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(Dedicated to the memory of Gert K. Pedersen)

Abstract

In this paper we study three aspects of (P(M)/∼), the set of Murray-von Neumann equivalence
classes of projections in a von Neumann algebra M. First we determine the topological structure
that (P(M)/∼) inherits from the operator topologies on M. Then we show that there is a version
of the center-valued trace which extends the dimension function, even when M is not σ -finite.
Finally we prove that (P(M)/∼) is a complete lattice, a fact which has an interesting reformulation
in terms of representations.

1. Introduction

Let M be a von Neumann algebra, P(M) its projections, and ∼ the relation of
Murray-von Neumann equivalence on P(M). The description of the quotient
(P(M)/∼) is known as the dimension theory for M. This is essentially the
first invariant in the subject, going back to Murray and von Neumann’s initial
observations [24, Part II].Among other uses, dimension theory leads directly to
the type decomposition, classifies representations (see Section 7), and supports
the generalized Fredholm theory [1], [2], [27] required for noncommutative
geometry. In this paper we prove basic results about three aspects of dimension
theory: topology, parameterization, and order.

The second section of the paper contains background which is relevant
for all three topics. Section 3 deals with topology; Sections 4 and 5 with
parameterization; Sections 6 and 7 with order structure. Except for one or
two references, these three groupings are independent from each other. In the
remainder of this introduction we explain the problems which motivate our
investigations.

Topology. The first goal requires little explanation.

Problem 1.1. Study the topology that (P(M)/∼) inherits from the strong
(equivalently, the weak) topology on M.
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Some of the results are used in the author’s recent work on unitary orbits
[32].

Parameterization. It is easy to check that (P(M)/∼) inherits a well-defined
partial order from P(M). The classical work of Murray and von Neumann [24]
and Dixmier [5], [7] shows that (P(M)/∼) can be naturally parameterized by
a subset of the extended positive cone of the center, at least when M is σ -finite,
so that (P(M)/∼) is represented as a set of [0, +∞]-valued functions. This
parameterization map, called a dimension function, can be extended to all of
M+, and the extension is called an extended center-valued trace. The existence
of a dimension function on a non-σ -finite von Neumann algebra is also clas-
sical, though not quite as well-known. It was originally studied in connection
with spatial isomorphisms by Griffin [11], [12] and Pallu de la Barrière [29],
and eventually given a representation-free foundation by Tomiyama [34].

There is a noticeable gap between the last two objects.

Problem 1.2. Is there a version of the extended center-valued trace which
extends the dimension function on a non-σ -finite von Neumann algebra?

One might expect (and dread) technical constructions involving cardinals
and limits. We show how to avoid most of this by simply marrying Tomiyama’s
dimension function to the Kadison-Pedersen equivalence relation ≈, which is
the appropriate extension of ∼ from P(M) to M+ [19]. (So (M+/≈) is the set
of “sizes” of elements in M+.) In fact, the main point to settle (Proposition 4.3)
does not involve cardinals.

Unfortunately, at high cardinality the dimension function is not normal.
This entails that the offspring of the marriage mentioned above, which we call
a fully extended center-valued trace, is not normal in general either.

Order. The range of Tomiyama’s map consists of certain cardinal-valued
order-continuous functions on the spectrum of the center. Tomiyama assumed
pointwise order and arithmetic on the range, then gave some examples to
show that his map lacks basic continuity properties. But one should not expect
pointwise operations to behave well on infinite sets of functions, and it seems
to us that these are essentially the wrong operations to be considering. Our
viewpoint here is more algebraic. This repairs certain degeneracies and allows
us to resolve affirmatively the basic

Problem 1.3. Is (P(M)/∼) always a complete lattice?

With minor changes, our method also applies to the “size theory” (M+/≈).
We recall that a lattice (resp. complete lattice) is a partially-ordered set

in which one may take meets and joins of finitely (resp. arbitrarily) many
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elements. Although P(M) is a complete lattice, it does not induce lattice op-
erations on (P(M)/∼): for example, [p] ∧ [q] is not well-defined as [p ∧
q]. Nonetheless the comparison theorem for projections readily implies that
(P(M)/∼) is a lattice. And in a finite von Neumann algebra, the dimension
function identifies (P(M)/∼) with a complete sublattice of Z (M)+1 . Prob-
lem 1.3 asks about the existence of meets and joins of arbitrarily large sets of
equivalence classes coming from arbitrarily large von Neumann algebras.

After circulating a preprint version of this article, we were informed by
Ken Goodearl that he and Franz Wehrung have also solved Problem 1.3 in
a very recent memoir on dimension theory [10, Theorem 5-4.5]. Their work
encompasses much more than von Neumann algebras, and it naturally requires
quite a bit of abstract machinery. While we heartily recommend the memoir for
its power, it still seems worthwhile to offer here a direct, two-page proof. (Also
note that our results for (M+/≈) are not covered by [10].) In the last section
of the paper we reinterpret the lattice structure in terms of representations.

2. Background

This section covers the classical dimension theory which is used repeatedly in
the paper. Though most of this is standard material, we will arrive at reinter-
pretations and extensions, especially in Sections 4–6. We therefore present it
in some detail.

Let M be a von Neumann algebra of arbitrary type and cardinality. We
write Z (M) for its center, and we occasionally symbolize the strong and
weak topologies by s and w. The closure of a set in a topological space is
denoted by a bar, e.g. E. The central support of an operator x is c(x), and its
spectrum is sp(x).

We use the standard terminology and results from [33, Section V.1] for
projections, including p⊥ for (1 − p). Besides p ∼ q, we write p � q for
subequivalence, and p ≺ q for p � q but not p ∼ q. Notice that for pairwise
orthogonal sets {pα}, {qα} ⊂ P(M),

pα ∼ qα, ∀α ⇒
(∑

pα

)
∼

(∑
qα

)
,(2.1)

pα � qα, ∀α ⇒
(∑

pα

)
�

(∑
qα

)
.(2.2)

According to (2.1), we can sum unambiguously any set in (P(M)/∼) for
which there are mutually orthogonal representatives, simply by taking the
equivalence class of the sum of representatives. This determines a partial order
on (P(M)/ ∼): [p] ≤ [q] if there exists a projection r with [p] + [r] = [q].
It is easy to check that [p1] ≤ [p2] means nothing other than p1 � p2.
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Actually the comparison theorem for projections [33, Theorem V.1.8] im-
plies that (P(M)/ ∼) is a lattice. Forp, q ∈ P(M), let z be a central projection
with zp � zq, z⊥p � z⊥q. Then

(2.3) [p] ∧ [q] = [zp + z⊥q], [p] ∨ [q] = [z⊥p + zq].

