0
5

10
15 0

0.5

1
0

5

t

Obstacle: max(0, K−S(1−t/2))

S

va
lu

e

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

The free boundary and the positivity set boundary

t (time to maturity)

S
 (

as
se

t v
al

ue
)

positivity boundary
free boundary

Figure 2. Free boundary and the positivity set boundary for the obstacle
φ = max{0,K − s(1 − t/2)}.
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Figure 3. Free boundary and the positivity set boundary for the obstacle
φ = (K − s)2 + t2.
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