Next we recall basic properties of the extended center-valued trace. This
material is due to Dixmier [5], [7], but for the reader’s convenience (presum-
ably), we give citations from Takesaki’s book [33].

Definition 2.1 ([33, Definition V.2.33]). Let M be an arbitrary von Neu-
mann algebra, and let �(Z (M)) be the spectrum of the abelian C∗-algebra
Z (M). By Ẑ (M)+ we mean the partially-ordered monoid of [0, +∞]-valued
continuous functions on �(Z (M)). The cone Z (M)+ is contained in Ẑ (M)+
and acts on it by multiplication.

An extended center-valued trace on M is an additive map T : M+ →
Ẑ (M)+ which satisfies the following: (1) T (y∗y) = T (yy∗) for y ∈ M; (2)
T (zx) = zT (x) for z ∈ Z (M)+ and x ∈ M+.

T is faithful if T (x∗x) = 0 ⇒ x = 0, ∀x ∈ M+. T is normal if

(2.4) T (sup xα) = sup T (xα)

for any bounded increasing net {xα} ⊂ M+. T is semifinite if the linear span
of {x ∈ M+ | T (x) ∈ Z (M)+} is σ -weakly dense in M.

Here we wish to draw attention to a point which will be amplified in Sec-
tions 5 and 6. What is the meaning of the expression “sup T (xα)” in (2.4)? The
pointwise supremum of an increasing family of [0, +∞]-valued continuous
functions on �(Z (M)) may not be continuous, and some kind of algebraic
supremum is required instead. Dixmier showed that such a supremum exists,
using the fact that �(Z (M)) is stonean [6]. He also mentions specifically that
other methods, including a purely formal one, could reach the same goal [7,
p. 25]. We suppose that our technique in Section 6 is similar to the formal
approach that he had in mind.

Semifinite von Neumann algebras – those with no summand of type III – are
characterized by the existence of a faithful normal semifinite extended center-
valued trace [33, TheoremV.2.34]. Such a map T is unique up to multiplication
by an element of Ẑ (M)+ which takes finite values on an open dense subset of
�(Z (M)), so all are equally useful in calculations. A projection p is finite if
and only if T (p) takes finite values on an open dense subset of �(Z (M)) [33,
Proposition V.2.35]. From all this p � q ⇒ T (p) ≤ T (q), and the converse
holds if p is finite.
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If M is finite, there is a unique faithful extended center-valued trace T with
T (1M) = 1M [33, Theorem V.2.6]. Such a map is automatically normal, and
the linear extension which is defined on all of M is called simply a center-
valued trace.

Convention 2.2. Whenever we talk of an “extended center-valued trace”
T on M+ in the sequel, it is assumed that

• T is normal and faithful;
• on the finite summand of M, T agrees with the center-valued trace;
• on the semifinite summand of M, T is semifinite;
• on the infinite type I summand of M, T maps an abelian projection to

its central support.

Therefore any two extended center-valued traces agree off the type II∞ sum-
mand, and in particular T (h) = (+∞)c(h) when h is supported on the type III
summand. (Here c(h) is identified with the characteristic function of a clopen
set in �(Z (M)).)

A word about operator topologies on M: the strong, σ -strong, weak, and
σ -weak topologies can all be defined spatially. The σ -strong and σ -weak to-
pologies are independent of the choice of (faithful normal) representation,
and this is not true for the strong and the weak. But on bounded sets, we
have the agreements strong=σ -strong and weak=σ -weak; we therefore permit
ourselves the small linguistic abuse of referring to the strong or weak topology
on a bounded subset of (unrepresented) M.

For M finite, the normality of the center-valued trace is equivalent to
σ -weak-σ -weak continuity. It will be more useful for us that this map is
also σ -strong-σ -strong continuous, and therefore strong-strong continuous on
bounded sets. (See [11, Theorem 13], [8, I.4.Théorème 2 and p. 250], and [30]
in connection with this. In fact the strong-strong or weak-weak continuity on
all of M does depend on the representation [11, Theorem 8].)

Here are some examples of (P(M)/∼) for factors. With T an extended
center-valued trace on M, the isomorphisms (2)-(4) are effected by the map
[p] �→ T (p).

(1) When M is a type Iκ factor, (P(M)/∼) is isomorphic to the initial
segment of cardinals ≤ κ , via the map that sends a projection to its rank.

(2) When M is a type II1 factor, (P(M)/∼) � [0, 1].

(3) When M is a σ -finite type II∞ factor, (P(M)/∼) � [0, +∞].

(4) When M is a σ -finite type III factor, (P(M)/∼) � {0, +∞}.
Note that T loses some of its utility on non-σ -finite factors; being capped at
“+∞”, it cannot distinguish between infinite cardinals.
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But continuous (type II) and degenerate (type III) dimension theories were
part of the original appeal for Murray and von Neumann: what does happen
at large cardinality? Since (P(M)/∼) is totally ordered if and only if M is
a factor, this is the scenario closest to set theory. Do type II and III factors
contain “quantum cardinal arithmetic” which diverges from the usual cardinal
arithmetic of a type I factor?

The questions above are answered neatly by the parameterization of
(P(M)/∼) as developed by Griffin [11], [12], Pallu de la Barrière [29], and
especially as formulated by Tomiyama [34]. The main point is a structure the-
orem allowing us to break a properly infinite von Neumann algebra into direct
summands, each of which has a well-defined size. This is in direct analogy to
the structure theorem for type I von Neumann algebras, but we use σ -finiteness
instead of abelianness as the “unit of measurement”.

Definition 2.3. ([34, Definition 1]) Let κ be a cardinal. We say that a
nonzero projection p in a von Neumann algebra M is κ-homogeneous if p

is the sum of κ mutually equivalent projections, each of which is the sum of
centrally orthogonal σ -finite projections. We also define

κM = sup
{
κ | M contains a κ-homogeneous projection

}
.

Remark 2.4. The terminology here is conflicting. We follow Tomiyama,
but elsewhere “κ-homogeneous projection” can mean a central projection
which is the sum of κ equivalent abelian projections (e.g. [33, p. 299]).

A projection can be κ-homogeneous for at most one κ ≥ ℵ0; also for
κ ≥ ℵ0, two κ-homogeneous projections with identical central support are
necessarily equivalent [12], [34]. Note that κM is not larger than the dimension
of a Hilbert space on which M is faithfully represented.

The fundamental result for us is a mélange of two theorems of Griffin, one
covering the semifinite case (slightly adapted to our setting, and also proved
by Pallu de la Barrière) and one covering the purely infinite. It was rewritten
in the non-spatial setting by Tomiyama.

Theorem 2.5 ([11, Theorem 3], [12, Theorem 1], [29, Théorème I.V.1],
[34, Theorem 1]). Let M be a properly infinite von Neumann algebra. Then
uniquely

1M =
∑

ℵ0≤κ≤κM

zκ,

where each zκ is either zero or a κ-homogeneous central projection.

Let T be an extended center-valued trace on a von Neumann algebra M

(following Convention 2.2). Given any p ∈ P(M), let zf be the largest central
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projection such that zf p is finite. By applying Theorem 2.5 to (1 − zf )pMp,
there are unique central projections (zκ)ℵ0≤κ≤κM

such that
∑

zκp = (1−zf )p

and any nonzero zκp is κ-homogeneous. Make the formal assignment

(2.5) p =
(

zf p +
∑

ℵ0≤κ≤κM

zκp

)
�→

(
T (zf p) +

∑
ℵ0≤κ≤κM

κzκ

)
.

From our earlier comments this assignment is a complete invariant for the
equivalence class of p.

We now describe how the right-hand side of (2.5) determines an (order)
continuous function on �(Z (M)). Identify each term κzκ with the constant
function κ defined only on the clopen set corresponding to zκ . Similarly realize
T (zf p) as a continuous function on the clopen set for zf . Their sum is then
a ([0, +∞) ∪ {κ | ℵ0 ≤ κ ≤ κM})-valued function, continuous on an open
dense domain in �(Z (M)). Tomiyama showed [34, Lemma 5] that such a
function extends uniquely and continuously to all of �(Z (M)).

Definition 2.6 ([34]). The assignment described above, from P(M)

to the continuous ([0, +∞) ∪ {κ | ℵ0 ≤ κ ≤ κM})-valued functions on
�(Z (M)), is a (generalized) dimension function of M.

Theorem 2.7 ([34]). Let D be a dimension function of M. Then D is
additive on pairs of orthogonal projections, provided that one incorporates
the positive reals into cardinal arithmetic in the obvious way. We have

p � q ⇐⇒ D(p) ≤ D(q), ∀p, q ∈ P(M),

where we use the pointwise ordering of functions on the right-hand side.

It follows that D factors as

(2.6) P(M) →→ (P(M)/∼)
∼→ D(P(M)).

Here the second map is an embedding in a function space, preserving sums
(when they exist) and intertwining the multiplicative P(Z (M))-action.

Corollary 2.8.
(1) In a factor of type II∞, the totally ordered set (P(M)/ ∼) is isomorphic

to
[0, +∞) ∪ {κ | ℵ0 ≤ κ ≤ κM}.

(2) In a factor of type III, the totally ordered set (P(M)/ ∼) is isomorphic
to

{0} ∪ {κ | ℵ0 ≤ κ ≤ κM}.
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So any interest in “quantum cardinal arithmetic” wanes here: infinite quan-
tum cardinals are (isomorphically) just cardinals. For axiomatic treatments
of (P(M)/∼) and more general algebraic structures obtained as quotients of
lattices, we refer the interested reader to [22], [23], [9], [10].

3. The topology of (P(M)/ ∼)

If we want (P(M)/∼) to inherit a topology from P(M), there really are not
so many interesting choices. The quotient of the norm topology is the discrete
topology, since ‖p − q‖ < 1 implies that p and q are unitarily equivalent [35,
Proposition 5.2.6]. And all of the “operator” topologies (notably, the strong
and the weak) are equivalent when restricted to P(M) [20, Exercise 5.7.4]. We
point out, however, that (P(M), strong) is complete as a topological subspace
of M, while (P(M), weak) may not be; completeness is not a topological
property.

We will denote by “QOT” the resulting quotient strong/weak operator topo-
logy on (P(M)/∼). In the rest of this section, all closures and convergences
in (P(M)/∼) are to be understood in this topology.

Lemma 3.1. Let {xα} be a net in a von Neumann algebra M equipped with
an extended center-valued trace T . If x∗

αxα = y1 is fixed, while xαx∗
α

w→ y2,
then T (y1) ≥ T (y2) in Ẑ (M)+.

Proof. Fix any ϕ ∈ Z (M)+∗ . Then ϕ ◦ T is a normal weight, so weakly
lower-semicontinuous [13]. We have

ϕ ◦ T (y2) = ϕ ◦ T (w − lim xαx∗
α) ≤ lim inf ϕ ◦ T (xαx∗

α)

= lim inf ϕ ◦ T (x∗
αxα) = ϕ ◦ T (y1).

Since ϕ is arbitrary, the conclusion follows.

Lemma 3.2. Let M be a von Neumann algebra.

(1) Let {pj }nj=1 be equivalent properly infinite projections in M, where n ∈
(N ∪ {∞}). Then p1 ∼ ∨pj .

(2) Let p � q be properly infinite projections in M with equal central
support. Then the set

(3.1) {pα | p ∼ pα ≤ q},
equipped with the usual operator ordering, is a net which converges
strongly to q.

Proof. (1) It is clear that p1 � ∨pj . Write p1 = ∑
qj , where each qj ∼ p1.

Let {vj } be partial isometries with v∗
j vj = pj , vjv

∗
j = qj . Since the qj are
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orthogonal, we have

(3.2) v∗
i vj = v∗

i viv
∗
i vj v

∗
j vj = v∗

i qiqj vj = 0, i �= j.

Let x be the bounded operator
∑

(vj /2j ). Using (3.2),

x∗x =
∑

(pj/4j ),

so that the right support of x is ∨pj . (By definition, the right (resp. left) support
of x is the smallest projection p such that x = xp (resp. x = px).) From its
form as a sum, the left support of x is less than or equal to the join of the
left supports of vj , which is ∨qj = p1. Since the left and right supports of an
operator are always equivalent [33, Proposition V.1.5], we have p1 � ∨pj as
well.

(2) By renaming qMq as M and replacing p with an equivalent projection
under q, it suffices to prove the statement for q = 1. First note that (3.1)
is upward directed, by part (1) applied to two projections. Therefore it is a
bounded increasing net which converges strongly to its supremum r . We claim
r = 1. To see this, use the comparison theorem on p and r⊥ to find s ∈ P(M)

and z ∈ P(Z (M)) satisfying

(3.3) s ∼ p, sz ≥ r⊥z, sz⊥ ≤ r⊥z⊥.

From its definition as a supremum, r ≥ s, so from (3.3) we deduce

(3.4) sz⊥ = 0, r⊥z = 0.

As c(s) = c(p) = 1, the first equation of (3.4) implies z⊥ = 0, and the second
then gives r⊥ = 0.

Theorem 3.3 ([21, Theorem 8.4.4]). Let M be finite with center-valued
trace T . If M is type In, T (P(M)) = {z ∈ Z (M)+1 | sp(z) ⊆ {0, 1

n
, 2
n
, . . . ,1}}.

If M is type II1, T (P(M)) = Z (M)+1 .

For use in Section 6, we remark that the proof of Theorem 3.3 (see [21,
Theorem 8.4.4]) also gives the following equalities. If M is infinite type I,
T (P(M)) consists of the functions in Ẑ (M)+ with range in {0,1,2, . . . ,+∞},
and T (M+

1 ) = Ẑ (M)+. If M is type II∞, T (P(M)) = Ẑ (M)+.
We now identify QOT , keeping in mind that the strong and weak topologies

on Z (M)+1 are typically not equivalent.

Theorem 3.4. If M is a finite von Neumann algebra with center-valued
trace T , the map [p] �→ T (p) implements a homeomorphism from
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((P(M)/∼), QOT) to a subspace of (Z (M)+1 , strong). Consequently

{[p]} = {[p]}, p ∈ P(M).

Proof. If [pα] → [p], then there exist qα ∼ pα with qα
s→ p. By the

strong-strong continuity of T on bounded sets, we have T (pα) = T (qα)
s→

T (p).
On the other hand, suppose pα, p are projections such that T (pα)

s→ T (p).
Using the comparison theorem again, let {qα} and {zα} be sets of projections
such that

qα ∼ pα, zα ∈ Z (M), qαzα ≥ pzα, qαz⊥
α ≤ pz⊥

α .

When M is σ -finite, the strong topology on bounded sets is generated by the
norm x �→ ϕ(x∗x)1/2, for ϕ any faithful normal state [33, Proposition III.5.3].
A general finite algebra is a direct sum of σ -finite ones [33, Corollary V.2.9],
so it suffices to show convergence for the seminorms coming from a family of
normal tracial states, each of which is faithful on a σ -finite summand.

We now take such a trace τ and compute

τ(|qα − p|2) = τ((qα − p)zα + (p − qα)z⊥
α )

= τ((T (qα) − T (p))zα + (T (p) − T (qα))z⊥
α )

= τ(|T (qα) − T (p)|)
= τ(|T (pα) − T (p)|)
≤ τ(|T (pα) − T (p)|2)1/2 → 0.

The last step uses the noncommutative Hölder inequality (cf. [26, Eq. 24]).

Theorem 3.5. Let p be a projection in a properly infinite von Neumann
algebra M. If p is finite,

(3.5) {[p]} = {[q] | [q] ≤ [p]}.
If p is properly infinite and c(p) = 1M ,

(3.6) {[p]} = (P(M)/ ∼).

Equations (3.5) and (3.6) may be synthesized into

(3.7) {[p]} = {[q] | T (q) ≤ T (p)}, ∀p ∈ P(M),

for any extended center-valued trace T .
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Proof. We prove the theorem by showing three separate implications, one
per paragraph.

Let p be finite, and suppose that [q] ∈ {[p]}, so that there are pα ∼ p

with pα
w→ q. With T an extended center-valued trace, Lemma 3.1 gives

T (q) ≤ T (p). We have assumed p finite, so q is as well, and both are supported
on the semifinite summand of M. We may conclude [q] ≤ [p].

Now let p be properly infinite with c(p) = 1, and suppose that [q] ≥ [p].
By Lemma 3.2(2), pα

s→ q, where {pα} is the net in (3.1). This shows [q] ∈
{[p]}.

By dividing M up into central summands, all of (3.5), (3.6), and (3.7)
will now be settled if we show that [q] ≤ [p] entails [q] ∈ {[p]} (with no
assumptions on p and q). Replacing q by an equivalent projection if necessary,
we may assume that q⊥ ∼ 1. (Write 1 = (s1 + s2) ∼ s1 ∼ s2, and find a
projection less than s1 which is equivalent to q.) Let q ∼ p0 ≤ p. Also write
q⊥ = ∑∞

j=1 qj , with qj ∼ 1. Finally find {rj } with (p − p0) ∼ rj ≤ qj . Now

p = (p0 + (p − p0)) ∼ (q + rj )
s→ q

as required.

Corollary 3.6. Let M be a factor, T an extended center-valued trace on
M, and E ⊆ (P(M)/∼). If M is finite,

E = {[q] | T (q) ∈ {T (p) | [p] ∈ E}},
where T (P(M)) has its usual topology as a subset of [0, 1]. If M is properly
infinite,

E = {
[q] | T (q) ≤ sup

[p]∈E

T (p)
}
.

Corollary 3.7. QOT is a T1 topology exactly when M is finite.

Proof. A topology is T1 if and only if for any two distinct points x, y, there
is a closed set which contains x and not y. Equivalently, a topology is T1 if
and only if singletons are closed.

Theorem 3.4 explicitly says that QOT is T1 in finite algebras. If M contains
a properly infinite projection p, [0] ∈ {[p]} by Theorem 3.5.

It turns out to be more useful for our applications elsewhere [32, The-
orem 5.4] to know when QOT is T0. A topology is T0 if for any two distinct
points, there exists a closed set which contains exactly one of them.

Proposition 3.8. For a von Neumann algebra M, the following conditions
are equivalent.
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(1) QOT is a T0 topology on (P(M)/ ∼).

(2) For any p, q ∈ P(M), [p] ∈ {[q]} ⇒ p � q.

(3) κM ≤ ℵ0.

(4) M does not contain B(�1), where �1 is a Hilbert space of dimension
ℵ1.

(5) M is a (possibly uncountable) direct sum of σ -finite von Neumann al-
gebras.

Proof. The equivalence of conditions (3)-(5) follows from the definitions
and Theorem 2.5. We therefore focus on the equivalence of (1)–(3).

(1)→(3): If (3) fails, let q be an ℵ1-homogeneous projection, and let p

be an ℵ0-homogeneous projection with c(p) = c(q). Then [p] ∈ {[q]} and
[q] ∈ {[p]}, but [p] �= [q]. Clearly there is no closed set separating the two.

(3)→(2): When κM ≤ ℵ0, T |P(M) can be identified with D. By Theor-
ems 3.4 and 3.5 we have

[p] ∈ {[q]} ⇒ T (p) ≤ T (q) ⇒ D(p) ≤ D(q) ⇒ p � q.

(2)→(1): Suppose (2) holds, and let [p], [q] ∈ (P(M)/∼) be such that
they cannot be separated by a closed set. Then

[p] ∈ {[q]}, [q] ∈ {[p]} ⇒ p � q, q � p ⇒ [p] = [q].

4. From dimension function to trace in full generality

Let T be an extended center-valued trace on a von Neumann algebra M, with
D the induced dimension function. We will create a map which extends D to
the entire positive cone and so is a trace which distinguishes among infinite
cardinalities. (In case κM ≤ ℵ0, this process simply recovers T .) The main
tool is Kadison-Pedersen equivalence.

Definition 4.1 ([19]). For two elements h, k ∈ M+, we write h ≈ k

if and only if there exists a family {xα} ⊂ M such that h = ∑
x∗

αxα and
k = ∑

xαx∗
α .

We write h � k to mean that there exists k′ ≤ k with h ≈ k′.
For h ∈ M+, we say that h is finite if h ≈ k ≤ h ⇒ k = h.

The following facts are shown in [19].

• The relation ≈ is an equivalence relation. It is homogeneous (h ≈ k ⇒
λh ≈ λk, λ ∈ R+) and completely additive in the sense that

hα ≈ kα, ∀α ⇒
∑

hα ≈
∑

kα

(when the two sums exist in M).
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• The relation � gives a partial order on equivalence classes. In particular,

(4.1) h � k, k � h ⇒ h ≈ k, h, k ∈ M+.

• For projections, p ≈ q ⇐⇒ p ∼ q.

• For h, k ∈ M+, h � k ⇒ T (h) ≤ T (k), and the converse holds if h is
finite.

We will also say that nonzero h ∈ M+ is properly infinite if zh is finite and
nonzero for no central projection z. For projections, the usage here of “finite”
and “properly infinite” coincides with the usual meaning; in fact proper infin-
iteness of (nonzero) h in either case is characterized by T (h) being {0, +∞}-
valued.

Lemma 4.2.
(1) Let λ ∈ (0, 1) ∪ (1, ∞), and let p be a projection. Then

p is properly infinite ⇐⇒ p ≈ λp.

(2) Let h, k ∈ M+ have equal central support, with k properly infinite and
h a countable sum of finite elements. Then h � k.

(3) Let h, k ∈ M+ be properly infinite with equal central support, and
suppose that each is a countably infinite sum of finite elements. Then
h ≈ k.

Proof. (1) If p ≈ λp, then T (p) must be {0, +∞}-valued. For the op-
posite implication, we first check rational multiples. Let m, n ∈ N. By proper
infiniteness, we may write

p =
m∑

i=1

pi =
n∑

j=1

p′
j , pi ∼ p ∼ p′

j , ∀i, j.

Then

p =
m∑

i=1

pi ≈
m∑

i=1

p = mp =
(m

n

)
np =

(m

n

) ( n∑
j=1

p

)

≈
(m

n

) ( n∑
j=1

p′
j

)
=

(m

n

)
p.

Find two positive rationals λ1, λ2 with λ1 ≤ λ ≤ λ2:

p ≈ λ1p ≤ λp ≤ λ2p ≈ p ⇒ p ≈ λp,

using (4.1).
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(2) Write h = ∑∞
j=1 hj , where each hj is finite. Since T (h1) ≤ T (k),

there is an operator k1 with h1 ≈ k1 ≤ k. We continue in this way: since
T (hn) ≤ T

(
k − ∑n−1

j=1 kj

)
, find kn with hn ≈ kn ≤ (

h − ∑n−1
j=1 kj

)
.

Now each
(∑n

j=1 hj

) ≈ (∑n
j=1 kj

)
, and these terms are finite and increasing

to h and some k′, respectively. It follows from [19, Lemma 3.3] that h ≈ k′ ≤ k.
(3) Both h � k and h � k follow from the previous part; apply (4.1).

Proposition 4.3. Let h ∈ M+ be properly infinite. Then there exists p ∈
P(M) such that h ≈ p.

Proof. It does no harm to assume that h has full central support, and
therefore M is properly infinite. Write the identity as 1M = ∑∞

n=−∞ pn, 1M ∼
pn, and let r0 ≤ p0 be an ℵ0-homogeneous projection with full central support.

Now make the decomposition

h =
∞∑

n=1

(2−n‖h‖)qn,

where qn is the spectral projection for h corresponding to

2n−1⋃
j=1

(
(2j − 1)2−n‖h‖, (2j)2−n‖h‖] .

For each n ≥ 1, let z
f
n be the largest central projection such that z

f
n qn is

finite. Using Lemma 4.2(1) and then conjugating by a partial isometry from
(1 − z

f
n ) to (1 − z

f
n )pn, find a projection rn with

(1 − zf
n )(2−n‖h‖)qn ≈ (1 − zf

n )qn ∼ rn ≤ pn.

Conjugating by a partial isometry from z
f
n to z

f
n p−n, let r−n be any operator

(necessarily finite, but not necessarily a projection) with

zf
n (2−n‖h‖)qn ≈ r−n ∈ p−nMp−n.

By construction we have h ≈ ∑∞
n=1(rn + r−n).

Set z0 = ∧z
f
n . We will complete the proof by showing that z0h and z⊥

0 h are
both (Kadison-Pedersen) equivalent to projections.

First,

z0h ≈ z0

( ∞∑
n=1

(rn + r−n)

)
= z0

( ∞∑
n=1

r−n

)
.



on the dimension theory of von neumann algebras 137

The left-hand side has central support z0, and is either zero or properly infinite
because h is properly infinite. The right-hand side is a countable sum of finite
elements. By Lemma 4.2(3),

z0h ≈ z0r0.

Second,

z⊥
0

( ∞∑
n=1

rn

)
∼ z⊥

0

(
r0 +

∞∑
n=1

rn

)
,

since the central supports are equal and the left-hand side is a properly infinite
projection. (For example, this follows by evaluating the dimension function
on both sides and noting that adding ℵ0 does not change an infinite cardinal.)
On the other hand, Lemma 4.2(2) implies

z⊥
0

( ∞∑
n=1

r−n

)
� z⊥

0 r0.

We put these together:

z⊥
0 h ≈ z⊥

0

( ∞∑
n=1

(rn + r−n)

)
� z⊥

0

(
r0 +

∞∑
n=1

rn

)

∼ z⊥
0

( ∞∑
n=1

rn

)
� z⊥

0

( ∞∑
n=1

(rn + r−n)

)
≈ z⊥

0 h.

Then all terms above are (Kadison-Pedersen) equivalent, and the middle two
are projections.

Corollary 4.4. Under the same hypotheses as in Lemma 4.2(2), k ≈ λk

for any λ ∈ (0, ∞), and (h + k) ≈ k.

Proof. By Proposition 4.3 and Lemma 4.2(1), there is a properly infinite
projection p with k ≈ p ≈ λp ≈ λk. By Lemma 4.2(2),

(h + k) � 2k ≈ k � (h + k) ⇒ (h + k) ≈ k.

We are now ready to define our map.

Definition 4.5. With T (and D) given, we construct a fully extended
center-valued trace T̂ on M as follows.

For any h ∈ M+, let zf be the largest central projection so that zf h is finite.
Let p be a projection with p ≈ (1 − zf )h. Such a p exists by Proposition 4.3,
and all choices belong to the same Murray-von Neumann equivalence class.
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We define

(4.2) T̂ (h) = T (zf h) + D((1 − zf )p),

which we view as a continuous ([0, +∞) ∪ {κ | ℵ0 ≤ κ ≤ κM})-valued
function on �(Z (M)).

Theorem 4.6. The map T̂ extends D, is additive, intertwines the multiplic-
ative action of Z (M)+, and satisfies

(4.3) h � k ⇐⇒ T̂ (h) ≤ T̂ (k), h, k ∈ M+.

(We are allowing cardinal arithmetic to incorporate the positive reals in the
obvious way.)

Proof. Clearly T̂ extends D. By the properties of D and T we have h ≈
k ⇐⇒ T̂ (h) = T̂ (k).

In saying that T̂ is additive, we mean that

(4.4) T̂ (h + k) = T̂ (h) + T̂ (k), h, k ∈ M+.

For h, k finite, (4.4) follows from additivity of T . For h, k properly infinite,
the projection representing h+ k may be constructed as the sum of orthogonal
representing projections for h and k; (4.4) then follows from the additivity of D.
Finally, let h and k have the same central support, with h finite and k properly
infinite. In this case T̂ (h) is bounded above by ℵ0, while T̂ (k) ≥ ℵ0 where
it is nonzero. So T̂ (h) + T̂ (k) = T̂ (k). Since (h + k) ≈ k by Corollary 4.4,
T̂ (h + k) = T̂ (k) as well.

In saying that T̂ intertwines the action of Z (M)+, we mean

(4.5) yT̂ (h) = T̂ (yh), y ∈ Z (M)+, h ∈ M+.

Clearly (4.5) holds for finite h, since the analogous formula is true for T . It
therefore suffices to prove (4.5) under the assumption that h and y have full
central support, with h properly infinite. In this case yT̂ (h) = T̂ (h), so we are
left to show that yh ≈ h. If y ≥ λc(y) for some λ > 0, then by Corollary 4.4

h ≈ λh ≤ yh ≤ ‖y‖h ≈ h ⇒ h ≈ yh.

The general conclusion follows by writing y as a central sum of operators
which are invertible on their supports.

As for (4.3), the forward implication is a consequence of additivity. For the
reverse implication, we look at central summands: where h is finite, this is a
property of T ; where h and k are both infinite, this is a property of D.



on the dimension theory of von neumann algebras 139

From Theorem 4.6, we see that T̂ factors as

(4.6) M+ →→ (M+/≈)
∼→ T̂ (M+).

Here the second map is an embedding in a function space, preserving order,
sums, and the multiplicative Z (M)+-action.

More generally, we may say that an arbitrary completely additive map on
M+ is tracial if and only if it factors through the quotient M+ →→ (M+/≈).
Numerical (completely additive) traces result when the range is [0, +∞]; they
are “ℵ0-truncated one-dimensional representations” of (M+/≈).

Remark 4.7. Kadison and Pedersen observed that all extended center-
valued traces on semifinite algebras can be generated in the following manner
[19, Theorem 3.8]. Fix a finite projection p with full central support such that
p is the identity on the finite summand and is abelian on the infinite type I
summand (to match Convention 2.2). Then for finite h ∈ M+, T (h) is the
unique element of the extended center with h ≈ T (h)p. Already this requires
a small extension of ≈ to unbounded sums.

With a further extension involving cardinals, T̂ can also be defined in this
way. For general M, let p be the identity on the finite summand, abelian on the
infinite type I summand, finite on the type II summand, and ℵ0-homogeneous
on the type III summand; of course p should have full central support. For
h ∈ M+, one can define T̂ (h) as the unique formal sum (as in (2.5)) such that
h ≈ T̂ (h)p and T̂ (h) takes no finite nonzero values on the type III summand.
Probably this is more interesting to mention than to carry out, so we omit the
details.

5. Continuity

In the remaininder of the paper we assume that compatible T , D, and T̂ are
given on M.

The order-preserving embeddings of (P(M)/∼) and (M+/≈) in a func-
tion space (albeit cardinal-valued) make pointwise operations available. From
Theorems 2.7 and 4.6 we know that for finite sets, addition in the quotient
structures agrees with addition of functions. One may likewise add up infinite
sets of functions, but there is no guarantee that the sum will be continuous.
Tomiyama gave an example [34, Example 2] to show that for a pairwise ortho-
gonal set {pα}, one cannot expect an identity between

∑
D(pα) and D(

∑
pα),

so that D is not completely additive.
This is really an artifact of the function representation. There is a natural

(partially-defined) sum operation on (P(M)/∼), given by∑
[pα] �

[∑
qα

]
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whenever there exists a set of pairwise orthogonal projections {qα} with qα ∼
pα . A similar definition is possible for sums in T̂ (M+), where we simply
require that the representatives sum to an element of M+. Note that there is
no ambiguity in these definitions, by (2.1) and the definition of ≈, and as
an immediate consequence, the maps P(M) →→ (P(M)/∼) and M+ →→
(M+/≈) are completely additive. In light of the factorizations (2.6) and (4.6),
it is of course possible to transport these sum operations to D(P(M)) and
T̂ (M+).

Pointwise lattice operations on pairs in D(P(M)) match (2.3) and so agree
with the operations in (P(M)/∼), but meets and joins of infinite sets of con-
tinuous functions need not be continuous. For bounded real-valued functions
on a stonean space, a regularization corrects this problem [33, Section III.1],
but the situation for cardinal-valued functions is less clear.

Normality for D and T̂ means appropriate analogues of (2.4). So how
do we interpret an expression like “sup D(pα)”, where {pα} is an increas-
ing net in P(M)? As we just mentioned, the pointwise supremum need not
lie in D(P(M)). Even when it does, Tomiyama showed that one may have
sup D(pα) �= D(sup pα) [34, Example 1].

In the next section we show that sup[pα] always exists in (P(M)/∼). But
the quotient map P(M) →→ (P(M)/∼) still need not be normal; this can be
seen from Lemma 3.2(2). For p a properly infinite projection, the members
of [p], under the operator ordering, form an increasing net which converges
strongly to c(p). One obtains a counterexample to normality whenever c(p) /∈
[p], and such counterexamples exist when κM > ℵ0. On the other hand, if
κM ≤ ℵ0, the quotient maps are given by the extended center-valued trace,
which we know to be normal. We conclude

Proposition 5.1. Another equivalent condition in Proposition 3.8 is

(6) The quotient maps P(M) →→ (P(M)/∼) and M+ →→ (M+/ ≈ ) are
normal.

In contrast, a pointwise criterion for normality of D and T̂ holds if and only
if κM ≤ ℵ0 and the center of M is finite-dimensional. We do not bother to
prove this explicitly, but we mention an example. Let M = 	∞, and take pn

to be the sum of the first n elements of the standard basis. Since sup D(pn)

does not agree with D(sup pn) at any point of (βN \ N) ⊂ βN � �(Z (M)),
pointwise normality fails. And here D is the identity – only the definition of
“sup” has changed.

Our conclusion from all this is that the pointwise addition and lattice oper-
ations on functions in the range of D and T̂ should be shelved in favor of the
induced quotient structures on (P(M)/∼) and (M+/≈). With this interpret-
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ation the assertion “D and T̂ are normal” is also equivalent to the conditions
in Proposition 3.8.

6. (P(M)/∼) is a complete lattice

Having just been warned about the degeneracies of the pointwise ordering, we
omit the last step of Tomiyama’s construction for D and stick with a more
algebraic language. We follow the right-hand side of (2.5), further dividing
T (zf p) into the pieces where it lies between consecutive finite cardinals. This
allows us to write the typical element of T̂ (M+) in the form

(6.1)
∑
κ≤κM

gκzκ .

The meaning of this expression is as follows. If κ is an infinite cardinal, then
gκ = κ . If κ is a nonnegative integer, gκ is an element of Z (M)+ satisfying
(κ − 1)zκ ≤ gκ ≤ κzκ and c(gκ − (κ − 1)zκ) = zκ . The central projections
zκ sum to 1, and the decomposition is unique.

The partial order, pairwise sum operation, and pairwise lattice operations
are easily understood for expressions of the form (6.1), but not all these belong
to T̂ (M+). Consider the following conditions on an expression (6.1):

(a) taking no finite nonzero values on the type III summand;

(b) being less than or equal to D(1M) (which does not depend on the choice
of D);

(b’) being less than or equal to a finite multiple of D(1M);

(c) having gκ = κzκ for finite κ when restricted to the type I summand.

From Theorem 3.3 (plus the comments thereafter), Proposition 4.3, and the
construction of D in terms of κ-homogeneous projections, we deduce

• T̂ (M+) is characterized by (a) and (b’);

• T̂ (M+
1 ) is characterized by (a) and (b);

• D(P(M)) is characterized by (a), (b), and (c).

Recall that a lattice is conditionally complete if one can take meets and joins
of arbitrary bounded subsets.

Theorem 6.1.
(1) (P(M)/∼) and (M+

1 /≈) are complete lattices.

(2) (M+/≈) is a conditionally complete lattice.

(3) (M+/≈) is a complete lattice if and only if M is properly infinite.
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Proof. (1) We show how to perform lattice operations on expressions of
the form (6.1). Our constructions preserve conditions (a), (b), and (c) above,
so they are well-defined in (P(M)/∼) and (M+

1 /≈).
Let us find the supremum of an arbitrary set {f α}, where

f α =
∑

gα
κ zα

κ .

For each cardinal κ ≤ κM , set

y≤κ =
∧
α

(∑
λ≤κ

zα
λ

)
;

y≤κ is “where all f α are ≤ κ”. Note that y≤κ is increasing in κ and y≤κM
= 1.

Next define, for each cardinal κ ≤ κM ,

zκ = y≤κ −
∨
λ<κ

y≤λ.

The zκ are pairwise disjoint: if κ1 < κ2, then

zκ1 ≤ y≤κ1 ⊥ zκ2 .

Notice also that
∑

zκ = 1. For if there were z ∈ P(Z (M)) with z ⊥ (∑
zκ

)
,

then let λ be the least cardinal with zy≤λ �= 0; by definition zzλ �= 0 as well,
which contradicts the assumption.

We claim that

(6.2) sup
α

f α =
∑

gκzκ � f,

where gκ = κ when κ is infinite, and otherwise gκ = supα(gα
κ zκ), which exists

as the supremum of a bounded set in Z (M)+.
Let us show that f ≥ f α for any α. Fixing a cardinal λ ≤ κM ,

(6.3) zλf
α = zλ

(∑
gα

κ zα
κ

)
= (zλy≤λ)

(∑
gα

κ zα
κ

)
≤ zλ

(∑
κ≤λ

gα
κ zα

κ

)
.

When λ is infinite, we continue (6.3) as

≤ λzλ = zλf.

When λ is finite, we continue (6.3) as

≤ zλ(λ − 1)

(∑
κ<λ

zα
κ

)
+ zλg

α
λ zα

λ ≤ zλgλ = zλf.
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Since zλf
α ≤ zλf for all λ, f ≥ f α .

Finally we check that if h = ∑
hκxκ satisfies h ≥ f α , ∀α, then necessarily

h ≥ f . Fixing a cardinal λ ≤ κM ,

hλxλ = xλh ≥ xλf
α, ∀α ⇒ xλ ≤

∑
κ≤λ

zα
κ , ∀α

⇒ xλ ≤
∧
α

(∑
κ≤λ

zα
κ

)
= y≤λ.

This last inequality implies

(6.4) xλf = xλy≤λf ≤ xλ

(∑
κ≤λ

gκzκ

)
.

When λ is infinite, we continue (6.4) as

≤ λxλ = xλh.

When λ is finite, we continue (6.4) as

≤ xλ(λ − 1)

(∑
κ<λ

zκ

)
+ xλgλzλ

and the inequality h ≥ f α , ∀α, allows us to compute further

= xλ(λ − 1)

(∑
κ<λ

zκ

)
+ xλ

(
sup

α

gα
λ zλ

) ≤ xλh.

Since xλf ≤ xλh for all λ, f ≤ h.
This completes the proof that f = sup f α .
As for the infimum of the f α , we first point out that we cannot write anything

like ∧
f α = 1 −

(∨
(1 − f α)

)
,

which is a useful duality in P(M). There is no complementation in the lattices
(P(M)/∼) and (M+

1 /≈), at least when M is not finite. Instead we define

y≤κ =
∨
α

(∑
λ≤κ

zα
λ

)

and complete the rest of the proof similarly to the proof for the supremum.
(The substitute for (6.3) should begin with “zα

λf = . . .”, for (6.4) should begin
with “zλh = . . .”.)
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(2) If a family in T̂ (M+) has an upper bound in T̂ (M+), then apparently
the supremum of the corresponding expressions (6.1) satisfies (b’), so belongs
to T̂ (M+). Any family in T̂ (M+) is bounded below by 0 and has an infimum.

(3) When M is properly infinite, any finite multiple of D(1M) is again equal
to D(1M), so conditions (b) and (b’) agree. If M has a finite summand zM,
the elements T̂ (nz) = nz have supremum ℵ0z /∈ T̂ (M+).

There should be no confusion between Theorem 6.1(2) and the conditionally
complete lattice structure that M+ acquires from the spectral order [28].

7. Application to representation theory

In this section we reinterpret Theorem 6.1 in terms of the (nondegenerate
normal Hilbert space) representations of M. Unless noted otherwise, we use
“isomorphism” in the sense of normed M-modules, i.e.

{π1, �1} � {π2, �2} ⇐⇒
∃ unitary U : �1 → �2 : Uπ1(x)U ∗ = π2(x), ∀x ∈ M.

It follows from the basic theory (see [15, Sections 2.1-2] or [31, Section 2])
that any representation is (isomorphically) contained in a direct sum of copies
of the standard form {id, L2(M)}. We view ⊕IL

2(M) as a row vector and think
of the M-action as multiplication on the left. The commutant is right multiplic-
ation by B(	2

I )⊗M, and the closed submodules are of the form (⊕IL
2(M))q,

where q ∈ P(B(	2
I )⊗M). Two submodules are isomorphic if and only if the

corresponding projections are equivalent.
This means that the isomorphism class of a representation corresponds to an

equivalence class of projections in some amplification of M. Adding represent-
ations corresponds to adding equivalence classes. As we have mentioned, the
partial order can be defined in terms of the sum, so provided we make some kind
of size restriction, we get an isomorphism of ordered monoids. For example, if
M is σ -finite, we obtain an identification between (P(B(	2)⊗M)/∼) and iso-
morphism classes of countably generated Hilbert M-modules. This all works
for Lp modules [16], too, and is closely related to the K0 functor [14], [35].

(Most of the ideas of the preceding two paragraphs were discussed by
Breuer [1], [2], without making reference to standard forms. He focused on
the monoid generated by equivalence classes of finite projections, because the
associated Grothendieck group, called the index group of M, is the natural
carrier for the Fredholm theory of M. Olsen [27] later combined Breuer’s
work with Tomiyama’s dimension function to give a very general version of
index theory in von Neumann algebras.)
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Corollary 7.1. Let {πα, �α} be a set of representations of a fixed von Neu-
mann algebra M. Then there is a maximal representation of M which is (iso-
morphically) contained in all of these, and there is a minimal representation
which (isomorphically) contains all of these. Both are unique up to M-module
isomorphism.

Proof. Choose a large enough set I so that for all α, {πα, �α} is a sub-
representation of {id, ⊕IL

2(M)}. The corollary follows from the preceding
discussion and the fact that (P(B(	2

I )⊗M)/ ∼) is a complete lattice.

In the early years of the subject, von Neumann algebras were generally tied
to their Hilbert spaces, and the notion of M-module isomorphism was there-
fore not in use. Instead, one classified represented algebras up to the slightly
weaker notion of spatial isomorphism, which allows for an arbitrary isomorph-
ism between the algebras. (An M-module isomorphism between representa-
tions {π1, �1} and {π2, �2} is a spatial isomorphism between von Neumann
algebras {π1(M), �1} and {π2(M), �2} which induces the algebra isomorph-
ism π2 ◦π−1

1 .) The question “When is an algebraic isomorphism of represented
von Neumann algebras spatial?”, which is a noncommutative version of the
fundamental problem of unitary equivalence for normal operators, is treated
in detail in [18]. Also see [4] for a projection-based approach to the existence
of spatial isomorphisms.

Having said that, equivalence classes of representations/represented algeb-
ras were first studied by Murray and von Neumann [25, Chapter III], using
the coupling constant for finite factors. The generalizations to coupling func-
tions and arbitrary algebras were the motivations for the Griffin and Pallu de
la Barrière results featured in Section 4. The space-free approach was notably
developed by the Japanese school of the 1950’s.

Modulo spatial isomorphism, the set of equivalence classes of representa-
tions of a fixed von Neumann algebra may not even be partially ordered. We
mention the relevant example. Let M be a type II∞ factor with dimension
function D and fundamental group � /∈ {{1}, (0, ∞)}. (The existence of such
an M remained in doubt until a breakthrough of Connes in 1980 [3]. The
fundamental group of a II∞ factor can be defined as

{λ ∈ (0, ∞) | ∃α ∈ Aut(M), D ◦ α = λD},
with the group operation being multiplication.) Kadison [17] showed that for
nonzero finite projections p, q, L2(M)p is spatially isomorphic to L2(M)q if
and only if D(p)

D(q)
∈ �. Since� �= (0, ∞), we may find nonzero finite projections

p, p′ with D(p)

D(p′) /∈ �. And � �= {1}, so we may find spatial isomorphisms

L2(M)q1 � L2(M)p′ � L2(M)q2 with q1 � p � q2. Therefore the spatial
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equivalence class of L2(M)p both dominates and is dominated by that of
L2(M)p′, yet the two are not equal.

At least for factors, this kind of pairing – II∞ algebra, II1 commutant – is
the only case where the two notions of equivalence differ. Not coincidentally,
the only choice required for T , D, and T̂ is the normalization on the finite
elements in the II∞ summand. (On a II∞ summand, one possible definition
for “normalization” is the inverse image of the identity, which is nothing but
the equivalence class of the projection p discussed in Remark 4.7.)

Acknowledgements. We thank Chuck Akemann and Ken Goodearl for
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